
Citation: Liu, C.; Xu, X.; Chen, Z.;

Wang, B. A Universal-Verification-

Methodology-Based Testbench for

the Coverage-Driven Functional

Verification of an Instruction Cache

Controller. Electronics 2023, 12, 3821.

https://doi.org/10.3390/

electronics12183821

Academic Editors: Leonardo Pantoli,

Egidio Ragonese, Paris Kitsos,

Gaetano Palumbo and

Costas Psychalinos

Received: 10 August 2023

Revised: 5 September 2023

Accepted: 7 September 2023

Published: 9 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Universal-Verification-Methodology-Based Testbench for the
Coverage-Driven Functional Verification of an Instruction
Cache Controller
Cong Liu 1,2,3, Xinyu Xu 3,*, Zhenjiao Chen 3 and Binghao Wang 2,*

1 School of Integrated Circuits, Southeast University, Nanjing 210096, China
2 School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
3 China Key System & Integrated Circuit Co., Ltd., Wuxi 214072, China
* Correspondence: xuxinyu@cksic.com (X.X.); binghaowang@seu.edu.cn (B.W.)

Abstract: The Cache plays an important role in computer architecture by reducing the access time of
the processor and improving its performance. The hardware design of the Cache is complex and it is
challenging to verify its functions, so the traditional Verilog-based verification method is no longer
applicable. This paper proposes a comprehensive and efficient verification testbench based on the
SystemVerilog language and universal verification methodology (UVM) for an instruction Cache
(I-Cache) controller. Corresponding testcases are designed for each feature of the I-Cache controller
and automatically executed using a python script on an electronic design automation (EDA) tool.
After simulating a large number of testcases, the statistics reveal that the module’s code coverage
is 99.13%. Additionally, both the function coverage and the assertion coverage of the module reach
100%. Our results demonstrate that these coverage metrics meet the requirements and ensure the
thoroughness of function verification. Furthermore, the established verification testbench exhibits
excellent scalability and reusability, making it easily applicable to higher-level verification scenarios.

Keywords: Cache; UVM; verification testbench; coverage

1. Introduction

As the complexity of chips increases, the task of verifying their functionality becomes
more challenging. Any abnormal function within a chip module can lead to system failure,
emphasizing the need for robust chip verification methods. Among the critical modules
in a processor chip, the Cache [1,2] plays a significant role by storing frequently accessed
instructions or data. It possesses features such as a relatively small capacity and high
speed. The Cache operates at a clock rate comparable to that of the processor, which is
typically faster than the main memory. As a result, the Cache substantially enhances the
processor’s performance. Given the intricate hardware design of the Cache, it becomes
crucial to employ an appropriate function verification method to ensure its correctness.

In the work by Biswal et al. [3], system-level verification was conducted for the system
on chip (SOC) where the Cache resides. However, more detailed and specific verification
for the Cache module itself was not performed, creating risks for the entire SOC system.
Simultaneously, the work also lacks an explanation of the reusability of the module-level
verification testbench. In SoC systems, verification is typically conducted at various levels,
progressing sequentially from low to high. The low-level verification testbench can be
reused in the high-level verification testbench, necessitating the completion of module-level
verification prior to system-level verification. The module-level verification testbench
should possess good reusability to enable coupling with the system and verification test-
bench. Zhou [4] proposed a UVM verification testbench that does not include a reference
model component. This testbench focused on module-level verification, specifically target-
ing the main function of each module, without utilizing assertions and other verification

Electronics 2023, 12, 3821. https://doi.org/10.3390/electronics12183821 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12183821
https://doi.org/10.3390/electronics12183821
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12183821
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12183821?type=check_update&version=1

Electronics 2023, 12, 3821 2 of 13

methods. The actual working scenario of a chip is complex, encompassing not only the
main functional aspects but also incorporating abnormal working scenarios. These sce-
narios may involve timing relationships, interrupt responses, and other factors that need
to be considered to achieve comprehensive functional verification. Kaur [5] designed a
four-way set-associative Cache controller and performed functional simulation using an
online simulator. While the simulation waveform for typical function points was provided,
coverage statistics were not performed. This means there is a lack of quantitative indicators
to measure verification completeness, which could potentially result in hidden design is-
sues. Similarly, in the work by Omran et al. [6], the authors simulated their designed Cache
using an emulator that accompanies the field programmable gate array (FPGA) device. This
type of emulator supports fewer features and allows for the use of the Verilog language
to build a simple verification testbench and develop directional excitation applied to the
Cache. This approach aims to achieve functional verification. Although this method can
verify the main functions of the Cache, it is challenging to cover all the working scenarios
for the Cache to perform directional testing due to its incentive properties. As a result, the
whole verification process fails to achieve good completeness. To summarize, in the current
stage of research there is a lack of a verification testbench for Cache design with a complete
verification scheme and high reusability. In order to achieve this goal, it is necessary to
select appropriate tools and verification methods.

UVM is a verification framework based on the SystemVerilog language, which itself
evolved from the Verilog hardware description language. SystemVerilog is fully com-
patible with Verilog and combines hardware design capabilities with software language
characteristics, making it widely used in chip verification processes. SystemVerilog adheres
closely to the principles of object-oriented programming (OOP) and incorporates most
of the features found in object-oriented languages. This object-oriented approach brings
several benefits when compared to traditional Verilog verification methods. The UVM
verification testbench built on top of SystemVerilog offers strong reusability, a clear and
organized structure, and high efficiency. In traditional Verilog verification, which is often
based on directed testing, the focus is on verifying hardware designs with relatively simple
structures and functions. However, UVM introduces a random verification strategy [7]
that allows for scenario-based testing, allowing for the verification of various working
scenarios of the chip. This approach significantly improves the completeness of the verifi-
cation process. UVM is also evolving towards coverage-driven verification (CDV), where
coverage metrics are used to evaluate the progress of verification. By setting coverage
goals, engineers can ensure that the verification process comprehensively exercises different
aspects of the design. One of the reasons UVM is an efficient verification methodology
lies in its incorporation of special mechanisms. The sequence mechanism facilitates the
generation of reusable stimuli, the phase mechanism provides a hierarchical structure for
the simulation process, and the objection mechanism allows for control over the simulation
termination. These features contribute to the efficiency of UVM in performing simulation
verification, spanning from the module level to the system level in digital circuits [8].

In this paper, we build a coverage-driven verification approach based on the UVM
testbench for the I-Cache controller. UVM, which inherits from the open verification
methodology (OVM), is a next-generation verification methodology known for its efficiency
and reusability. Specifically, random testcases are first developed to verify the general func-
tional features of the module. During this process, function coverage groups are defined
to ensure adequate coverage. For specific scenarios, directional testcases are developed to
verify the normal functioning of the module, potentially targeting exception scenarios as
well. Moreover, some temporal relationships are checked with SystemVerilog Assertions
(SVA) [9] and assertion coverage is measured. Overall, this paper aims to leverage the
advantages of the UVM verification testbench to enhance the completeness, reusability, and
extensibility of the Cache function verification process, addressing limitations encountered
by previous approaches.

Electronics 2023, 12, 3821 3 of 13

2. Function of Design and Verification Plan

The data in the Cache is a copy of some of the data in the main memory. So, when the
central processing unit (CPU) wants to use the data in the main memory, it can retrieve
the required data from the faster Cache, resulting in reduced access time. The relationship
between the CPU, Cache, and main memory is depicted in Figure 1. According to the
theory of the Harvard structure, the first-level Cache is divided into an instruction Cache
and a data Cache. These Caches are independent of each other and respectively store the
instructions and data required by the processor. On the other hand, the second-level Cache
does not make a distinction between instructions and data. In the context of the CPU
accessing the Cache, if the required data are present in the Cache, they are referred to as a
“hit”. Otherwise, they are referred to as a “miss”.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 14

leverage the advantages of the UVM verification testbench to enhance the completeness,
reusability, and extensibility of the Cache function verification process, addressing limi-
tations encountered by previous approaches.

2. Function of Design and Verification Plan
The data in the Cache is a copy of some of the data in the main memory. So, when

the central processing unit (CPU) wants to use the data in the main memory, it can retrieve
the required data from the faster Cache, resulting in reduced access time. The relationship
between the CPU, Cache, and main memory is depicted in Figure 1. According to the the-
ory of the Harvard structure, the first-level Cache is divided into an instruction Cache and
a data Cache. These Caches are independent of each other and respectively store the in-
structions and data required by the processor. On the other hand, the second-level Cache
does not make a distinction between instructions and data. In the context of the CPU ac-
cessing the Cache, if the required data are present in the Cache, they are referred to as a
“hit”. Otherwise, they are referred to as a “miss”.

Figure 1. Relationship between CPU, Cache, and main memory.

The I-Cache operates as a direct-mapped Cache in all Cache configurations. This
means that each location in the system memory can reside in exactly one location in the I-
Cache. Because the I-Cache is direct-mapped [10], its replacement strategy [11–13] is sim-
ple: each newly cached line replaces the previously cached line. The I-Cache is a non-
blocking Cache [14], which means that multiple unprocessed misses are allowed, in which
case a specific module is required to store the information of unprocessed misses.

2.1. Main Components of the I-Cache Controller
As is evident from the previous section, the controller interacts with data from mul-

tiple components. The register configuration channel originates from the load-store unit,
which serves as the first component. Among the components, the CPU utilizes the instruc-
tions stored in the load-store unit. Furthermore, in the multilevel structure of the Cache,
when the instruction Cache is unavailable, the controller initiates a request to the next
level of memory, known as the L2 Cache. The structural block diagram of the I-Cache to
be verified is shown in Figure 2. The CPU sends a fetch request to the I-Cache. If the tag
comparison in the TAG module is successful, instruction data are output from the DATA
module. The MAF module sends a request to the L2 Cache and receives the response. The
registers inside the I-Cache are accessed via a register bus. More detailed descriptions are
as follows:
1. CSR: Control and status register. The registers inside the CSR module are configured

through the configuration bus to support related functions. The definition of the reg-
isters are shown in Table 1.

2. MAF: miss addr file, which is also known as miss status handling register (MSHR).
When a missing item occurs, the module saves the missing information, sends a re-
quest message to the L2 Cache, and waits for the L2 Cache to return the data. It con-
tains four item units, and each item unit can save a missing message. It defines a
pointer to control the switch of these four items. This module also populates the data
it holds internally into the TAG module and the DATA module.

3. TAG: The module consists of a tag storage unit and corresponding control logic. It
fills the upper part of the address from the MAF into the tag storage, and completes

Figure 1. Relationship between CPU, Cache, and main memory.

The I-Cache operates as a direct-mapped Cache in all Cache configurations. This
means that each location in the system memory can reside in exactly one location in the
I-Cache. Because the I-Cache is direct-mapped [10], its replacement strategy [11–13] is
simple: each newly cached line replaces the previously cached line. The I-Cache is a non-
blocking Cache [14], which means that multiple unprocessed misses are allowed, in which
case a specific module is required to store the information of unprocessed misses.

2.1. Main Components of the I-Cache Controller

As is evident from the previous section, the controller interacts with data from multiple
components. The register configuration channel originates from the load-store unit, which
serves as the first component. Among the components, the CPU utilizes the instructions
stored in the load-store unit. Furthermore, in the multilevel structure of the Cache, when
the instruction Cache is unavailable, the controller initiates a request to the next level of
memory, known as the L2 Cache. The structural block diagram of the I-Cache to be verified
is shown in Figure 2. The CPU sends a fetch request to the I-Cache. If the tag comparison
in the TAG module is successful, instruction data are output from the DATA module. The
MAF module sends a request to the L2 Cache and receives the response. The registers
inside the I-Cache are accessed via a register bus. More detailed descriptions are as follows:

1. CSR: Control and status register. The registers inside the CSR module are configured
through the configuration bus to support related functions. The definition of the
registers are shown in Table 1.

2. MAF: miss addr file, which is also known as miss status handling register (MSHR).
When a missing item occurs, the module saves the missing information, sends a
request message to the L2 Cache, and waits for the L2 Cache to return the data. It
contains four item units, and each item unit can save a missing message. It defines a
pointer to control the switch of these four items. This module also populates the data
it holds internally into the TAG module and the DATA module.

3. TAG: The module consists of a tag storage unit and corresponding control logic. It
fills the upper part of the address from the MAF into the tag storage, and completes
the tag comparison when a fetch request arrives to determine whether the current
access is a hit.

4. DATA: The module consists of a data storage unit and corresponding control logic. Its
primary function is to store data from the MAF and determine whether the accessed
object is a Cache region or a static random-access memory (SRAM) [15,16] region
based on the currently set Cache size.

Electronics 2023, 12, 3821 4 of 13

Table 1. Definition of registers.

Register Function

REG_CFG Configure Cache size
REG_CC Enable freeze mode
REG_INV Enable global invalidation

REG_IBAR Base addr of block invalidation
REG_IWC Word count of block invalidation

Electronics 2023, 12, x FOR PEER REVIEW 4 of 14

the tag comparison when a fetch request arrives to determine whether the current
access is a hit.

4. DATA: The module consists of a data storage unit and corresponding control logic.
Its primary function is to store data from the MAF and determine whether the ac-
cessed object is a Cache region or a static random-access memory (SRAM) [15,16]
region based on the currently set Cache size.

Figure 2. Structural block diagram of the I-Cache controller.

Table 1. Definition of registers.

Register Function
REG_CFG Configure Cache size
REG_CC Enable freeze mode
REG_INV Enable global invalidation

REG_IBAR Base addr of block invalidation
REG_IWC Word count of block invalidation

2.2. Main Functions of the I-Cache Controller
The key functions of the I-Cache controller are as follows:

• The Cache size can be configured, including 0 kb, 4 kb, 8 kb, 16 kb, and 32 kb. The
total storage space size is 32 kb. For example, when the Cache size is configured to 4
kb, the SRAM size is 28 kb.

• It supports freeze mode. The significance of the freeze mode is to protect the contents
of the Cache under certain circumstances. If the Cache space is larger than 0 kb, no
memory will be filled in the freeze mode even if a Cache loss occurs, which is normal
when the freeze mode is disabled.

• It supports instruction prefetch. When the CPU initiates a fetch operation to the I-
Cache (assuming the fetch address is addr), and the result of this operation is miss-
ing, the I-Cache sends a request to the L2 Cache, and the L2 Cache returns the data
corresponding to the addr and the data of the addresses adjacent to the addr. The
command prefetch improves the Cache system efficiency.

• It supports global and block invalidation operations. We can configure specific regis-
ters via configuration bus to complete the corresponding operation. If the Cache size
is changed when the system is running, the global invalidation operation is triggered
to avoid unnecessary errors.

2.3. Proposed Verification Plan
UVM excels in verifying digital circuit designs, particularly for complex circuits. Its

advantages include improved reusability, organized structure, support for random veri-
fication strategies, and coverage-driven verification, making it a popular choice in the chip

Figure 2. Structural block diagram of the I-Cache controller.

2.2. Main Functions of the I-Cache Controller

The key functions of the I-Cache controller are as follows:

• The Cache size can be configured, including 0 kb, 4 kb, 8 kb, 16 kb, and 32 kb. The
total storage space size is 32 kb. For example, when the Cache size is configured to
4 kb, the SRAM size is 28 kb.

• It supports freeze mode. The significance of the freeze mode is to protect the contents
of the Cache under certain circumstances. If the Cache space is larger than 0 kb, no
memory will be filled in the freeze mode even if a Cache loss occurs, which is normal
when the freeze mode is disabled.

• It supports instruction prefetch. When the CPU initiates a fetch operation to the I-
Cache (assuming the fetch address is addr), and the result of this operation is missing,
the I-Cache sends a request to the L2 Cache, and the L2 Cache returns the data
corresponding to the addr and the data of the addresses adjacent to the addr. The
command prefetch improves the Cache system efficiency.

• It supports global and block invalidation operations. We can configure specific regis-
ters via configuration bus to complete the corresponding operation. If the Cache size
is changed when the system is running, the global invalidation operation is triggered
to avoid unnecessary errors.

2.3. Proposed Verification Plan

UVM excels in verifying digital circuit designs, particularly for complex circuits.
Its advantages include improved reusability, organized structure, support for random
verification strategies, and coverage-driven verification, making it a popular choice in
the chip verification domain. The chip encompasses real-world working scenarios, and
it is essential that we ensure the chip’s ability to function properly in various working
scenarios. This includes both normal and abnormal scenarios, as well as boundary scenarios.
Therefore, when formulating verification schemes, it is crucial to consider the aspect of
completeness in verification. In this paper, diverse verification methods are employed to
guarantee comprehensive verification.

• Common work scenarios

Electronics 2023, 12, 3821 5 of 13

Random testcases are designed for simulation verification. In the simulation process,
the scoreboard will conduct a real-time data comparison (the two data sources are
respectively from the reference model and the monitor monitoring DUT data). If the
comparison fails, the corresponding error information will be printed in the simulation
log, and the wrong data packet and its corresponding id will be given in detail.

(1) CPU sequential fetch: The Cache size and freeze mode are randomly config-
ured. The fetch address increases in sequence. Since the controller supports
instruction prefetch functionality, the instructions corresponding to two adja-
cent addresses are retrieved sequentially.

(2) CPU branch fetch: The Cache size and freeze mode are randomly configured.
Fetch refers to the process of increasing the address sequence. When a branch
address suddenly appears, it can result in the occupation of more items.

• Special work scenarios

(1) CPU access times out: The item will be automatically released, which will
result in a miss on the next fetch. Under normal circumstances, the current
item is released when it is accessed successfully.

(2) L2 Cache returns data in an out-of-order manner: During a sequential branch
fetch, the instruction Cache sends two consecutive requests to the L2 Cache.
Depending on the situation in the L2 Cache, it may not return the requested
data in the expected order.

• SVA check

Special timing relationships are checked using SVA, and error messages are printed in
the simulation log file when violations occur.

3. UVM Verification Testbench

As shown in Figure 3, a basic UVM verification testbench is centered around the verifi-
cation environment [17,18], which typically contains components such as agent, reference
model, and scoreboard. In general, each agent represents a data protocol. The agent is
connected to the DUT through an interface, and the components also establish the necessary
connections to maintain data communication within the verification environment.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 14

verification domain. The chip encompasses real-world working scenarios, and it is essen-
tial that we ensure the chip’s ability to function properly in various working scenarios.
This includes both normal and abnormal scenarios, as well as boundary scenarios. There-
fore, when formulating verification schemes, it is crucial to consider the aspect of com-
pleteness in verification. In this paper, diverse verification methods are employed to guar-
antee comprehensive verification.
• Common work scenarios

Random testcases are designed for simulation verification. In the simulation process,
the scoreboard will conduct a real-time data comparison (the two data sources are respec-
tively from the reference model and the monitor monitoring DUT data). If the comparison
fails, the corresponding error information will be printed in the simulation log, and the
wrong data packet and its corresponding id will be given in detail.

(1) CPU sequential fetch: The Cache size and freeze mode are randomly configured.
The fetch address increases in sequence. Since the controller supports instruc-
tion prefetch functionality, the instructions corresponding to two adjacent ad-
dresses are retrieved sequentially.

(2) CPU branch fetch: The Cache size and freeze mode are randomly configured.
Fetch refers to the process of increasing the address sequence. When a branch
address suddenly appears, it can result in the occupation of more items.

• Special work scenarios
(1) CPU access times out: The item will be automatically released, which will result

in a miss on the next fetch. Under normal circumstances, the current item is re-
leased when it is accessed successfully.

(2) L2 Cache returns data in an out-of-order manner: During a sequential branch
fetch, the instruction Cache sends two consecutive requests to the L2 Cache. De-
pending on the situation in the L2 Cache, it may not return the requested data
in the expected order.

• SVA check
Special timing relationships are checked using SVA, and error messages are printed

in the simulation log file when violations occur.

3. UVM Verification Testbench
As shown in Figure 3, a basic UVM verification testbench is centered around the ver-

ification environment [17,18], which typically contains components such as agent, refer-
ence model, and scoreboard. In general, each agent represents a data protocol. The agent
is connected to the DUT through an interface, and the components also establish the nec-
essary connections to maintain data communication within the verification environment.

Figure 3. The structure of a basic UVM verification testbench.

3.1. Architecture of the Verification Testbench

The verification testbench proposed in this paper is an extension of the previously
shown verification testbench in Figure 3, and its architecture diagram is depicted in Figure 4.
As discussed in Section 2, the registers in the Cache need to be configured through the
register configuration bus to enable operations such as changing the Cache size and freeze
mode. This functionality is implemented by the bus agent in the verification environment.

Electronics 2023, 12, 3821 6 of 13

When the CPU reaches the fetch pipeline [19], it initiates a fetch operation to the I-Cache.
To simulate the CPU’s access to the I-Cache, the CPU agent is set up in the verification
environment. In the event of a Cache miss in the I-Cache, a request is sent to the L2
Cache, and the system waits for the L2 Cache to return the data. Hence, an L2 agent
is established to handle the I-Cache’s interactions with the L2 Cache. Additionally, a
coherency (coh) agent is included to manage invalidations between the I-Cache and the
L2 Cache. The register abstraction layer (RAL) [20] is an essential component of the
verification environment, providing convenient access to registers through various methods.
The verification environment includes an essential component known as the reference
model [21], implemented using a software language to achieve the same functions as the
hardware design. During the random test phase, the reference model plays a crucial role in
verifying the logic of the I-Cache by comparing the data from the I-Cache with the data
from the scoreboard [22]. The scoreboard, being the final component in the verification
environment, automatically performs data comparisons.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 14

Figure 3. The structure of a basic UVM verification testbench.

3.1. Architecture of the Verification Testbench
The verification testbench proposed in this paper is an extension of the previously

shown verification testbench in Figure 3, and its architecture diagram is depicted in Figure
4. As discussed in Section 2, the registers in the Cache need to be configured through the
register configuration bus to enable operations such as changing the Cache size and freeze
mode. This functionality is implemented by the bus agent in the verification environment.
When the CPU reaches the fetch pipeline [19], it initiates a fetch operation to the I-Cache.
To simulate the CPU’s access to the I-Cache, the CPU agent is set up in the verification
environment. In the event of a Cache miss in the I-Cache, a request is sent to the L2 Cache,
and the system waits for the L2 Cache to return the data. Hence, an L2 agent is established
to handle the I-Cache’s interactions with the L2 Cache. Additionally, a coherency (coh)
agent is included to manage invalidations between the I-Cache and the L2 Cache. The
register abstraction layer (RAL) [20] is an essential component of the verification environ-
ment, providing convenient access to registers through various methods. The verification
environment includes an essential component known as the reference model [21], imple-
mented using a software language to achieve the same functions as the hardware design.
During the random test phase, the reference model plays a crucial role in verifying the
logic of the I-Cache by comparing the data from the I-Cache with the data from the score-
board [22]. The scoreboard, being the final component in the verification environment,
automatically performs data comparisons.

Figure 4. The architecture of the proposed verification testbench.

TOP is the top layer of the verification testbench, where the DUT is instantiated and
the verification testbench is started by the UVM’s built-in function run_test(). ENV is the
main part of the verification testbench and includes various components. The components
use analysis export to communicate with each other and use “first in first out (fifo)” as an
intermediary to store data. The role of the virtual interface is to connect the component to
the DUT. The verification testbench creates an instance based on the name of the testcase
and runs it, executing phases in the testcase and then calling phases in all components
until the simulation is complete.

The workflow of the reference model is shown in Figure 5. In the initial state, the
model waits to receive transactions from other components. When a transaction is re-
ceived, it enters the corresponding task for calculation. Depending on the result of the

Figure 4. The architecture of the proposed verification testbench.

TOP is the top layer of the verification testbench, where the DUT is instantiated and
the verification testbench is started by the UVM’s built-in function run_test(). ENV is the
main part of the verification testbench and includes various components. The components
use analysis export to communicate with each other and use “first in first out (fifo)” as an
intermediary to store data. The role of the virtual interface is to connect the component to
the DUT. The verification testbench creates an instance based on the name of the testcase
and runs it, executing phases in the testcase and then calling phases in all components until
the simulation is complete.

The workflow of the reference model is shown in Figure 5. In the initial state, the
model waits to receive transactions from other components. When a transaction is received,
it enters the corresponding task for calculation. Depending on the result of the calculation,
it either sends the resulting transaction to a different component or enters another task for
further processing.

In comparison to the description of the design in register transaction level (RTL)
code, the reference model implemented using a high-level language is more abstract and
concise, representing a macro-modeling process. For modeling in processor core chips, C++
is commonly used, while matlab finds more utility in the field of communication chips.
SystemVerilog supports data types such as arrays and queues, which facilitates details
like instruction data storage. In this design, SystemVerilog is employed to implement the
reference model, offering the advantage of handling data information at the transaction
level rather than the signal level. Transaction-level information is more abstract, resulting
in a more concise and efficient operation process. The reference model implemented in this

Electronics 2023, 12, 3821 7 of 13

design does not involve delay processing and is a model without time series. The entire
process can be summarized in the following steps: receiving the transaction, performing
the operation, and sending the result of the operation. The entire process is completed
instantaneously and does not require any time.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 14

calculation, it either sends the resulting transaction to a different component or enters an-
other task for further processing.

Figure 5. The workflow of the reference model.

In comparison to the description of the design in register transaction level (RTL)
code, the reference model implemented using a high-level language is more abstract and
concise, representing a macro-modeling process. For modeling in processor core chips,
C++ is commonly used, while matlab finds more utility in the field of communication
chips. SystemVerilog supports data types such as arrays and queues, which facilitates de-
tails like instruction data storage. In this design, SystemVerilog is employed to implement
the reference model, offering the advantage of handling data information at the transac-
tion level rather than the signal level. Transaction-level information is more abstract, re-
sulting in a more concise and efficient operation process. The reference model imple-
mented in this design does not involve delay processing and is a model without time se-
ries. The entire process can be summarized in the following steps: receiving the transac-
tion, performing the operation, and sending the result of the operation. The entire process
is completed instantaneously and does not require any time.

3.2. Extensibility of the Verification Testbench
Since the verification testbench proposed in this paper is based on SystemVerilog and

UVM, the extensibility of the testbench benefits from the characteristics of both methods.
On one hand, SystemVerilog exhibits the traits of an object-oriented language, including
encapsulation, inheritance, and polymorphism. Taking inheritance as an example, Sys-
temVerilog allows a child class to inherit all the members and methods of a parent class.
A child class not only possess all the elements of a parent class but can also define their
own elements. When additional functionality is incorporated into the DUT, a child class
can be derived from a parent class, eliminating the need to redefine a new class. As de-
picted in Figure 6, this process facilitates the extensibility of the verification testbench.

Figure 5. The workflow of the reference model.

3.2. Extensibility of the Verification Testbench

Since the verification testbench proposed in this paper is based on SystemVerilog and
UVM, the extensibility of the testbench benefits from the characteristics of both methods.
On one hand, SystemVerilog exhibits the traits of an object-oriented language, including
encapsulation, inheritance, and polymorphism. Taking inheritance as an example, Sys-
temVerilog allows a child class to inherit all the members and methods of a parent class. A
child class not only possess all the elements of a parent class but can also define their own
elements. When additional functionality is incorporated into the DUT, a child class can be
derived from a parent class, eliminating the need to redefine a new class. As depicted in
Figure 6, this process facilitates the extensibility of the verification testbench.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 14

Figure 6. The inheritance relationship between two classes.

On the other hand, the unique phase mechanism of UVM divides the simulation pro-
cess into distinct phases, each dedicated to a specific function. For instance, the build_phase
oversees the creation of components and variables, while the connect_phase addresses com-
ponent interconnections. The execution sequence of the UVM phase is illustrated in Figure
7, with each phase being executed from top to bottom. In practice, a typical verification
testbench does not utilize all of these phases; rather, it selectively employs specific phases
based on its requirements. If the need arises to report important information, a re-
port_phase can be incorporated. Consequently, the utilization of UVM’s phase mechanism
further enhances the extensibility of the verification testbench.

Figure 7. The execution sequence of the UVM phase.

3.3. Reusability of the Verification Testbench
The verification testbench is designed for an I-Cache controller, which is a module-

level design. A module is a part of a system, so the corresponding module-level verifica-
tion testbench is also a part of a system-level verification testbench. To facilitate, UVM
provides transaction-level modeling (TLM) for data interaction among different compo-
nents. TLM is suitable for the different levels of the verification testbench. The standardi-
zation and uniformity of UVM allow for the easy merging and connection of different
verification testbenches, which is a significant contribution of UVM towards the reusabil-
ity of the verification testbench.

Additionally, in the proposed verification testbench, each agent is equipped with a
configuration file. This file contains settings for variables and control switches. In certain

Figure 6. The inheritance relationship between two classes.

On the other hand, the unique phase mechanism of UVM divides the simulation pro-
cess into distinct phases, each dedicated to a specific function. For instance, the build_phase
oversees the creation of components and variables, while the connect_phase addresses
component interconnections. The execution sequence of the UVM phase is illustrated in

Electronics 2023, 12, 3821 8 of 13

Figure 7, with each phase being executed from top to bottom. In practice, a typical verifi-
cation testbench does not utilize all of these phases; rather, it selectively employs specific
phases based on its requirements. If the need arises to report important information, a
report_phase can be incorporated. Consequently, the utilization of UVM’s phase mechanism
further enhances the extensibility of the verification testbench.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 14

Figure 6. The inheritance relationship between two classes.

On the other hand, the unique phase mechanism of UVM divides the simulation pro-
cess into distinct phases, each dedicated to a specific function. For instance, the build_phase
oversees the creation of components and variables, while the connect_phase addresses com-
ponent interconnections. The execution sequence of the UVM phase is illustrated in Figure
7, with each phase being executed from top to bottom. In practice, a typical verification
testbench does not utilize all of these phases; rather, it selectively employs specific phases
based on its requirements. If the need arises to report important information, a re-
port_phase can be incorporated. Consequently, the utilization of UVM’s phase mechanism
further enhances the extensibility of the verification testbench.

Figure 7. The execution sequence of the UVM phase.

3.3. Reusability of the Verification Testbench
The verification testbench is designed for an I-Cache controller, which is a module-

level design. A module is a part of a system, so the corresponding module-level verifica-
tion testbench is also a part of a system-level verification testbench. To facilitate, UVM
provides transaction-level modeling (TLM) for data interaction among different compo-
nents. TLM is suitable for the different levels of the verification testbench. The standardi-
zation and uniformity of UVM allow for the easy merging and connection of different
verification testbenches, which is a significant contribution of UVM towards the reusabil-
ity of the verification testbench.

Additionally, in the proposed verification testbench, each agent is equipped with a
configuration file. This file contains settings for variables and control switches. In certain

Figure 7. The execution sequence of the UVM phase.

3.3. Reusability of the Verification Testbench

The verification testbench is designed for an I-Cache controller, which is a module-
level design. A module is a part of a system, so the corresponding module-level verification
testbench is also a part of a system-level verification testbench. To facilitate, UVM provides
transaction-level modeling (TLM) for data interaction among different components. TLM
is suitable for the different levels of the verification testbench. The standardization and
uniformity of UVM allow for the easy merging and connection of different verification
testbenches, which is a significant contribution of UVM towards the reusability of the
verification testbench.

Additionally, in the proposed verification testbench, each agent is equipped with
a configuration file. This file contains settings for variables and control switches. In
certain cases, the usage of the reference model and scoreboard may not be necessary,
and they can be deactivated through the configuration file without removing these two
components from the verification testbench. This approach not only enhances the flexibility
of the verification testbench but also reduces the consumption of EDA tools due to the
extensive data processing performed within the reference model. This feature can also be
employed in a system-level verification testbench, further enhancing the reusability of the
verification testbench.

4. Results and Discussion

Before designing testcases based on the verification methods described in Section 4,
we first design incentive sequences that we can use in combination in different testcases
to apply different incentives to the DUT. The EDA simulation tool is then used to run all
testcases on the verification testbench. This process generates a series of waveform files and
simulation log files that can be used to check simulation results. The debugging mechanism
of UVM is valuable for checking simulation results. UVM offers various printing macros,
including uvm_info, uvm_error, et al., which allow for the setting of importance levels. These
macros are typically integrated into testcase code. In case of unexpected outcomes, the
macros are printed to the simulation log. By utilizing python scripts to process numerous
log files, it becomes possible to identify the testcases that did not pass. Table 2 describes
all testcases and provides the corresponding simulation states. All testcases passed simu-

Electronics 2023, 12, 3821 9 of 13

lation, confirming that the corresponding function points were accurately implemented
in the design.

Table 2. Testcase list and simulation states.

Testcase Name Description State

tc_reg_rst Verify that all registers return to their reset values after performing reset. Pass
tc_output_rst Verify that all outputs return to their reset values after performing reset. Pass
tc_reg_sanity Verify that all register read and write operations are normal. Pass

tc_fetch_sanity Verify that fetch instruction path is unblocked and operational. Pass
tc_freeze_mode Verify that the module functions correctly while in freeze mode. Pass

tc_global_invalid Verify that global invalidation operation is normal. Pass
tc_block_invalid Verify that block invalidation operation is normal. Pass

tc_seq_fetch Verify that sequential-fetch operation is normal. Pass
tc_branch_fetch Verify that branch-fetch operation is normal. Pass
tc_access_cache Verify whether ‘hit cache’ operation is normal when accessing Cache. Pass
tc_access_sram Verify whether ‘hit sram’ operation is normal when accessing sram. Pass

4.1. Waveform Analysis

This section analyzes the simulation waveforms of typical working scenarios. Each
waveform represents the actual operational state inside the chip, making it an essential
basis for assessing the functionality of the module.

The waveform diagram of sequential fetching is shown in Figure 8. A high level of
‘o_FetchEn’ indicates that fetch operations can be performed at the current time. Meanwhile,
‘i_fetch_valid’ indicates the validity of ‘i_fetch_addr’. ‘o_fetch_instr_valid’ signifies current
fetch status, and ‘o_fetch_data’ represents instruction data. When a fetch request is missed,
the signal ‘o_fillreq_valid’ becomes active, along with the accompanying request information
provided by ‘o_fillreq_addr’ and ‘o_fillreq_rid’. After a certain period of time, the L2 Cache
returns data and performs the fetch operation again, resulting in a hit. The situation is
similar for branch-fetching instructions, except that the offset address is determined during
the instruction-fetch stage.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 14

Figure 8. Waveform diagram of sequential fetch instruction.

If freeze mode is disabled, the data returned from the L2 Cache will be stored in the
storage unit when a miss occurs. The �o_FillReq’ signal indicates whether the data should
be filled. When freeze mode is enabled, data padding is not performed. A miss occurred
when the fetch instruction was executed again, which also confirmed that the previous
data were not filled. The waveform of freeze mode is shown in Figure 9.

Figure 9. Waveform diagram of freeze mode.

4.2. Coverage Analysis
By utilizing python scripts, we can automate the execution of testcases and specify

the number of runs for each case. It is possible to set up a significant number of runs for
random testcases. Out of a total of 4400 testcase simulations, all passed without errors.
Upon completion of all simulations, the Verdi tool can be employed to view coverage.
Coverage assessment can be categorized into code coverage, functional coverage, and as-
sertion coverage to evaluate the verification progress from different perspectives.
• Code coverage

Code coverage is automatically collected by the Verdi tool without the need to add
additional code to the verification testbench. The module’s total code coverage is 99.13%,
which includes line coverage, flip coverage, branch coverage, and conditional coverage.
These measurements assess the execution of the code from different perspectives, as
shown in Figure 10. It can be observed that the code achieves nearly complete coverage,
with only a small amount of redundant code.

Figure 10. Results of code coverage.

Figure 8. Waveform diagram of sequential fetch instruction.

If freeze mode is disabled, the data returned from the L2 Cache will be stored in the
storage unit when a miss occurs. The ‘o_FillReq’ signal indicates whether the data should
be filled. When freeze mode is enabled, data padding is not performed. A miss occurred
when the fetch instruction was executed again, which also confirmed that the previous data
were not filled. The waveform of freeze mode is shown in Figure 9.

4.2. Coverage Analysis

By utilizing python scripts, we can automate the execution of testcases and specify
the number of runs for each case. It is possible to set up a significant number of runs for
random testcases. Out of a total of 4400 testcase simulations, all passed without errors.
Upon completion of all simulations, the Verdi tool can be employed to view coverage.

Electronics 2023, 12, 3821 10 of 13

Coverage assessment can be categorized into code coverage, functional coverage, and
assertion coverage to evaluate the verification progress from different perspectives.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 14

Figure 8. Waveform diagram of sequential fetch instruction.

If freeze mode is disabled, the data returned from the L2 Cache will be stored in the
storage unit when a miss occurs. The �o_FillReq’ signal indicates whether the data should
be filled. When freeze mode is enabled, data padding is not performed. A miss occurred
when the fetch instruction was executed again, which also confirmed that the previous
data were not filled. The waveform of freeze mode is shown in Figure 9.

Figure 9. Waveform diagram of freeze mode.

4.2. Coverage Analysis
By utilizing python scripts, we can automate the execution of testcases and specify

the number of runs for each case. It is possible to set up a significant number of runs for
random testcases. Out of a total of 4400 testcase simulations, all passed without errors.
Upon completion of all simulations, the Verdi tool can be employed to view coverage.
Coverage assessment can be categorized into code coverage, functional coverage, and as-
sertion coverage to evaluate the verification progress from different perspectives.
• Code coverage

Code coverage is automatically collected by the Verdi tool without the need to add
additional code to the verification testbench. The module’s total code coverage is 99.13%,
which includes line coverage, flip coverage, branch coverage, and conditional coverage.
These measurements assess the execution of the code from different perspectives, as
shown in Figure 10. It can be observed that the code achieves nearly complete coverage,
with only a small amount of redundant code.

Figure 10. Results of code coverage.

Figure 9. Waveform diagram of freeze mode.

• Code coverage

Code coverage is automatically collected by the Verdi tool without the need to add
additional code to the verification testbench. The module’s total code coverage is 99.13%,
which includes line coverage, flip coverage, branch coverage, and conditional coverage.
These measurements assess the execution of the code from different perspectives, as shown
in Figure 10. It can be observed that the code achieves nearly complete coverage, with only
a small amount of redundant code.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 14

Figure 8. Waveform diagram of sequential fetch instruction.

If freeze mode is disabled, the data returned from the L2 Cache will be stored in the
storage unit when a miss occurs. The �o_FillReq’ signal indicates whether the data should
be filled. When freeze mode is enabled, data padding is not performed. A miss occurred
when the fetch instruction was executed again, which also confirmed that the previous
data were not filled. The waveform of freeze mode is shown in Figure 9.

Figure 9. Waveform diagram of freeze mode.

4.2. Coverage Analysis
By utilizing python scripts, we can automate the execution of testcases and specify

the number of runs for each case. It is possible to set up a significant number of runs for
random testcases. Out of a total of 4400 testcase simulations, all passed without errors.
Upon completion of all simulations, the Verdi tool can be employed to view coverage.
Coverage assessment can be categorized into code coverage, functional coverage, and as-
sertion coverage to evaluate the verification progress from different perspectives.
• Code coverage

Code coverage is automatically collected by the Verdi tool without the need to add
additional code to the verification testbench. The module’s total code coverage is 99.13%,
which includes line coverage, flip coverage, branch coverage, and conditional coverage.
These measurements assess the execution of the code from different perspectives, as
shown in Figure 10. It can be observed that the code achieves nearly complete coverage,
with only a small amount of redundant code.

Figure 10. Results of code coverage.

Figure 10. Results of code coverage.

• Function coverage

To collect function coverage [23–25], we need to define function coverage groups and
sample coverage groups. As shown in Figure 11, 100% functional coverage indicates that
different configuration scenarios are covered during random verification.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 14

• Function coverage
To collect function coverage [23–25], we need to define function coverage groups and

sample coverage groups. As shown in Figure 11, 100% functional coverage indicates that
different configuration scenarios are covered during random verification.

Figure 11. Results of function coverage.

• Assertion coverage
For assertion coverage, the corresponding assertion needs to be defined. Figure 12 is

part of an SVA to check the priority relationship of the request signal. As shown in Figure
11, the assertion coverage collected by the verification testbench is 100%, which ensures
that no timing errors occur inside the module.

Figure 12. Results of assertion coverage.

While the simulation results indicate that the code coverage is close to 100%, it does
not fully demonstrate the adequacy of the verification process. Code coverage only reflects
the current code execution and does not guarantee the proper functioning of the imple-
mented function points or their corresponding functions. For a comprehensive assess-
ment, function coverage is necessary. Additionally, certain special timing relationships,
which can be considered as part of the module’s functionality, may not be easily measured
by function coverage alone; in such cases, assertion coverage plays a crucial role. These
coverages complement each other to ensure the completeness of functional verification.
Table 3 provides a description of the comparison among different works. The first work
adopted a verification testbench built using traditional Verilog. Although this method is
relatively simple and capable of verifying the main functions of the design, it suffers from
poor performance and is unsuitable for complex, large-scale digital designs. The second
work performed Cache verification based on FPGA. A drawback of this method is its de-
pendence on the specific FPGA device used, resulting in a complicated and non-universal
transplantation process. Additionally, this method lacks the ability to observe signal-level
information through the simulation waveform, making it less intuitive. The third work
designed a UVM verification testbench, which offers good reusability. However, the study
lacks a sufficient number of testcases, potentially leading to low code coverage and in-
complete verification.

Figure 11. Results of function coverage.

• Assertion coverage

For assertion coverage, the corresponding assertion needs to be defined. Figure 12
is part of an SVA to check the priority relationship of the request signal. As shown in
Figure 11, the assertion coverage collected by the verification testbench is 100%, which
ensures that no timing errors occur inside the module.

While the simulation results indicate that the code coverage is close to 100%, it does
not fully demonstrate the adequacy of the verification process. Code coverage only reflects
the current code execution and does not guarantee the proper functioning of the imple-
mented function points or their corresponding functions. For a comprehensive assessment,
function coverage is necessary. Additionally, certain special timing relationships, which can

Electronics 2023, 12, 3821 11 of 13

be considered as part of the module’s functionality, may not be easily measured by function
coverage alone; in such cases, assertion coverage plays a crucial role. These coverages com-
plement each other to ensure the completeness of functional verification. Table 3 provides a
description of the comparison among different works. The first work adopted a verification
testbench built using traditional Verilog. Although this method is relatively simple and
capable of verifying the main functions of the design, it suffers from poor performance and
is unsuitable for complex, large-scale digital designs. The second work performed Cache
verification based on FPGA. A drawback of this method is its dependence on the specific
FPGA device used, resulting in a complicated and non-universal transplantation process.
Additionally, this method lacks the ability to observe signal-level information through the
simulation waveform, making it less intuitive. The third work designed a UVM verification
testbench, which offers good reusability. However, the study lacks a sufficient number of
testcases, potentially leading to low code coverage and incomplete verification.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 14

• Function coverage
To collect function coverage [23–25], we need to define function coverage groups and

sample coverage groups. As shown in Figure 11, 100% functional coverage indicates that
different configuration scenarios are covered during random verification.

Figure 11. Results of function coverage.

• Assertion coverage
For assertion coverage, the corresponding assertion needs to be defined. Figure 12 is

part of an SVA to check the priority relationship of the request signal. As shown in Figure
11, the assertion coverage collected by the verification testbench is 100%, which ensures
that no timing errors occur inside the module.

Figure 12. Results of assertion coverage.

While the simulation results indicate that the code coverage is close to 100%, it does
not fully demonstrate the adequacy of the verification process. Code coverage only reflects
the current code execution and does not guarantee the proper functioning of the imple-
mented function points or their corresponding functions. For a comprehensive assess-
ment, function coverage is necessary. Additionally, certain special timing relationships,
which can be considered as part of the module’s functionality, may not be easily measured
by function coverage alone; in such cases, assertion coverage plays a crucial role. These
coverages complement each other to ensure the completeness of functional verification.
Table 3 provides a description of the comparison among different works. The first work
adopted a verification testbench built using traditional Verilog. Although this method is
relatively simple and capable of verifying the main functions of the design, it suffers from
poor performance and is unsuitable for complex, large-scale digital designs. The second
work performed Cache verification based on FPGA. A drawback of this method is its de-
pendence on the specific FPGA device used, resulting in a complicated and non-universal
transplantation process. Additionally, this method lacks the ability to observe signal-level
information through the simulation waveform, making it less intuitive. The third work
designed a UVM verification testbench, which offers good reusability. However, the study
lacks a sufficient number of testcases, potentially leading to low code coverage and in-
complete verification.

Figure 12. Results of assertion coverage.

Table 3. Comparison of several works.

Work [Ref] Method Extensibility Reusability Completeness Coverage

1 [26] Verilog testbench Low Low Low Low

2 [27] FPGA Medium Medium Medium None

3 [28] UVM testbench High High Medium None

This work UVM testbench High High High Close to 100%

In terms of multiple indicators, our work demonstrates several advantages over
others. Firstly, our verification method achieves good verification completeness, not only
by running testcases to generate simulation waveforms but also by gathering statistics on
different types of coverage. Secondly, our proposed verification testbench exhibits high
extensibility, primarily attributed to the inherent advantages of SystemVerilog and the
phase mechanism of UVM. Finally, the proposed verification testbench demonstrates a
high level of reusability. This is attributed not only to the advantages provided by the TLM
communication mechanism of UVM but also to our optimization of the UVM verification
testbench. We have implemented a configuration file for each agent, enabling flexible
control over individual components. As a result, the proposed testbench becomes easier to
reuse in the higher-level verification testbench.

5. Conclusions

This paper proposes a UVM verification testbench for an I-Cache controller. We intro-
duced the composition of the verification testbench and its reference model component.
Testcases corresponding to function points were run on the proposed verification testbench
and simulation results were obtained. We achieved high coverage by implementing multi-
ple verification methods, which demonstrates the completeness of functional verification.
Furthermore, the proposed verification testbench has excellent extensibility and reusability,

Electronics 2023, 12, 3821 12 of 13

allowing for its applicability to more advanced verification scenarios without the need for
significant modifications. In the future, it is important to consider how to further improve
the efficiency of functional verification work, and one potential approach is to leverage
machine learning for executing testcases.

Author Contributions: The conceptualization of the research for this project was jointly performed
by C.L. and X.X.; C.L. was responsible for software development. B.W. was responsible for review
and editing. X.X. and Z.C. were involved in the process of verifying the experimental results. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the China Key System & Integrated Circuit Co., Ltd., China.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

UVM universal verification methodology
EDA electronic design automation
SOC system on chip
FPGA field programmable gate array
OVM open verification methodology
SVA system-Verilog assertion
CPU central processing unit
MAF miss address file
MSHR miss status handling registers
OOP object-oriented programming
CDV coverage-driven verification
DUT design under test
RAL register abstraction layer
RTL register transaction level
TLM transaction level modeling

References
1. Lyu, Y.; Qin, X.; Chen, M.; Mishra, P. Directed Test Generation for Validation of Cache Coherence Protocols. IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst. 2019, 38, 163–176. [CrossRef]
2. Zhang, R.; Yang, K.; Liu, Z.; Liu, T.; Cai, W.; Milor, L. A Comprehensive Framework for Analysis of Time-Dependent Performance-

Reliability Degradation of SRAM Cache Memory. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2021, 29, 857–870. [CrossRef]
3. Biswal, B.P.; Singh, A.; Singh, B. Cache coherency controller verification IP using SystemVerilog Assertions (SVA) and Universal

Verification Methodologies (UVM). In Proceedings of the 2017 11th International Conference on Intelligent Systems and Control
(ISCO), Coimbatore, India, 5–6 January 2017; pp. 21–24.

4. Zhou, S.; Geng, S.; Peng, X.; Zhang, M.; Chu, M.; Li, P.; Lu, H.; Zhu, R. The Design Of UVM Verification Platform Based on
Data Comparison. In Proceedings of the 2020 4th International Conference on Electronic Information Technology and Computer
Engineering, Xiamen, China, 22–24 October 2021; pp. 1080–1085.

5. Kaur, G.; Arora, R.; Panchal, S.S. Implementation and Comparison of Direct mapped and 4-way Set Associative mapped Cache
Controller in VHDL. In Proceedings of the 2021 8th International Conference on Signal Processing and Integrated Networks
(SPIN), Noida, India, 26–27 August 2021; pp. 1018–1023.

6. Omran, S.S.; Amory, I.A. Implementation of LRU Replacement Policy for Reconfigurable Cache Memory Using FPGA. In
Proceedings of the 2018 International Conference on Advanced Science and Engineering (ICOASE), Kurdistan Region, Iraq, 9–11
October 2018; pp. 13–18.

7. Ali, A.M.; Shalaby, A.; Saif, S.; Taher, M. A UVM-based Verification Approach for MIPI DSI Low-Level Protocol layer. In
Proceedings of the 2022 International Conference on Microelectronics (ICM), Casablanca, Morocco, 4–7 December 2022; pp. 74–77.

8. Wang, J.; Tan, N.; Zhou, Y.; Li, T.; Xia, J. A UVM Verification Platform for RISC-V SoC from Module to System Level. In
Proceedings of the 2020 IEEE 5th International Conference on Integrated Circuits and Microsystems (ICICM), Nanjing, China,
23–25 October 2020; pp. 242–246.

9. Anwar, M.W.; Rashid, M.; Azam, F.; Naeem, A.; Kashif, M.; Butt, W.H. A Unified Model-Based Framework for the Simplified
Execution of Static and Dynamic Assertion-Based Verification. IEEE Access 2020, 8, 104407–104431. [CrossRef]

10. Chen, P.; Yue, J.; Liao, X.; Jin, H. Trade-off between Hit Rate and Hit Latency for Optimizing DRAM Cache. IEEE Trans. Emerg.
Top. Comput. 2018, 9, 55–64. [CrossRef]

https://doi.org/10.1109/TCAD.2018.2801239
https://doi.org/10.1109/TVLSI.2021.3056674
https://doi.org/10.1109/ACCESS.2020.2999544
https://doi.org/10.1109/TETC.2018.2800721

Electronics 2023, 12, 3821 13 of 13

11. Choi, H.; Park, S. Learning Future Reference Patterns for Efficient Cache Replacement Decisions. IEEE Access 2022, 10, 25922–25934.
[CrossRef]

12. Jiang, L.; Zhang, X. Cache Replacement Strategy with Limited Service Capacity in Heterogeneous Networks. IEEE Access 2020,
8, 25509–25520. [CrossRef]

13. Xiong, W.; Katzenbeisser, S.; Szefer, J. Leaking Information Through Cache LRU States in Commercial Processors and Secure
Caches. IEEE Trans. Comput. 2021, 70, 511–523. [CrossRef]

14. Desalphine, V.; Dashora, S.; Mali, L.; Suhas, K.; Raveendran, A.; Selvakumar, D. Novel Method for Verification and Performance
Evaluation of a Non-Blocking Level-1 Instruction Cache designed for Out-of-Order RISC-V Superscaler Processor on FPGA.
In Proceedings of the 2020 24th International Symposium on VLSI Design and Test (VDAT), Bhubaneswar, India, 23–25 July
2020; pp. 1–4.

15. Kanhaiya, P.S.; Lau, C.; Hills, G.; Bishop, M.D.; Shulaker, M.M. Carbon Nanotube-Based CMOS SRAM: 1 kbit 6T SRAM Arrays
and 10T SRAM Cells. IEEE Trans. Electron Devices 2019, 66, 5375–5380. [CrossRef]

16. Ling, M.; Lin, Q.; Tan, K.; Shao, T.; Shen, S.; Yang, J. A Design of Timing Speculation SRAM-Based L1 Caches With PVT
Autotracking under Near-Threshold Voltages. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2021, 29, 2197–2209. [CrossRef]

17. Hussien, A.; Mohamed, S.; Soliman, M.; Mostafa, H.; Salah, K.; Dessouky, M.; Mostafa, H. Development of a Generic and a
Reconfigurable UVM-Based Verification Environment for SoC Buses. In Proceedings of the 2019 31st International Conference on
Microelectronics (ICM), Cairo, Egypt, 15–18 December 2019; pp. 195–198.

18. Massoud, E.; AbdelSalam, M.; Safar, M.; Watheq El-Kharashi, M. A Reusable UVM-SystemC Verification Environment for
Simulation, Hardware Emulation, and FPGA Prototyping: Case Studies. In Proceedings of the 2022 International Conference on
Microelectronics (ICM), Casablanca, Morocco, 4–7 December 2022; pp. 38–41.

19. Wang, J.; Liu, J.; Wang, D.; Zhang, S.; Fan, X. MemUnison: A Racetrack-ReRAM-Combined Pipeline Architecture for Energy-
Efficient in-Memory CNNs. IEEE Trans. Comput. 2022, 71, 3281–3294. [CrossRef]

20. El-Ashry, S.; Adel, A. Efficient Methodology of Sampling UVM RAL during Simulation for SoC Functional Coverage. In
Proceedings of the 2018 19th International Workshop on Microprocessor and SOC Test and Verification (MTV), Austin, TX, USA,
9–10 December 2018; pp. 61–66.

21. Na, J.; Yang, J.; Gao, G. Reinforcing Transient Response of Adaptive Control Systems Using Modified Command and Reference
Model. IEEE Trans. Aerosp. Electron. Syst. 2019, 56, 2005–2017. [CrossRef]

22. Hosny, S. A Unified UVM Methodology For MPSoC Hardware/Software Functional Verification. In Proceedings of the 2022 11th
International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 8–10 June 2022; pp. 1–5.

23. Adel, A.; Saad, D.; El Mawgoed, M.A.; Sharshar, M.; Ahmed, Z.; Ibrahim, H.; Mostafa, H. Implementation and Functional
Verification of RISC-V Core for Secure IoT Applications. In Proceedings of the 2021 International Conference on Microelectronics
(ICM), Cairo, Egypt, 19–22 December 2021; pp. 254–257.

24. Harshitha, N.B.; Kumar, Y.G.P.; Kurian, M.Z. An Introduction to Universal Verification Methodology for the digital design of
Integrated circuits (IC’s): A Review. In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart
Systems (ICAIS), Tamil Nadu, India, 25–27 March 2021; pp. 1710–1713.

25. Xu, C.; Ni, W.; Song, Y. UVM-based Functional Coverage Driven AXI4-Stream Verification. In Proceedings of the 2019 IEEE 13th
International Conference on ASIC (ASICON), Chongqing, China, 29 October–1 November 2019; pp. 1–4.

26. Liang, K.; Wu, J.; Ren, H.; Zhang, Z.; Tan, B. Design and Implementation of DSP Cache. In Proceedings of the 2021 IEEE 21st
International Conference on Communication Technology (ICCT), Virtual, Montreal, QC, Canada, 14–23 June 2021; pp. 993–997.

27. Tiejun, L.; Jianmin, Z.; Sikun, L. An FPGA-based Random Functional Verification Method for Cache. In Proceedings of the 2013
IEEE Eighth International Conference on Networking, Architecture and Storage, Xi’an, China, 17–19 July 2013; pp. 277–281.

28. El-Ashry, S.; Khamis, M.; Ibrahim, H.; Shalaby, A.; Abdelsalam, M.; El-Kharashi, M.W. On Error Injection for NoC Platforms:
A UVM-Based Generic Verification Environment. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 1137–1150.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2022.3156692
https://doi.org/10.1109/ACCESS.2020.2970783
https://doi.org/10.1109/TC.2021.3059531
https://doi.org/10.1109/TED.2019.2945533
https://doi.org/10.1109/TVLSI.2021.3120653
https://doi.org/10.1109/TC.2020.3045433
https://doi.org/10.1109/TAES.2019.2939612
https://doi.org/10.1109/TCAD.2019.2908921

	Introduction
	Function of Design and Verification Plan
	Main Components of the I-Cache Controller
	Main Functions of the I-Cache Controller
	Proposed Verification Plan

	UVM Verification Testbench
	Architecture of the Verification Testbench
	Extensibility of the Verification Testbench
	Reusability of the Verification Testbench

	Results and Discussion
	Waveform Analysis
	Coverage Analysis

	Conclusions
	References

