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Abstract: The variation of mutual inductance and load parameters will affect the transmission power
and efficiency of the inductive power transfer (IPT) system. The identification of mutual inductance
and load parameters is an essential part of establishing a stable and reliable IPT system. This paper
presents a joint identification method of load and mutual inductance for the LCC-S IPT system, which
does not require the establishment of primary and secondary communication and related control.
Firstly, the resistance-inductance characteristics of the equivalent load of the rectifier are analyzed by
simulation, and then the rectifier and system load are equivalent to the circuit model of resistance and
inductance in series. Secondly, the characteristics of the reflected impedance are analyzed, and the
functional relationship between the transmitter impedance and the rectifier impedance is established
by using the ratio of the real part to the imaginary part of the reflected impedance, which realizes
the decoupling of the load and the mutual inductance. Thirdly, the functional relationship between
the equivalent impedance of the rectifier and the load resistance of the system is obtained by data
fitting. Then, the equations of the above two functional relationships are combined. By measuring the
voltage of the parallel compensation capacitor at the transmitting side, the current of the transmitting
coil and the phase difference between the two, the battery load can be solved first, and then the
mutual inductance can be calculated, so that the high-precision identification of the load and mutual
inductance can be realized. Finally, an experimental platform of the LCC-S IPT system is built for
experimental verification. The experimental results show that the maximum identification errors
of mutual inductance and load are 5.20% and 5.53%, respectively, which proves that the proposed
identification method can achieve high precision identification.

Keywords: inductive power transfer (IPT); mutual inductance parameter identification; load
parameter identification; rectifier equivalent load

1. Introduction

With the development of science and technology, inductive power transfer (IPT) tech-
nology has attracted more and more attention. Compared with the traditional charging
method, this technology is safe, reliable, flexible and convenient, and has strong adaptabil-
ity [1–6]. As a new type of power supply, it is widely used in electric vehicle charging [7],
electronic products charging [8], biomedical [9] and underwater vehicle fields [10], as
well as other fields. In addition, with the continuous development of the IPT system, its
application scenarios are also being further explored and expanded.

In the practical application of the IPT system, the change of the relative position
between the transmitter and the receiver will lead to the change of the mutual inductance
of the coupler. Moreover, with the change of the charging state of the charging device
itself or the switching of different devices, the load of the system is also in the process of
dynamic change. The change of mutual inductance and load of the system will cause the
change of the system reflection impedance, which will affect the transmission power and
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transmission efficiency of the system [11]. Therefore, in order to establish a more efficient
and reliable IPT system, it is necessary to identify the parameter information of mutual
inductance and load, and then guide the control of the system. The most critical problem is
the identification of mutual inductance and load parameters [11,12].

At present, some scholars have carried out research on the identification of the load and
mutual inductance parameters of the IPT system [13–19]. Ref. [13] establishes the steady-
state circuit model of the SS type IPT system, uses the genetic algorithm to obtain the
optimal solution of the load and then obtains the mutual inductance value. Ref. [14] makes
the system work in two operating modes by switching capacitors, and then establishes a
mathematical model based on these two modes to identify the load and mutual inductance
parameters of the SS-type IPT system. Refs. [15–17] establish the energy supply, storage and
dissipation functions and energy balance equation of the system based on the method of
energy analysis. Then, they propose a load parameter identification method for the SS-type
IPT system by analyzing the reflected impedance. In Ref. [18], a parameter identification
method based on the PyTorch neural network is proposed for the LCC-S IPT system. This
method transforms the parameter identification problem into a deep learning nonlinear
fitting problem by training the neural network model. In Ref. [19], a load and mutual
inductance identification method based on the improved grey wolf optimization algorithm
is proposed, aiming at the LCC-S type IPT system. This method takes the real-time current
mathematical model of the transmitting side as the identification model, and aims at
minimizing the real-time current error of the transmitting side. Then, the parameter
identification problem is transformed into an optimization problem to identify the mutual
inductance and load in real time.

The traditional parameter identification methods need to add additional communi-
cation equipment at the receiver, which will increase the complexity of the system [20].
Furthermore, in the existing research on the mutual inductance and load parameter identi-
fication method of the IPT system, there are mainly the following problems:

1. There are many studies on the parameter identification of the SS type IPT system, but
few on the LCC—S type IPT system.

2. Some parameter identification methods can only identify a single parameter.
3. The nonlinear characteristic of a uncontrolled rectifier circuit is not considered in the

traditional parameter identification research [21]. If the rectifier and its back-end are
only regarded as pure resistors, the accuracy of the system model will be reduced,
thus affecting the accuracy of parameter identification.

In order to achieve a high-precision identification of mutual inductance and load
parameters of the IPT system, this paper proposes a joint identification method of mutual
inductance and load parameters for the LCC-S type IPT system. The rest of the article is
arranged as follows: Section 2 analyzes the working principle of the LCC-S IPT system.
Section 3 analyzes the characteristics of the reflection impedance to realize the decoupling
of the mutual inductance and load. Then, a joint identification method of mutual induc-
tance and load parameters is proposed, and the equivalent impedance of the rectifier is
modeled by the method of data fitting. Section 4 provides the simulation and experimental
verification analysis. Finally, the full article is summarized in Section 5.

2. Basic Analysis of LCC-S IPT System

Compared with the low-order compensation topology, the transmitter adopts the LCC
topology, which can achieve a constant voltage or constant current output by configuring
the parameters of the compensation network and setting the operating frequency. This is in
line with the practical application requirements of the dynamic power supply, and it is easy
to realize zero voltage switching (ZVS) [22] to reduce switching loss. The receiving side
adopts an S-type topology, which is conducive to reducing the number of components and
reducing the weight of the device. It has received extensive attention in the field of electric
vehicle charging. Therefore, this paper takes the LCC-S IPT system as an example to study.



Electronics 2023, 12, 3841 3 of 16

The circuit topology of the LCC-S IPT system is shown in Figure 1. It is composed of
DC power supply, full-bridge inverter circuit, coils, compensation network, uncontrolled
rectifier circuit and load. Lp, Ls and M are the self-inductance of the transmitting coil, the
self-inductance of the receiving coil and the mutual inductance between the two coils,
respectively. Lr, Cr and Cp are the series compensation inductance, parallel compensa-
tion capacitance and series compensation capacitance of the primary side compensation
network, respectively. Cs is the secondary side series compensation capacitor. Rp and Rs
denote the equivalent internal resistance of the transmitting and receiving coils. Ub and Ib
are the charging voltage and charging current of the load RL. The working principle of the
system is as follows: The DC voltage source Udc provides the power input of the whole
system. Then, the switches of G1~G4 constitute a high-frequency inverter, which converts
the DC voltage into a high-frequency square wave voltage and sends it to the original
side compensation network. After the filtering and reactive power compensation of the
original side compensation network, the high-frequency alternating current is transmitted
to the secondary side through the induction coil. Diodes D1~D4 and the filter capacitor Co
constitute the rectifier filter circuit. They rectify the high frequency alternating current on
the secondary side to the direct current, and then charge the system load.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 16 
 

 

the field of electric vehicle charging. Therefore, this paper takes the LCC-S IPT system as 
an example to study. 

The circuit topology of the LCC-S IPT system is shown in Figure 1. It is composed of 
DC power supply, full-bridge inverter circuit, coils, compensation network, uncontrolled 
rectifier circuit and load. Lp, Ls and M are the self-inductance of the transmitting coil, the 
self-inductance of the receiving coil and the mutual inductance between the two coils, 
respectively. Lr, Cr and Cp are the series compensation inductance, parallel compensation 
capacitance and series compensation capacitance of the primary side compensation net-
work, respectively. Cs is the secondary side series compensation capacitor. Rp and Rs de-
note the equivalent internal resistance of the transmitting and receiving coils. Ub and Ib are 
the charging voltage and charging current of the load RL. The working principle of the 
system is as follows: The DC voltage source Udc provides the power input of the whole 
system. Then, the switches of G1~G4 constitute a high-frequency inverter, which converts 
the DC voltage into a high-frequency square wave voltage and sends it to the original side 
compensation network. After the filtering and reactive power compensation of the origi-
nal side compensation network, the high-frequency alternating current is transmitted to 
the secondary side through the induction coil. Diodes D1~D4 and the filter capacitor Co 
constitute the rectifier filter circuit. They rectify the high frequency alternating current on 
the secondary side to the direct current, and then charge the system load. 

+

-

 
Figure 1. Circuit structure of LCC-S IPT system. 

By simplifying the system of Figure 1, the equivalent circuit diagram of the system 
shown in Figure 2 can be obtained. uinv and iinv are the inverter output voltage and cur-
rent, respectively. urec and irec are the input voltage and current of equivalent load, respec-
tively. up is the voltage on the parallel compensation capacitor Cr at the transmitter. ip is 
the current of the transmitting coil. Req is the equivalent load resistance of the rectifier 
module and ω is the angular frequency of the system. 

-

 
Figure 2. Equivalent Circuit of LCC-S IPT System. 

In the IPT system, the coupling coefficient is usually used to characterize the tight-
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method of the coupling coefficient e is as follows: 

Figure 1. Circuit structure of LCC-S IPT system.

By simplifying the system of Figure 1, the equivalent circuit diagram of the system
shown in Figure 2 can be obtained. uinv and iinv are the inverter output voltage and current,
respectively. urec and irec are the input voltage and current of equivalent load, respectively.
up is the voltage on the parallel compensation capacitor Cr at the transmitter. ip is the
current of the transmitting coil. Req is the equivalent load resistance of the rectifier module
and ω is the angular frequency of the system.
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In the IPT system, the coupling coefficient is usually used to characterize the tightness
of the coupling between the transmitting coil and the receiving coil. The calculation method
of the coupling coefficient e is as follows:

e = M√
Lp Ls

=⇒ M = e
√

LpLs (1)

As observed from (1), the mutual inductance M depends on the coupling coefficient e
and the self-inductance of the coils.
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Based on Kirchhoff’s voltage law, the depiction of the LCC-S system can be obtained
as follows: 

jωLr
.
Iinv +

.
Ip

[
j
(

ωLp − 1
ωCp

)
+ Rp

]
− jωM

.
Irec =

.
Uinv

jωLr
.
Iinv +

( .
Iinv −

.
Ip

)
1

jωCr
=

.
Uinv

.
Irec

[
j
(

ωLs − 1
ωCs

)
+ Rs + Req

]
− jωM

.
Ip = 0

(2)

In order to improve the energy transmission efficiency of the system, the operating
angular frequency ω of the system is generally made close to the natural resonant frequency
of the circuit [23–25]. Therefore, the parameters of the coupler and compensation networks
should satisfy the following relationship:

ωLr =
1

ωCr
ωLs =

1
ωCs

ω
(

Lp − Lr
)
= 1

ωCp

(3)

Then, the current of each loop under the resonance condition can be determined in (4).
.
Iinv =

Cr[(Rs+Req)Rp+ω2 M2]
Lr(Rs+Req)

.
Uinv

.
Ip = −jωCr

.
Uinv.

Irec =
M

Lr(Rs+Req)

.
Uinv

(4)

Therefore, the voltage gain of the LCC-S system can be determined in (5), and the
current gain of the LCC-S system can be determined in (6).

Gv =

∣∣∣∣ .
Urec.
Uinv

∣∣∣∣ = MReq

Lr(Rs+Req)
= M

Lr
(5)

Gi =

∣∣∣∣∣
.
Irec
.
Iinv

∣∣∣∣∣ = M
Cr
[(

Rs + Req
)

Rp + ω2M2
] (6)

It can be observed from (4) that the expression of the current of the transmitting coil ip
on the primary side is independent of the load RL, so the primary side of the LCC-S type
IPT system can achieve a constant current output when the system is resonant. Similarly, it
can be observed from (5) that the output voltage of the secondary side urec is independent
of the load RL, so the secondary side of the LCC-S type IPT system has the characteristics of
constant voltage output. Moreover, the voltage gain is only related to the topology network
parameters and the mutual inductance of the coil, and is not affected by load changes.
Therefore, it is suitable for dynamic charging and other application environments.

3. Joint Identification Method of Mutual Inductance and Load Parameters

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results and their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Rectifier Equivalent Load Analysis of LCC-S Type IPT System

In addition to system components, the performance of an IPT system is also affected
by load characteristics. The diode has the advantages of simple structure, high stability, and
no additional control, therefore, the receiver of the IPT system usually adopts a full-bridge
uncontrolled rectifier circuit. The rectifier and the back-end circuit are usually equivalent
to a resistor Req, as shown in Figure 3 [15,16]. The relationship between the Req and RL can
be expressed by (7).

Req =
8

π2 RL (7)
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In fact, equivalent load model of rectifier also contains inductance components, so
it is not accurate to equate it to a pure resistor. The rectifier and its back end should be
represented as a series circuit consisting of an equivalent input resistance and an equivalent
input inductance [17]. In addition, based on the double-sided LCC system, the quantitative
relationship between the equivalent load resistance and the equivalent input impedance
of rectifier is deduced by analyzing the relationship between the voltage on the parallel
compensation capacitor at the receiver, rectifier input voltage and rectifier input current.
Therefore, the parameter identification with higher precision is realized for the double-sided
LCC system.

The input voltage and input current waveforms of the rectifier in the LCC-S type IPT
system are shown in Figure 4. Here, urec and irec are the input voltage and current of the
rectifier, respectively; urec_f and irec_f are the fundamental components of the input voltage
and current of the rectifier, respectively. It can be observed from Figure 4 that the input
current waveform of the rectifier irec is not a standard sine wave, and there is a certain
distortion. Moreover, compared with the fundamental component irec_f, its amplitude is to
the right. This indicates that the equivalent load of the rectifier is not purely resistive. In
addition, the phase of the fundamental wave of the input voltage of the rectifier is ahead
of the phase of the fundamental wave of the input current of the rectifier, which can also
indicate that the equivalent load of the rectifier is inductive. Therefore, it is not accurate
that the rectifier and the back end are only equivalent to pure resistance in the process of
parameter identification, as shown in the Figure 3.
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In order to verify the inductive component of the rectifier equivalent load module, a
model of an IPT system as depicted in Figure 1 is built in the Matlab/Simulink environment
and sets the variation range of the system load RL to 30~80 Ω. The phase angle of the
input voltage urec and the input current irec of the rectifier equivalent load module is
obtained through Fast Fourier Transform (FFT), and then the impedance angle of the
rectifier equivalent load ϕZ_rec under different load conditions is calculated. It can be
observed from Figure 5 that in the range of load RL, the impedance angle of the equivalent
load of the rectifier is greater than zero, which further indicates that the equivalent load
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of the rectifier has resistance-inductance characteristics. Moreover, as the value of system
load RL increases, the impedance angle of the equivalent load of the rectifier ϕZ_rec also
increases. It shows that the system load RL will affect the inductance of the equivalent load
of the rectifier.
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The LCC-S type IPT system is different from the double-sided LCC system because
there is no parallel compensation capacitor at the front end of the rectifier. The quantitative
relationship between the system load resistance and the equivalent impedance of the
rectifier derived in reference [17] cannot be used. Therefore, in the process of the parameter
identification of the LCC-S type IPT system, in order to ensure the identification accuracy,
the inductance component of the equivalent load module of the rectifier must be considered.

3.2. Joint Identification of Mutual Inductance and Load Parameters

The equivalent load module of the rectifier is equivalent to a circuit model in which a
resistor and an inductor are connected in series, as shown in Figure 6. Re is the equivalent
input resistance, and Le is the equivalent input inductance. Define Xe as the equivalent
reactance, where Xe = ωLe.
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Seen from Figure 5, as the load resistance increases, the impedance angle of the equiv-
alent impedance of the rectifier ϕZ_rec increases monotonically. Although the variation law
of the equivalent input impedance of the rectifier is uncertain, it can be reasonably inferred
that there is a certain functional relationship between the equivalent input impedance of
the rectifier and system load. This means that Re and Xe can be represented by RL, as shown
in (8). {

Re = f (RL)
Xe = g(RL)

(8)

According to the circuit principle, the equivalent impedance of the receiver can be
derived as:

Zs = Rs + f (RL) + j
[

ωLs −
1

ωCs
+ g(RL)

]
(9)
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Then, the reflected impedance equivalent to the transmitter can be derived as:

Zr =
ω2M2

Zs
(10)

Taking (9) into (10) and separating the real part and imaginary part of Zr, (11) can
be obtained.

Zr = real(Zr) + imag(Zr)j (11)

where 
real(Zr) =

ω2 M2

[Rs+ f (RL)]
2+[ωLs− 1

ωCs +g(RL)]
2 [Rs + f (RL)]

imag(Zr) =
−ω2 M2

[Rs+ f (RL)]
2+[ωLs− 1

ωCs +g(RL)]
2

[
ωLs − 1

ωCs
+ g(RL)

]
The coefficient α is defined as the ratio of the real part to the imaginary part of Zr, as

shown in (12). It can be observed that α is related to RL and has nothing to do with the
mutual inductance of the coil M, thus realizing the decoupling of RL and M.

α =
real(Zr)

imag(Zr)
= − Rs + f (RL)

ωLs − 1
ωCs

+ g(RL)
(12)

Then, according to the circuit principle, the transmitter impedance can be derived as:

Zsp = Rp + j
(

ωLp −
1

ωCp

)
+ Zr (13)

Combining (11) and (13), the real part and imaginary part of Zr can be expressed as:{
real(Zr) = real

(
Zsp
)
− Rp

imag(Zr) = imag
(
Zsp
)
−ωLp +

1
ωCp

(14)

Taking (14) into (12), the relationship between the transmitter impedance Zsp and the
equivalent input impedances of the rectifier Re and Xe can be established by the coefficient
α, as shown in (15).

α =
real

(
Zsp
)
− Rp

imag
(
Zsp
)
−ωLp +

1
ωCp

= − Rs + f (RL)

ωLs − 1
ωCs

+ g(RL)
(15)

Taking (8) into (15), the relationship between Zsp and RL is obtained, as shown in (16).

n f (RL) + mg(RL) = −nRs −m
(

ωLs −
1

ωCs

)
(16)

where {
m = real

(
Zsp
)
− Rp

n = imag
(
Zsp
)
−ωLp +

1
ωCp

In (16), the circuit parameters such as self-inductance, internal resistance and compen-
sation capacitance can be measured before identification, and there is no offset during the
operation of the circuit basically. In addition, the real and imaginary parts of the transmitter
impedance can be calculated by measuring the voltage on the parallel compensation ca-
pacitor at the transmitter up, the current of the transmitting coil ip and the phase difference
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θ of the two, as shown in (17). Videlicet, the value of RL can be directly solved only by
measuring the amplitude and phase of the voltage and current at the transmitter.

real
(
Zsp
)
=

.
Up

.
Ip

cosθ

imag
(
Zsp
)
=

.
Up

.
Ip

sinθ
(17)

After solving the RL, then the equivalent input impedance of the rectifier Re and Xe
can be calculated according to (8). Next, the real part or imaginary part of the reflected
impedance Zr is calculated by (14), and then the mutual inductance M can be obtained, as
shown in (18).

M =

√√√√[
real

(
Zsp
)
− Rp

]
[Rs + f (RL)]

2 +
[
ωLs − 1

ωCs
+ g(RL)

]2

ω2[Rs + f (RL)]
(18)

In conclusion, through the analysis of the real-imaginary ratio of the reflection impedance
Zr and the calculation of the transmitter impedance Zsp, the decoupling of the load and
the mutual inductance in the identification process is cleverly realized. So far, the specific
steps of joint identification of mutual inductance and load parameters of LCC-S IPT system
have been described. From (16) and (18), it can be observed that the joint identification of
mutual inductance and load parameters can be realized only by measuring the amplitude
and phase of the voltage and current at the transmitter. The focus of the next step is how to
obtain the functional relationship between the equivalent input impedance of the rectifier
and the system load, that is, the explicit expression of Equation (8).

3.3. Modeling of Rectifier Equivalent Load Based on Data Fitting Method

A model of an IPT system as depicted in Figure 1 is built in the Matlab/Simulink
environment, and the parameters of the model are shown in Table 1.

Table 1. Parametric Values of The IPT System.

Parameters Values Parameters Values

Udc (V) 200 f /kHz 85
Lp/µH 128.9 Ls/µH 117.61
Rp/Ω 0.376 Rs/Ω 0.350
Cp/nF 32.58 Cs/nF 29.64
Lr/µH 25.2 M/µH 24.95
Cr/nF 136.8

The variation range of RL is set to 20~60 Ω, then the amplitude Au and phase ϕu of the
rectifier input voltage urec and the amplitude Ai and phase ϕi of the rectifier input current
irec can be measured by Fourier module, respectively. Thus, the equivalent input impedance
of the rectifier can be calculated by (19) Re =

∣∣∣ Au
Ai

∣∣∣ = cos(ϕu − ϕi)

Xe =
∣∣∣ Au

Ai

∣∣∣ = sin(ϕu − ϕi)
(19)

In order to describe the variation rule between the equivalent input impedance of the
rectifier and the system load accurately, the polynomial data fitting method is proposed to
fit the data in this paper. Moreover, the coefficients of the polynomial are determined by
the least square method. The specific steps are as follows: Firstly, the equivalent resistance
Re and the equivalent inductance Le calculated by (19) under different load conditions are
drawn and plotted in the same coordinate diagram. Then, the calculated data Re and Le are
fitted by the first-order polynomial and second-order polynomial, respectively. Finally, the



Electronics 2023, 12, 3841 9 of 16

data fitting diagram shown in Figure 7 can be obtained, and the fitting result is shown in
Table 2.
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Table 2. Data Fitting Results of Equivalent Impedance of Rectifier.

Types of Polynomials Data Fitting Equations R2/%

1st-order polynomial Re = 0.7683 + 1.042 99.97
Le = 0.3838RL − 6.746 98.31

2nd-order polynomial Re = 0.0009394 RL
2 + 0.8343RL − 0.32316 99.99

Le = 0.004416 RL
2 + 0.03056RL − 0.3279 99.83

As can be observed from Figure 7, the linearity between the rectifier equivalent input
resistance Re and the system load resistance RL is high. Therefore, the fitting curves of
first-order and second-order polynomials are basically consistent. As the system load
resistance RL increases, the linearity of the rectifier equivalent input reactance Le gradually
decreases. Therefore, the fitted curve is more consistent with the actual value when the
order of the fitted curve is higher.

The data fitting results of the rectifier equivalent load are shown in Table 2. Usually,
the goodness of fit is used to represent the fitting degree of the fitting curve to the actual
value. In statistics, the statistic that measures the goodness of fit is the correlation coefficient
R2, which ranges from [0, 100]. If the value of R2 is closer to 100, it means that the fitting
effect of the fitting curve to the actual value is better. It can be observed from Table 2 that
the higher the order of the polynomial is, the closer the value of R2 is to 1. That is, the
higher the goodness of fit of the data, the better the fitting effect.

When the first-order polynomial fitting is adopted, the functional relationship between
the equivalent input impedance of rectifier Re and Xe and the system load RL can be
expressed as: {

Re = a1RL + b1
Xe = ωLe = a2RL + b2

(20)

Combining (16) and (20), the relationship between Zsp and RL can be derived as:

RL = − b1n + b2m
a1n + a2m

(21)
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According to (16) and (17), m and n in (21) can be obtained by measuring the voltage
on the parallel compensation capacitor at the transmitter up, the current of the transmitting
coil ip and the phase difference θ between them, as shown in (22).

Where, Up is the amplitude of up and Ip is the amplitude of ip.
Therefore, after measuring the physical quantities above, the load RL can be solved

directly, and then the mutual inductance M of the system can be identified.
m =

.
Up

.
Ip

cosθ − Rp

n =
.

Up
.

Ip
sinθ −ωLp +

1
ωCp

(22)

Similarly, when the second-order polynomial fitting is adopted, the functional rela-
tionship between the equivalent input impedance of rectifier Re and Xe and the system load
RL can be expressed as: {

Re = a1RL
2 + b1RL + c1

Xe = a2RL
2 + b2RL + c2

(23)

Therefore, the relationship between Zsp and RL can be derived as:

(a2m + a1n)RL
2 + (b2m + b1n)RL + c2m + c1n = 0 (24)

In summary, it can be observed from (21) and (24) that RL can be solved by measuring
the amplitude and phase of voltage on parallel compensating capacitor at the transmitter
and current of transmitting coil. Moreover, the higher the order of the polynomial used for
fitting is, the more complex the fitting formula about the equivalent input impedance of
the rectifier module is. For example, Re and Xe are quadratic functions of RL when fitted
with a second-order polynomial. If used directly in the parameter identification process,
it will increase the computational complexity greatly. Therefore, in order to facilitate the
calculation and description, considering the goodness of data fitting and the simplicity of
the parameter identification process comprehensively, this paper adopts the second-order
polynomial fitting to analyze the equivalent load module of the rectifier. The identification
process is shown in Figure 8.
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Observed from Figure 8, firstly, the functional relationship between the impedance of
the transmitter and the equivalent input impedance of the rectifier can be established by
defining the ratio of the real part to the imaginary part of the reflected impedance. Secondly,
the functional relationship between the equivalent input impedance of the rectifier and
the system resistance can be obtained by fitting the data with a first-order polynomial.
Then, M and RL can be solved by combining the two functional relationships above into
an equation group. That is to say, the joint identification of mutual inductance and load
parameters are realized under the condition that only the voltage and current at the
transmitter are measured.

4. Simulation Verification and Discussion

In order to verify the feasibility and identification effect of the proposed identification
method, an LCC-S IPT experimental platform is built, as shown in Figure 9, and the system
parameters are shown in Table 1.
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Figure 9. The experimental platform diagram of LCC-S IPT system.

The voltage and current waveforms of the rectifier of the LCC-S type IPT system under
different load conditions are shown in Figure 10, where urec is the rectifier input voltage
and irec is the rectifier input current. It can be observed that the waveform of the input
current of the rectifier irec has a certain distortion, which is not a standard sine wave, and
its amplitude is to the right. This is consistent with the simulation analysis in Section 2.
This can indicate that there is an inductance component in the rectifier load.

The waveforms of the voltage on the parallel compensation capacitor at the transmitter
of the LCC topology up and the current of the transmitting coil ip are shown in Figure 11.
The experimental data of up and ip are imported into Matlab for FFT (Fast Fourier transform)
analysis, then the amplitude and phase of the fundamental waves of up and ip are extracted,
and then the parameters are identified.
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Figure 11. Voltage and Current Waveform of LCC-S Type IPT System when M = 22.23 µH and
RL = 40 Ω.

Compare the simulation value of Re and Le obtained in the Matlab/Simulink simu-
lation with the data fitting value calculated by the second-order fitting Formula (22). It
can be observed from Figure 12 that the maximum absolute error between the theoretical
value and the fitted value of Re is 0.048 Ω and the maximum relative error of the two is
1.2%. Moreover, the maximum absolute error between the theoretical value and the fitted
value of Le is 0.71 µH, and the maximum relative error of the two is 8.71%. When perform-
ing polynomial fitting on data, the higher the order of the polynomial used, the higher
the fitting accuracy. Therefore, the errors above are mainly caused using second-order
polynomial fitting in the data fitting process.

Figure 13 shows the identification results of M and RL when the mutual inductance
M is set to 24.95 µH and the variation range of load RL is set from 25 Ω to 45 Ω with the
size of 5 Ω per step. Compared with the theoretical value, the maximum relative error
of the simulation identification result of the load RL is 4.71%, and the maximum relative
error of the experimental identification result is 5.53%. The maximum relative error of the
simulation identification result of the mutual inductance M is 4.92%, and the maximum
relative error of the experimental identification result is 5.20%.
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Figure 14 shows the identification results of M and RL when the mutual inductance
M is set to 22.23 µH and the variation range of load RL is set to 25 Ω to 45 Ω with the
size of 5 Ω per step. Compared with the theoretical value, the maximum relative error
of the simulation identification result of the load RL is 2.96%, and the maximum relative
error of the experimental identification result is 4.85%. The maximum relative error of the
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simulation identification result of the mutual inductance M is 4.71%, and the maximum
relative error of the experimental identification result is 3.33%.
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By analyzing the results of the mutual inductance and load identification above, it can
be known that the maximum absolute error of the mutual inductance M identification is
1.22 µH, and the maximum relative error is 5.2%. The maximum absolute error of load RL
identification is 1.94 Ω, and the maximum relative error is 5.53%. Since the second-order
polynomial fitting is used for the input impedance of the rectifier during the identification
process, and this will obviously bring a certain identification error. However, these errors
and differences are relatively small; thus, the universality and feasibility of the proposed
identification method can be proved.

5. Conclusions

In this paper, a joint identification method of load and mutual inductance parameters is
proposed for the LCC-S type IPT system considering the inductive component of a rectifier
load. Firstly, the resistance–inductance characteristic of the rectifier load is revealed by
simulation, and then the rectifier and the load are equivalent to a model in which a resistor
and an inductor are connected in series. Secondly, by defining the ratio of the real part and
the imaginary part of the system reflection impedance, the decoupling of mutual inductance
and load is realized. Then, the functional relationship between the equivalent impedance
of the rectifier and the system load resistance is obtained by data fitting. Finally, a joint
identification of system load and mutual inductance parameters is realized by measuring
the voltage and current of the transmitting side. In this paper, the resistance-inductance
characteristics of the rectifier load of the LCC-S topology are considered, which improves
the accuracy of the model. Moreover, on this basis, a parameter identification method is
proposed, which can achieve high precision identification. A series of simulations and
experiments are carried out to verify the proposed identification method. The load and
mutual inductance identification results are in good agreement with the theoretical values,
and the maximum errors are 5.53% and 5.2%, respectively, which proves the feasibility and
accuracy of the identification method.
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