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Abstract: In many practical communication environments, the presence of uncertain and hard-to-
estimate noise poses significant challenges to cognitive radio spectrum sensing systems, especially
when the noise distribution deviates from the Gaussian distribution. This paper introduces a cutting-
edge multi-antenna spectrum sensing methodology that synergistically integrates complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN), wavelet packet analysis, and
differential entropy. Signal feature extraction commences by employing CEEMDAN decomposition
and wavelet packet analysis to denoise signals collected by secondary antenna users. Subsequently,
the differential entropy of the preprocessed signal observations serves as the feature vector for
spectrum sensing. The spectrum sensing module utilizes the SVM classification algorithm for training,
while incorporating elite opposition-based learning and the sparrow search algorithm with genetic
variation to determine optimal kernel function parameters. Following successful training, a decision
function is derived, which can obviate the need for threshold derivation present in conventional
spectrum sensing methods. Experimental validation of the proposed methodology is conducted
and comprehensively analyzed, conclusively demonstrating its remarkable efficacy in enhancing
spectrum sensing performance.

Keywords: spectrum sensing; complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN); wavelet packet analysis; improvement sparrow search algorithm; SVM classification;
machine learning

1. Introduction

In recent years, static spectrum allocation strategies struggled to meet the growing
demand for spectrum resources. Within dedicated frequency bands, substantial portions
of spectrum resources remain unused, both in terms of time and frequency domains [1].
While static allocation strategies effectively manage interference among communication
systems operating in separate frequency bands, they exhibit inherent inflexibility. When
primary users either refrain from utilizing their allocated spectrum for extended periods or
use it intermittently, these idle frequency bands become inaccessible to other radio users.
To address this contradiction, Dr. Mitola proposed the concept of cognitive radio (CR) [2].
As a new wireless communication technology, CR became an ideal solution to improve
spectrum utilization, and spectrum sensing plays a crucial role in CR.

Several common spectrum sensing methods were proposed in references [3–5]. The
energy detection algorithm compares the received signal energy with a threshold to deter-
mine the presence of a signal [3]. The matched filter detection correlates the received signal
with a known transmitted signal to detect the existence of a primary user signal [4]. The
cyclostationary feature detection adjusts the number of samples involved in real time based
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on changes in signal-to-noise ratio (SNR), analyzing the corresponding spectral correlation
characteristics to determine the presence of a primary user [5]. Moreover, these detection
methods have their limitations. The energy detection method is susceptible to interfer-
ence from noise uncertainty and faces challenges in determining the decision threshold.
Additionally, these detection algorithms are primarily evaluated under the assumption of
additive Gaussian white noise for computational convenience.

In complex electromagnetic environments, the influence of interference and noise often
follows a generalized Gaussian distribution (GGD), as observed in communication systems
such as ultra-wide band (UWB) receivers [6]. At low SNR, the accuracy of spectrum sensing
algorithms is diminished due to the uncertainty arising from noise. Consequently, this
uncertainty affects the estimation of the signal by spectrum sensing algorithms. To address
this issue, several traditional filtering denoising methods were proposed, including mean
filtering, adaptive filtering, and wavelet analysis. However, these methods come with
certain limitations. For instance, the effectiveness of adaptive filtering in noise suppression
relies on the power spectral differences between the signal and the noise, making it less
effective when the power spectra of the signal and noise are similar [7]. Empirical mode
decomposition (EMD) decomposes signals into intrinsic mode functions (IMFs) without
requiring the specification of wavelet basis functions. However, it struggles to handle
non-stationary signals effectively [8]. Ensemble empirical mode decomposition (EEMD)
was designed to address the mode mixing problem in EMD decomposition by adding
white noise to the original signal for analysis [9]. Although the EEMD method solves the
mixed mode problem, it is essentially a decomposition method that reduces the purity of
the original signal, which will lead to the distortion of the signal. Furthermore, the residual
noise introduced during decomposition contributes to increased signal reconstruction er-
rors. To mitigate this limitation, Torres et al. introduced the complete ensemble empirical
mode decomposition with adaptive noise (CEEMDAN) denoising method [10]. In the
CEEMDAN method, adaptive white noise is added to each EMD stage, and its specific
residual is calculated to obtain each modal component. Compared with the EEMD method,
it overcomes the mode aliasing and effectively reduces the reconstruction error [11]. Al-
though the CEEMDAN algorithm eliminates the mode aliasing and the reconstruction
error is small, it will cause the loss of useful signal and incomplete echo signal in the
high-frequency component.

To address the spectrum sensing problem, researchers employed machine learning
classification algorithms to convert it into a binary classification problem, i.e., whether
the primary user is using the licensed spectrum or not. Sarikhani et al. proposed a deep
reinforcement learning method for spectrum sensing classification based on a collaborative
spectrum sensing model, achieving promising results [12]. Thilina et al. adopted signal
energy as a feature vector and applied the machine learning methods such as K-means,
neural networks, and support vector machines (SVM), achieving effective spectrum sens-
ing [13]. Tan et al. proposed a fusion algorithm based on random forests, incorporating
sensor velocity, signal energy, and average eigenvalues of the covariance matrix as feature
parameters, resulting in enhanced detection performance [14]. Wang et al. proposed a coop-
erative spectrum sensing method based on empirical mode decomposition and information
geometry. They employed a K-medoids clustering algorithm for training in the spectrum
sensing module, resulting in improved detection probability. However, under low SNR
conditions, the detection probability significantly decreases [15]. Saravanan et al. used
the differential entropy estimates in the received observations as feature vectors for the
SVM algorithm spectrum sensing model training, but the spectrum sensing performance
degrades rapidly as the shape parameter β increases [16]. Sheng et al. proposed a method
to extract the trace of the covariance matrix and the quadratic covariance matrix as the
combination of feature vectors for spectrum sensing training samples. They employed a
genetic algorithm to optimize SVM parameters, achieving good sensing results, although
the genetic algorithm optimization method is considered outdated [17].



Electronics 2023, 12, 3823 3 of 21

In recent years, many scholars used heuristic algorithms to optimize the relevant
parameters of machine learning algorithms, such as the sparrow search algorithm (SSA) [18].
Gao et al. used SSA to optimize the parameters of variational mode decomposition (VMD)
to solve the problem that it is difficult to manually set the parameters to achieve the optimal
VMD decomposition [19]. Li et al. used the sparrow search algorithm to optimize the
parameters of the SVM and established a nonlinear relationship model between the melting
process and technological indicators, which improved the model accuracy [20]. Qu et al.
proposed a hybrid fault diagnosis method based on wavelet packet energy spectrum and
SSA-SVM. The sparrow search algorithm was used to optimize the penalty factor and kernel
parameters globally to improve the classification accuracy of the SVM [21]. However, the
original sparrow search algorithm used in the above-related literature has the problems of
low convergence accuracy, poor optimization efficiency, single search direction, and falling
into local optimum.

Based on existing research, this paper proposes a multi-antenna spectrum sensing
method named CEEMDAN-DE, which combines complete ensemble empirical mode de-
composition with adaptive noise (CEEMDAN) decomposition and differential entropy
(DE). Firstly, the signal collected by the secondary user is decomposed by CEEMDAN to
obtain multiple IMF components. Then, the IMF components with high noise are screened
out by calculating the correlation coefficient. Taking advantage of the fact that wavelet
packet decomposition can provide more detailed signal frequency characteristics [22], the
IMF component containing noise is denoised by wavelet packet analysis. Finally, the pure
signal is obtained by component reconstruction. This joint noise removal method preserves
the integrity and particularity of the original signal while eliminating the noise, and avoids
the distortion problem and the loss of useful signals in high-frequency components caused
by CEEMDAN. Finally, considering the shortcomings of the original sparrow search algo-
rithm, the sparrow search algorithm combining elite opposition-based learning and genetic
variation is established to determine the kernel function parameters of the SVM algorithm.
This optimized SVM algorithm is employed for spectrum sensing. The experimental section
includes the validation of the proposed method using receiver operating characteristic
(ROC) curves, demonstrating its effectiveness.

The rest of this paper is organized as follows: Section 2 describes the multi-antenna
spectrum sensing model and the CEEMDAN feature extraction method. Section 3 first intro-
duces the optimization process of the sparrow search algorithm based on elite opposition-
based learning and genetic variation, and then introduces the complete SVM spectrum
sensing model. In Section 4, we substantiate the efficacy of the ISSA algorithm via the
heuristic algorithm detection function. Then, the effectiveness of the CEEMDAN-wavelet
packet analysis denoising method is verified under different SNRs. Next, the detection
probability of the CEEMDAN-DE method under different SVM kernel function models is
verified and compared. Under different SNRs, the superiority of the proposed method is
proved by comparing the ROC curves of different feature extraction methods. Section 5
discusses the main work and contributions of this paper.

2. Multi-Antenna Spectrum Sensing in the Complex Communication Environment

In cognitive radio systems, users can be classified into two categories based on the
usage priority of the licensed spectrum: primary users (PUs) and secondary users (SUs).
PUs have absolute priority to use the licensed spectrum, while SUs continuously detect
the presence of PUs through spectrum sensing, which ensures that SUs can access the
PUs spectrum for communication tasks without causing interference with the normal
communication of PUs. Therefore, an efficient and fast spectrum sensing technology is a
prerequisite for building cognitive radio systems.

In comparison to single–antenna spectrum sensing, multi-antenna spectrum sensing
offers numerous advantages [23]. It not only enhances detection performance by incorpo-
rating spatial information, but also reliably perceives primary user activities even in the
lack of signal and noise variance information.
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2.1. Spectrum Sensing Problem Model

The spectrum sensing problem is classified as a signal detection problem, the core
of which is to determine whether the primary user signal exists. This can be effectively
described using a binary hypothesis test:{

H0 : Primary user signal does not exist
H1 : Primary user signal exists

. (1)

Consider a cognitive radio system consisting of a primary user with a single antenna
and secondary users with M (M > 1) receiving antennas. The secondary users utilize their
receiving antennas to detect whether the primary user is transmitting a signal. Under a
binary hypothesis test, the received signals from the antennas can be represented as follows:

xm(n) =
{

wm(n), H0
s(n) + wm(n), H1

( n = 1, 2, . . . , N). (2)

In the scenario considered, we have two hypotheses: H0 and H1. When H0 is true, the
channel solely consists of samples of noise denoted as wm(n), which follows a generalized
Gaussian distribution in a complex environment. In this case, there is no presence of a
primary user signal s(n), and the secondary user (SU) can utilize the channel. Conversely,
when H1 holds true, the channel encompasses both noise and the primary user’s signal,
rendering the channel unavailable. N represents the number of observed samples.

For measuring the performance of a sensing system, common reference metrics in-
clude false alarm probability Pf and detection probability Pd. The false alarm probability
Pf represents the event probability that the fusion center misjudges the presence of the
primary user when the primary user does not exist.

Pf = Prob{H1|H0} (3)

The detection probability Pd represents the probability that the primary user exists
and is correctly detected.

Pd = Prob{H1|H1} (4)

2.2. Feature Extraction Based on CEEMDAN

During the process of feature extraction, the observations collected by M (M > 1)
receiving antennas are initially subjected to CEEMDAN combined with wavelet packet
analysis for denoising, reducing noise, and redundant information in the acquired signals,
thereby enhancing the overall performance of the sensing system. Subsequently, the
estimated differential entropy (DE) values based on the observed data are utilized as
feature vectors for signal feature extraction.

2.2.1. CEEMDAN Decomposition Principle

The EEMD and complete ensemble empirical mode decomposition (CEEMD) decom-
position algorithms both address the mode mixing problem in EMD decomposition by
adding Gaussian white noise or paired positive–negative Gaussian white noise to the signal
to be decomposed [24]. However, neither of these algorithms isolate the residual noise,
resulting in the added white noise signal being able to shift from high frequencies to low
frequencies. As a result, a portion of the white noise signal remains in the decomposed
intrinsic mode components, which can affect subsequent signal analysis and processing.

CEEMDAN decomposition addresses the above-mentioned issues in two aspects:

• Adding the IMF component with auxiliary noise after EMD decomposition, rather
than adding Gaussian white noise directly to the original signal;

• Both EEMD and CEEMD methods employ a strategy of averaging the acquired mode
components following empirical mode decomposition to tackle the mode mixing
problem. However, CEEMDAN introduces a unique approach. It performs global
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averaging on the first-order IMF to obtain the final first-order IMF and then iterates this
process on the residual component. This innovative approach effectively addresses
the issue of noise transfer from high frequencies to low frequencies.

Let Ei represent the ith IMF obtained after EMD. The ith IMF obtained through CEEM-
DAN is denoted as Ci(n), where vj represents Gaussian white noise following a standard
normal distribution, ε denotes the standard deviation of the noise, and xm(n) represents
the original signal received by the antenna. The steps of CEEMDAN decomposition are
as follows:

A new signal xm(n)+ (−1)qεvi(n) is obtained by adding plus–minus pairs of Gaussian
white noise to the original signal xm(n). The first order intrinsic mode component C1 is
obtained by EMD decomposition of the new signal:

xm(n) + (−1)qεvi(n) = Cj
1(n) + rj, q = 1 or 2 (5)

Summing and averaging the resulting L modal components, the following is obtained.

C1(n) =
1
L

L

∑
j=1

Cj
1(n) (6)

Calculate the residual error after removing first modal component:

r1(n) = xm(n)− C1(n). (7)

Adding pairs of positive and negative Gaussian white noise to r1(n) is a new signal;
with a new signal as the carrier for the EMD decomposition, we can obtain the phase 1
modal component Dj

1, thus the available modal component phase 2:

C2(n) =
1
L∑L

j=1 Dj
1(n). (8)

Calculate to remove the second residual modal component:

r2(n) = r1(n)− C2(n). (9)

Repeat the above steps until the obtained residual signal is a monotone function and
cannot be decomposed further, and the algorithm ends. At this time, if the number of
eigenmode components obtained is K, then the original signal xm(n) is decomposed into:

xm(n) = ∑K
k=1 CK(n) + rK(n). (10)

2.2.2. Wavelet Packet Analysis of Noise Reduction Principle

Wavelet packet analysis decomposes a noisy signal into multiple sub-band signals,
allowing for better separation of different frequency components. By applying noise
reduction techniques to these sub-bands, it becomes possible to selectively remove noise
while preserving useful information in the signal. Compared to wavelet denoising, wavelet
packet analysis offers higher frequency resolution, enabling further elimination of noise
residues in the high-frequency portion.

Define the subspace Un
j to be the closure space of the function Un(t) and U2n

j to be the
closure space of the function U2n(t), such that Un(t) is satisfied,

U2n+1(t) =
√

2 ∑
K∈Z

g(k)Un(2t− k)

U2n(t) =
√

2 ∑
K∈Z

q(k)Un(2t− k)
(11)
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where q(k) and g(k) are orthogonal filter coefficients and g(k) = (−1)kq(1− k). When
u0 = ∅(t), the sequence constructed by Equation (11) is called an orthogonal wavelet packet.

If gn
j ∈ Un

j , then gn
j (t) can be expressed as:

gn
j = ∑l dj,n

l Un

(
2jt− 1

)
. (12)

The result of wavelet packet decomposition can be obtained:
dj,2n

l = ∑
k

ak−2ld
j+1,n
k

dj,2n+1
l = ∑

k
sk−2ld

j+1,n
k .

(13)

Wavelet packet reconstruction for the inverse process of wavelet packet decomposition
algorithm, by

{
dj,2n

l

}
and

{
dj,2n+1

l

}
construct

{
dj+1,n

l

}
.

dj+1,n
l = ∑

k

(
ql−2kdj,2n

l + gl−2kdj,2n+1
l

)
(14)

2.2.3. CEEMDAN Decomposes Joint Wavelet Packet Analysis

As shown in Figure 1, the initial step involves utilizing the CEEMDAN algorithm to
decompose the original signal into multiple intrinsic mode components. By comparing
the correlation coefficient between each mode component and the original signal, the
intrinsic mode components containing noise are screened out, and the spectral distribution
characteristics and variance contribution rate of the intrinsic mode components are checked.
Finally, the modal components containing noise are selected by wavelet packet analysis
for threshold denoising, which avoids the problem that IMF components containing more
noise are directly discarded, resulting in the loss of effective information. The signal
x̃m(n) is obtained by reconstructing the denoised modal component and the unprocessed
modal component.
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2.2.4. Feature Extraction Method Based on GGD Distribution

Generalized Gaussian noise finds relevance in various applications, including image
processing, signal processing, and communication systems, among others. In these do-
mains, signals are influenced by diverse factors, including weather-related interference,
resulting in signals comprising different types and varying intensities of noise. Con-
sequently, the noise distribution deviates from the conventional Gaussian distribution,
assuming a more intricate non-Gaussian form.

If the M observed signal samples from the secondary users (SUs) are independently
and identically distributed, they follow a generalized gaussian distribution (GGD). In this
distribution, the parameter α (α > 0) controls the spread of the density function, while the
parameter β (0 < β ≤ 2) determines the shape [25]. The probability density function of the
GGD is expressed as shown in Equation (15):

fX(x) =
1

2αΓ
(

1
β

)exp

(
−|x|

β

α

)
, x ∈ R. (15)

Differential entropy (DE) is an extension of information entropy that measures the
instantaneous entropy of a signal. It provides a measure of the speed of change and
uncertainty in a signal. For a continuous random variable x with a probability density
function p(x), the DE is defined as:

h(X) = −
∫ ∞

−∞
p(x) ln p(x) dx. (16)

The DE feature of samples generated from GGD noise is given by its maximum
likelihood estimation [25] and can be expressed as:

TCEEMDAN−DE =
1
β
− log

 β

2Γ
(

1
β

)
+

1
β

log

[
β

N

N

∑
i=1

∣∣x̃m(n)− X̂
∣∣β] (17)

where 0 < β ≤ 2 controls the “shape” of the generalized Gaussian distribution (GGD),
which determines the rate of decay. X̂ represents the sample mean of the received observa-
tions and can be expressed as:

X̂ =
1
N ∑N

n=1 x̃m(n). (18)

Let X be a logarithmic random variable. According to the concept of geometric
moments in [26], we define the geometric moment of X as follows:

S0 = S0(X) = eE{log |X|}. (19)

Suppose that x̃m(1), x̃m(2), . . . , x̃m(n) is an independent sample sequence from the
geometric power distribution S0, then the statistical result can be expressed as:

TCEEMDAN−GP = exp
(

1
N ∑N

n=1 log|x̃m(n)|
)
=
(
∏N

n=1|x̃m(n)|
)1/N

. (20)

In multi-antenna spectrum sensing, the signal samples are received by the mth sec-
ondary user’s antenna and denoted as xm(n) (n = 1, 2, . . . , N). Based on the feature ex-
traction method, we compute the differential entropy and geometric power of x̃m(n). The
results are denoted as TCEEMDAN−DE,m and TCEEMDAN−GP,m (m = 1, 2, . . . , M). Conse-
quently, two sets of feature vectors are obtained (TCEEMDAN−DE,1, . . . , TCEEMDAN−DE,M)
and (TCEEMDAN−GP,1, . . . , TCEEMDAN−GP,M). These feature vectors capture relevant infor-
mation about the signal characteristics and are obtained through the CEEMDAN-DE and
CEEMDAN-GP methods, respectively. They provide a comprehensive representation of the
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observed signals from different antennas in the multi-antenna spectrum sensing scenario.
The feature extraction process based on CEEMDAN is shown in Figure 2.
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3. Multi-Antenna Spectrum Sensing Based on ISSA-SVM
3.1. Improvement Sparrow Search Algorithm

Addressing the shortcomings of the original sparrow search algorithm (SSA) [15],
we propose an improved sparrow search algorithm (ISSA) based on the integration of
elite opposition-based learning and genetic variation. To overcome SSA limitations, in-
cluding low convergence accuracy and poor optimization efficiency, we introduce the
elite opposition-based learning mechanism. Furthermore, we address the issue of SSA’s
single search direction by incorporating a multi-directional learning strategy. The genetic
variation strategy enhances the algorithm’s capability to escape local optima by introducing
genetic variations to the local optimal individual.

Elite opposition solution definition: Let xi(t) be a solution of the t iteration, and the
reverse solution is xi(t). When f (xi(t)) ≥ f (xi(t)), xi(t) is called the elite individual of the
t iteration; when f (xi(t)) ≤ f (xi(t)), xi(t) is the elite individual of the t iteration, and xij is
the value of the ordinary individual xi on the jth dimension, then its reverse solution is

xij(t) = m
(
lij(t) + uij(t)

)
− xij(t) (21)

where m is a random number between 0 and 1, called the elite opposition coefficient. lij(t)
and uij(t) are the minimum and maximum values of xi(t) on the jth dimension, and

[
lij, uij

]
are constructed intervals by elite groups.

In the traditional SSA, followers only learn from a single explorer in each iteration,
which increases the likelihood of getting trapped in local optima and weakens the algo-
rithm’s optimization ability. To address this issue, a multi-directional learning strategy
is applied to the followers, offering relatively weaker individuals among the sparrows
more opportunities to explore different regions [27]. With the improvement from the multi-
directional learning strategy, the update formula for follower positions becomes as follows:

Xt+1
i,j =


Q·exp

(
Xworst−Xt

i,j
i2

)
, i > n

2

ωz ·Xt
z,j+ωo ·Xt

o,j+ωb ·Xt
b,j

ωz+ωo+ωb
, otherwise.

(22)
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The equation can be expressed as follows, where Xij represents the position informa-
tion of the ith sparrow in the jth dimension (j = 1, 2, . . . , itermax), t denotes the current
iteration count, Q is a random number following a normal distribution, Xworst represents the
global worst position, and ωz, ωo, and ωb represent the weights assigned to the randomly
selected sparrow individuals z, o, and b.

The iterative process of SSA aims to approach the optimal individual gradually. How-
ever, if the current individual becomes the local optimum, SSA is easily trapped in local
optima. To overcome this issue, the mutation operator from the genetic algorithm is in-
troduced into ISSA. This operator mutates the optimal individual within the sparrow
population, enhancing the algorithm’s global search capability. Additionally, to avoid pro-
longed search times and emphasize the effectiveness of the mutation operator, an adaptive
mutation probability is utilized in ISSA [27]. The mutation probability Pm increases with
the number of iterations. This adaptive approach helps individual sparrows evade local
optima during the later iterations and improves the algorithm’s convergence accuracy. In
ISSA, set s = 0.5 d = 1, e = 0.03, and θ = 2.

Pm = e + s
(

d− itermax − t
itermax

)θ

(23)

The pseudo-code of the ISSA algorithm is shown in Algorithm 1.

Algorithm 1: ISSA pseudo-code.

Input: sparrow population G, the number of producers PD, proportion of scaredy birds SD,
warning value ST, the maximum iterations itermax, wi ∈ [lb− Xi, ub− Xi]
Output: sweet spot Xbest, optimal value fg
1: Initialize the population using the elite opposition-based learning strategy
2: Calculate the fitness value to find the current best individual and the worst individual
3: While t < itermax
4: R = rand(1)
5: for i = 1 : (PD ∗ G)
6: Update the discoverer position Xt

i,j → Xt+1
i,j

7: end for
8: for i = (PD ∗ G + 1) : G
9: Update the follower position according to Equation (22)
10: end for
11: for i = 1 : SD
12: Update scout position
13: end for
14: Calculate the mutation probability Pm, generate a random number p = rand (1)
15: if p < Pm
16: Mutation is performed according to X̌i ← Xi + wi obtain the new sparrow position
17: else
18: Keep the previous sparrow position Xi
19: end if
20: Calculate the fitness value of the new position and the original position, and compare it
21: if f(new) < f(old)
22: Preserve current position
23: end if
24: t = t + 1
25: end while

3.2. Spectrum Sensing Based on ISSA-SVM

Since support vector machines (SVM) have certain advantages in nonlinear data
processing [28], we use the SVM algorithm for spectrum sensing. The SVM classification
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problem is to find a hyperplane to maximize the classification interval on the feature space.
The SVM mathematical model is as follows:

argmin
w,b,ξ

1
2‖w‖

2 + C
n
∑

i=1
ξi

s.t. yi
(
ωTxi + b

)
≥ 1− ξi, ξ i ≥ 0, i = 1, . . . , n

(24)

where w is the normal vector of the hyperplane, C is the penalty parameter, ξi is the
relaxation variable, xi is the eigenvector, yi is the result label, b is the threshold, and n is the
number of samples.

Considering that spectral sensing data are often linear and indivisible, it is necessary
to introduce kernel function to improve generalization ability. Therefore, the Gaussian
kernel function with parameter σ is selected in this paper, and the expression is as follows:

K(x1, x2) = exp
(
−σ‖x1 − x2‖2

)
. (25)

When the classifier is successfully trained, the decision function is obtained according
to the SVM algorithm as follows:

f (x) = sgn
(
∑D

i=1 α∗i yiK(x1, x2) + b∗
)

. (26)

where sgn(·) is a symbolic function as shown in (27) and α∗i is a Lagrange factor. After
feature extraction of the classified signal sample, it is substituted into the decision function.
If f (x) = −1, it is considered that the primary user signal does not exist. If f (x) = 1, the
primary user signal is considered to exist.

sgn(x) =


−1, x < 0
0, x = 0
1, x > 0

(27)

The complete spectrum sensing algorithm is shown in Algorithm 2.

Algorithm 2: Spectrum sensing algorithm based on CEEMDAN-DE.

Input: Signal sequence xm(n), number of observed samples n, number of data sets L
Output: Pf and Pd

// CEEMDAN decomposition
1: im f , its← ceemdan (xm(n))
2: for i = 1 : 14
3: Calculate the correlation coefficient of the im f and the original signal

CC(i)← corr
(

im f (i, :)′, xm(n), ‘type’, ‘Pearson’
)

4: end for
// wavelet denoise and reconstruct

5: for i = 1 : 14 // the im f component is selected for wavelet packet decomposition
6: xm(n)_im f = im f [i]
7: wpt← wpdec(xm(n)_im f , 3, ‘db8’) // perform wavelet packet decomposition for each im f [i],
using Daubechies wavelet ‘db8’ and decompose 3 layers
8: nodes = get(wpt, ‘tn’)
9: N_c f s = length(nodes)
10: for j = 1 : N_c f s
11: yso f t(:, j)← wthresh(rex3(:, j), ‘s’, thr) // soft threshold processing
12: end for
13: xm(n)_im f (:, i) = sum(yso f t, 2)
14: end for
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15: x̃m(n) = sum(xm(n)_im f , 2) + sum(im f (:, 6 : 8), 2) //acquired reconstruction signal
// feature extraction

16: for i = 1 : L
17: A sample of n observations is randomly selected in x̃m(n) each time
18: For x̃m(n), dataset(i) = (TCEEMDAN−DE,1, TCEEMDAN−DE,2) is obtained is obtained from
Equation (17)
19: end
20: Divide dataset(i) into training sets and test sets
21: The training set is used for the SVM model parameter training, and ISSA is used to determine
kernel function parameters (C, σ)
22: The decision function (26) is obtained after successful training
23: Input the test set according to the decision function (26)
24: Pf and Pd are calculated according to Equations (3) and (4)

4. Simulation Results and Performance Analysis

The simulation environment for CEEMDEN-DE feature extraction is created using MAT-
LAB2021a, and ROC curve performance analysis and ISSA algorithm verification are con-
ducted using Python 3.8.9. The processor is an Intel(R) Core (TM) i7-8550U CPU @ 1.80 GHz
processor, and the RAM is a 12 GB 64-bit computer.

4.1. ISSA Algorithm Optimization Ability Test

To assess the performance of the improved sparrow search algorithm (ISSA) and
compare it with the sparrow search algorithm (SSA), we conducted performance testing
using six typical benchmark functions shown in Table 1. The maximum number of iterations
of the experiment itermax = 1000, and the parameter settings [29] of the comparative
experiment are shown in Table 2. The convergence curves are shown in Figures 3–5.
Through the analysis of the convergence curves for functions F1 to F6, it can be observed
that the proposed ISSA demonstrates faster convergence speed and better global search
ability compared to SSA when solving complex problems.

Table 1. Test functions.

Functions Function Name Dimension Domain Optimal Value

F1 Sphere 30 [−100, 100] 0
F2 Schwefel’s Problem 2.22 30 [−10, 10] 0
F3 Ackley 30 [−32, 32] 0
F4 Schwefel’s Problem 2.21 30 [−100, 100] 0
F5 Griewank 30 [−600, 600] 0
F6 Rastrigin 30 [−5.12, 5.12] 0

Table 2. Parameters setting of comparison algorithm.

Algorithm G PD SD ST

SSA 30 0.2 0.1 0.8
ISSA 30 0.2 0.1 0.8
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4.2. Experimental Verification of Spectrum Sensing Method

Then, in this section, the simulated PU signal is obtained by superposition of sine and
cosine functions. The simulation signal is represented as follows:

y1(t) = 0.35× cos(0.735π × 50t)
y2(t) = 0.25× sin(2π × 50t)× (1 + 1.5sin(0.55π × 50t))
y(t) = y1(t) + y2(t) + w(t)

(28)

where t ∈ [0, 2], the signal sampling interval ∆t = 2× 10−4 s; and w(t) is the noise signal
following the generalized Gaussian distribution.

The parameters related to the CEEMDAN method are set as follows: the standard
deviation of the added Gaussian white noise Nstd = 0.2, number of times noise is added
NR = 100, and the maximum number of iterations MaxIter = 500. Simulation signal y(t) is
decomposed by the CEEMDAN method under different signal-to-noise ratios (SNRs).

The simulation signals of the primary users are undergoing CEEMDAN decomposi-
tion under various SNRs, yielding a series of intrinsic mode function (IMF) components
ranging from high to low frequencies, as demonstrated in Table 3. The correlation coef-
ficients among these IMF components are being calculated using the “corr” function in
MATLAB. As an example, for SNR = −12 dB, IMF1–IMF6 components with correlation
coefficients exceeding 0.2 are categorized as high-frequency components with significant
noise content. Subsequently, these components undergo denoising through wavelet packet
analysis. Conversely, IMF7–IMF14 components with correlation coefficients less than 0.2
are identified as low-noise components and are preserved.

Table 3. Correlation coefficient value corresponding to each order component of the primary user
signal with different SNRs.

SNR = −9 dB SNR = −12 dB

IMF1 0.6094 0.6271
IMF2 0.4271 0.4541
IMF3 0.3465 0.3659
IMF4 0.2766 0.2907
IMF5 0.2753 0.2271
IMF6 0.2501 0.2023
IMF7 0.2203 0.1886
IMF8 0.2291 0.1881
IMF9 0.1599 0.1121

IMF10 0.0194 0.0375
IMF11 0.0366 0.0146
IMF12 0.0342 0.0161
IMF13 0.0198 0.0143
IMF14 0.0164 0.0151

Subsequently, the selected high-frequency noisy components are denoised using the
wavelet packet analysis method. The denoising process utilizes the db8 wavelet basis
function, a soft thresholding function, and a decomposition level of 3. After denoising, the
high-frequency IMF components, now free of noise, are combined with the initially low-
noise low-frequency IMF components. This reconstruction step finalizes the CEEMDAN-
wavelet packet thresholding composite denoising of the primary user signal y(t).

In order to more fully reflect the difference of the primary user signal y(t) before and
after noise reduction, two indicators of continuous mean square error and signal-to-noise
ratio are introduced to evaluate the signal after noise reduction.

• Root mean squared error (RMSE): in the signal noise reduction metric, the root mean
square error is defined as the expected value of the squared difference between the
un-denoised signal and the denoised signal recalculated as shown in Equation (29).
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RMSE =

√√√√ 1
N

N

∑
i=1

[
yi(t)− y∗i (t)

]2
(i = 1, 2 . . . , n) (29)

• SNR: The signal-to-noise ratio is defined as shown in Equation (30).

SNR = 10× lg

[
∑N

i=1 yi(t)
2

∑N
i=1
[
yi(t)− y∗i (t)

]2
]
(dB) (30)

where y∗i (t) is the denoised signal and n is the signal length.

To comprehensively demonstrate the superiority of the CEEMDAN-wavelet packet
analysis denoising method, we conducted a comparative analysis, contrasting the perfor-
mance of the proposed method with that of the EMD-wavelet packet analysis denoising
and conventional EEMD denoising methods across various SNRs. The denoising efficacy
for both methods is evaluated using the RMSE and SNR.

In the wavelet packet threshold denoising experiment, db8 wavelet basis function and
soft threshold function are used again, and the decomposition level is still set to 3.

From the comparative results in Table 4 and the evaluation criteria for denoising
performance, it is evident that the proposed CEEMDAN-wavelet packet analysis-combined
denoising method outperforms both the EMD-wavelet packet analysis-combined denoising
method and the EEMD denoising method for the primary user signal. Additionally, the
RMSE values for the CEEMDAN-wavelet packet analysis method are consistently lower
than those of the other two methods. Moreover, the SNR achieved by the CEEMDAN-
wavelet packet analysis-combined denoising method is notably higher than that achieved
by the other two methods.

Table 4. Performance indicators of different noise reduction methods.

Initial SNR Evaluation Index EMD-Wavelet Packet
Analysis-Combined Denoising EEMD CEEMDAN-Wavelet Packet

Analysis-Combined Denoising

SNR = −9 dB
RMSE 0.2383 0.2807 0.1968

SNR/dB 3.532 2.1095 4.9743

SNR = −12 dB
RMSE 0.3154 0.3039 0.2644

SNR/dB 1.0987 1.4289 2.6297

In the training of the spectrum sensing module using the SVM classification algorithm,
as presented in literature [13] and literature [16], only the “linear” and “polynomial” kernel
functions are considered. Regrettably, the more appropriate “RBF” kernel function, which
is well suited for addressing nonlinear classification problems, is overlooked. These meth-
ods are denoted as linear-SVM, poly-SVM, and RBF-SVM, respectively. It is noteworthy
that the “RBF” kernel function introduces an element of uncertainty due to the random
generation of penalty factors C and kernel function parameters σ during each training
session. Therefore, the improved sparrow search algorithm (ISSA) is used to optimize the
RBF kernel parameters C and σ, which are referred to as ISSA-SVM. To comprehensively
showcase the superiority of the CEEMDAN-DE-ISSA-SVM algorithm in spectrum sensing
classification, it is compared with two methods from the literature.

During the simulation, the parameters are configured as follows: β = 1.8 and α = 5.2,
where α controlled the SNR of the generated signals. Each training sample consisted of
N = 100 sampling points from the secondary user’s received signal. The chosen signal
feature extraction methods encompassed CEEMDAN-DE and DE [16]. Based on the size
of the generated data set, the average training time of the machine-learning-based multi-
antenna spectrum sensing methods is presented in Table 5. Among the data samples,
normalization is performed and 50% is selected as the training set for the SVM model and
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the remaining 50% as the test set for the SVM model. The relevant parameter settings when
the ISSA algorithm optimizes the SVM kernel function are shown in Table 6.

Table 5. Comparison of SVM kernel function models under different feature extraction methods
when SNR = −16 dB.

Kernel Function Model Category Experimental
Data Set Size Training Time (s)

(
Pd

∣∣∣Pf = 0.1
)

Accuracy Rate

CEEMDAN-DE-linear-SVM
2000 0.562337 0.934 0.90
3000 0.499887 0.952 0.91

CEEMDAN-DE-poly-SVM 2000 3.821829 0.936 0.931
3000 3.401949 0.955 0.937

CEEMDAN-DE-ISSA-SVM
2000 0.859216 0.94 0.93225
3000 0.796324 0.96 0.9405

DE-linear-SVM
2000 1.031003 0.09 0.7545
3000 1.327854 0.125 0.68925

DE -poly-SVM 2000 17.339349 0.006 0.7545
3000 15.206200 0.02 0.68925

DE-ISSA-SVM
2000 1.577460 0.79 0.83575
3000 2.152244 0.696 0.769

Table 6. ISSA related parameter settings.

G itermax Warning Value PD SD

30 30 0.6 0.7 0.2

As can be seen from Table 5, among the three different kernel functions, the training
time of the CEEMDAN-DE-SVM model under various data sets is shorter than that of the
DE-SVM model in the literature. This observation validates that the proposed denoising
method in this paper aids SVM in swiftly identifying an appropriate hyperplane for data
partitioning. Moreover, it is observable that the “linear” and “polynomial” kernel functions
result in low detection probabilities Pd when applied to small and non-denoised data sets.
In contrast, ISSA-SVM maintains normal detection probabilities even in such cases.

Among the three kernel functions of the CEEMDAN-DE-SVM model, CEEMDAN-DE-
poly-SVM has the longest training time and CEEMDAN-DE-Linear-SVM has the shortest
training time, but the detection probability is low. The CEEMDAN-DE-ISSA-SVM al-
gorithm has the highest classification accuracy and detection probability. Its increased
computational complexity is offset by its superior classification accuracy and detection
probability. Then, under the same α and N conditions, we analyzed and compared the
impact of β change on the detection probability.

We then proceeded to extract 2000 signal features using the CEEMDAN-DE feature
extraction method and conducted a comparative analysis of the detection probabilities
between the ISSA-SVM and RBF-SVM algorithms. This analysis is performed under
various β conditions while keeping α and N constant. As shown in Table 7, the detection
probability of the RBF-SVM algorithm is significantly lower than that of the ISSA-SVM
under different β. It can be found that the suitability of C and σ values have a great impact
on the detection probability performance of the SVM spectrum sensing model.
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Table 7. Comparison of detection probability between ISSA-SVM and RBF-SVM under different β.

Model Category β
(

Pd

∣∣∣Pf = 0.1
)

Penalty Factors (C) Kernel Function Parameters (σ)

ISSA-SVM

0.8 0.963 5.20779748 4.23560914
1 0.969 0.01 4.08559084

1.5 0.939 0.87150995 0.08230669
2 0.893 0.10625931 0.90453521

RBF-SVM

0.8 0.961 11.0 10.5030644
1 0.871 11.0 10.5069423

1.5 0.869 11.0 10.4894858
2 0.734 11.0 10.4988999

All the subsequent experiments are implemented based on the ISSA-SVM, and the
relevant parameters of the ISSA algorithm are shown in Table 6. To ensure the accuracy
of the experiment, we obtained 2000 signal features based on the CEEMDAN-DE feature
extraction method and normalized them, among which, 1000 are used as the training
set and 1000 are used as the test set. A test set is used to verify the spectrum sensing
performance of the proposed method.

ROC curves are used to compare the performance of different feature extraction
methods. Among them, DE and GP represent the feature extraction methods mentioned
in references [16,26]. EMD-DE and EMD-GP denote the feature extraction method using
the EMD-joint wavelet packet analysis denoising method, and ED is the energy detection
algorithm.

Figure 6 shows the ROC curves of different feature extraction methods when M = 2,
β = 0.8, α = 1, and the number of sampling points N = 25 for each training sample of
the secondary user’s received signal. As indicated in Table 8, it can be observed that the
detection probability based on the CEEDMAN-DE algorithm, at Pf = 0.1, the CEEMDAN-
DE method improved by 355% compared to the original DE method, and by 95% compared
to the GP method. It can be observed that, under the same N, the multi-antenna spectrum
sensing algorithm based on SVM with the CEEMDAN-DE feature extraction method
proposed in this paper achieves the best performance.
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Table 8. AUC and Pd values of each feature extraction method when SNR = −9 dB.

Algorithms AUC
(

Pd

∣∣∣Pf = 0.1
)

Penalty Factors (C) Kernel Function
Parameters (σ)

CEEMDAN-DE 0.947461 0.979 0.05019098 0.35761508
CEEMDAN-GP 0.830064 0.801 0.28540171 0.88132311

EMD-DE 0.834399 0.791 0.94971281 1.63474901
EMD-GP 0.862792 0.809 6.96336871 0.67814947

DE 0.666286 0.215 6.94563624 6.78160817
GP 0.773780 0.501 4.98229443 5.49424544

Figure 7 illustrates the classification results obtained through feature extraction using
CEEMDAN-DE. The red “+” symbols represent the feature vectors corresponding to the
presence of primary user signals, while the blue “o” symbols represent feature vectors
corresponding to the absence of primary user signals. The black curve represents the
classification hyperplane derived after training the SVM. It is evident that the classification
hyperplane successfully separates the samples into two distinct categories, with only a
small number of overlapping data points.
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Figure 8 shows the ROC curves for different feature extraction methods when M = 2,
β = 1.7, α = 3.2, SNR = −14 dB, and N = 100. As indicated in Table 9, it can be observed
that the detection probability based on the CEEDMAN-DE algorithm, at Pf = 0.1, exhibits
a significant improvement compared to the performance of the DE method mentioned in
the literature, with an increase of 588%. Furthermore, compared to the EMD-DE method,
the CEEDMAN-DE algorithm demonstrates a performance improvement of 17%. It can
be observed that the spectrum sensing algorithms based on DE and GP mentioned in the
literature significantly decrease the spectrum sensing performance when 1 < β < 2, but
the method proposed in this paper can still maintain a high spectrum sensing performance.
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Table 9. AUC and Pd values of each feature extraction method when SNR = −14 dB.

Algorithms AUC
(

Pd

∣∣∣Pf = 0.1
)

Penalty Factors (C) Kernel Function
Parameters (σ)

CEEMDAN-DE 0.962633 0.9839 5.00939943 10
CEEMDAN-GP 0.882664 0.874 8.230381791 9.5211308

EMD-DE 0.871692 0.839 0.29243504 6.28011474
EMD-GP 0.679500 0.507 2.59337523 1.24635901

DE 0.540575 0.143 5.92915985 5.31179191
GP 0.507679 0.1435 9.83149123 9.78577177

In Table 10, we compare the classification performance of the ISSA-SVM spectrum
sensing algorithm with K-means, decision tree, and random forest spectrum sensing
algorithms when SNR = −16 dB. The metrics are area under the curve (AUC) and
classification accuracy rate. Where AUC is the area under the ROC curve, which is used to
measure the performance of a classifier. A higher AUC value indicates better performance
of the classifier, while a lower AUC value indicates poorer performance.

Table 10. Classification performance comparison of spectrum sensing algorithms when SNR = −16 dB.

Spectrum Sensing Algorithm β AUC Accuracy Rate

ISSA-SVM
0.8 0.911871 0.93225
1.5 0.918863 0.90075

Random forest
0.8 0.907170 0.924
1.5 0.814999 0.789

K-means
0.8 0.600418 0.495
1.5 0.677811 0.7595

Decision tree
0.8 0.88972 0.907
1.5 0.799265 0.77025

We can see from Table 10 that the ISSA-SVM spectrum sensing algorithm can maintain
the highest classification performance regardless of 0 < β < 1 or 1 < β < 2. Other
algorithms, such as the K-means algorithm, even fail in classification performance.

Figure 9 presents the ROC curves for the SVM-based multi-antenna spectrum sensing
method under generalized Gaussian distribution noise, with varying numbers of sampling
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points N. As shown in the figure, under the conditions of M = 2, β = 0.8, and α = 1, with
an increase in the number of sampling points N for the secondary user, the spectral sensing
performance of all algorithms exhibits noticeable improvement. However, the performance
of these algorithms remains lower than that of the CEEDMAN-DE method proposed in this
study. This validates the effectiveness of the proposed method in scenarios with a small
number of sampling points.
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5. Conclusions

This paper proposes a CEEDMAN-DE method to effectively improve spectrum sensing
performance in complex electromagnetic environments. In terms of feature extraction, the
proposed method first utilizes CEMMDAN decomposition combined with wavelet packet
analysis to denoise the signals collected by the secondary user (SU). This process enables
finer removal of noise components and avoids the loss of primary user information. Then,
the denoised signals are subjected to differential entropy feature extraction to obtain features
for spectrum sensing. Finally, in the spectrum sensing module, the SVM classification
algorithm is employed for training, combined with elite opposition-based learning and a
sparrow search algorithm with genetic variation, to determine the optimal kernel function
parameters. In the experiments, the performance of the CEEDMAN-DE algorithm is
validated and analyzed through ROC curve analysis. When 0 < β < 1, the proposed
method ensures accurate spectrum sensing even with a small value of N, outperforming the
spectrum sensing methods in the literature. Moreover, when 1 < β ≤ 2 the performance of
the spectrum sensing methods in the literature deteriorates, the CEEDMAN-DE algorithm
maintains accurate spectrum sensing classification. In our future work, we plan to explore
a spectrum sensing algorithm that combines CEEMDAN-DE feature extraction with deep
learning techniques. Additionally, we aim to investigate methods for reducing algorithmic
complexity to achieve more efficient spectrum sensing.

Author Contributions: Y.H. researched the literatures, provided the mathematical models, designed
the algorithm, completed numerical simulations, took charge of the original draft preparation, and
edited the manuscript; S.L. conceived the study concepts, improved the systematic research and
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