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Abstract: Temperature monitoring in extreme environments presents new challenges for MEMS
sensors. Since aluminum nitride (AlN)/scandium aluminum nitride (ScAlN)-based surface acoustic
wave (SAW) devices have a high Q-value, good temperature drift characteristics, and the ability to
be compatible with CMOS, they have become some of the preferred devices for wireless passive
temperature measurement. This paper presents the development of AlN/ScAlN SAW-based temper-
ature sensors. Three methods were used to characterize the temperature characteristics of a thin-film
SAW resonator, including direct measurement by GSG probe station, and indirect measurement by
oscillation circuit and antenna. The temperature characteristics of the three methods in the range of
30–100 ◦C were studied. The experimental results show that the sensitivities obtained with the three
schemes were −28.9 ppm/K, −33.6 ppm/K, and −29.3 ppm/K. The temperature sensor using the
direct measurement method had the best linearity, with a value of 0.0019%, and highest accuracy
at ±0.70 ◦C. Although there were differences in performance, the characteristics of the three SAW
temperature sensors make them suitable for sensing in various complex environments.

Keywords: temperature measurement; SAW; AlN/ScAlN; wireless

1. Introduction

With the rapid development of the internet of things (IoT) technology, higher re-
quirements are being put forward for sensing technology [1]. As a kind of acoustic wave
device based on piezoelectric materials, surface acoustic wave sensors have become ma-
jor research objects due to their quick response, high sensitivity, and ability of wireless
measurement [2–16].

In sensing applications, temperature sensors have become an essential tool in many
fields, such as chemical, machinery, etc. [2–6] As temperature sensors, SAW resonators can
be used not only for wired measurements [7–10], but also wireless measurements in extreme
environments [2,3,5,11,12,14–16]. The wired sensor has a stable signal output and strong
anti-interference ability, but a wired connection makes it impossible to apply to situations
involving fast movement or with high sealing performance requirements. The advantage
of wireless passive sensors is that they can be used in various high-speed movements
and closed environments, but the sensing signal is easily disturbed by interference, so the
back-end signal processing circuit is relatively complicated.

With the widespread application of SAW sensors in various fields, piezoelectric materi-
als have also been extensively studied, such as AlN, ScAlN, lithium niobate (LiNbO3), zinc
oxide (ZnO), and langasite (LGS), for high-temperature temperature sensors. LiNbO3 has
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a large piezoelectric coefficient and high sensitivity to temperature [17,18]. However, the
process of making LiNbO3 thin film is complicated and the quality is difficult to guarantee.
Compared with LiNbO3, ZnO has the advantage that it can be sputter-deposited at room
temperature [19], but its piezoelectric coefficient is low. The melting point of LGS is 1470 ◦C,
and it can maintain a stable phase from room temperature to the melting point. Therefore,
LGS can still enable stable piezoelectric performance at high temperatures [13]. However,
the acoustic propagation loss of LGS increases with the increase in temperature. Compared
with other piezoelectrics, AlN-based SAW resonators not only have better performance,
but also provide for CMOS compatibility. It is well known that doping Sc elements in AlN
is one of most effective methods to improve the piezoelectricity of the material. However,
pure ScAlN films have drawbacks including poor crystallinity and crystal orientation,
resulting in a decline in film quality. In our previous work, we showed using the same
thickness of AlN and ScAlN can improve crystallinity and crystal orientation of ScAlN
films, and compared to pure ScAlN, it has lower dielectric loss [20]. A study of AlN/ScAlN
composite thin film showed it exhibited higher quality, few defects, low loss, and was a
potential application for acoustic devices [21,22]. AlN/ScAlN-based devices have a higher
Q-factor, which is a benefit for designing environmental sensors with high sensitivity.

In this work, the temperature sensing characteristics of AlN/ScAlN composite thin
film SAW are investigated using three different measurement methods. As shown in
Figure 1a, the direct measurement method measures the frequency response of SAW
devices at different temperatures through a network analyzer. This method can accurately
and intuitively measure the law of sensor resonance frequency changing with temperature.
As shown in Figure 1b, the wired measurement method uses an oscillating circuit to connect
a resonator, and obtains a frequency change curve by reading the oscillating signal. As
shown in Figure 1c, the wireless measurement method is able to connect the resonator to
the antenna, and collect the response of the resonator to the excitation signal at different
temperatures.
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block diagram, and (c) wireless measurement system block diagram.

2. Device Design and Fabrication
2.1. Design and Fabrication of SAW Resonator

First, a resonant SAW resonator with an interdigital transducer (IDT) and reflectors
was designed, as is shown in Figure 2a. The finite element method (FEM) method was used
to obtain the frequency response by COMSOL multiphysics. The simulated impedance
curve of the SAW resonator is shown in Figure 2b. In the model, the number of IDTs was
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50. In order to reflect sound waves more effectively, the number of reflection grids must
usually be very high [23,24]. In this work, the number of reflection grids was set to 368.
Figure 2b is a comparison of Q values of 1 µm-thick pure AlN, 1 µm-thick pure ScAlN, and
0.5 µm-AlN/0.5 µm-ScAlN composite thin-film SAW resonators using COMSOL simulation
with the same losses. From the results, it can be seen that the Q of the SAW resonator of the
composite film was higher both in series resonance frequency (fs) and parallel resonance
frequency (fp). Therefore, AlN/ScAlN piezoelectric film with a high Q value was selected.
As Figure 2c shows, the simulated fs and fp values of the AlN/ScAlN composite thin
film SAW resonator were 446.45 MHz and 446.66 MHz, respectively. It can be seen that
there were spurious modes appearing at frequencies less than fs, but in this work the
sensor worked near fs, so these spurious modes did not affect the operation of the sensor.
Figure 2c also shows the surface displacement of the device at fs of the resonator, and the
vibration mode was the Rayleigh mode. Figure 2d is the simulated frequency variation of
the AlN/ScAlN thin-film SAW resonator at three temperatures of 30 ◦C, 40 ◦C, and 50 ◦C.
As the temperature increased, the fs and fp values of the resonator showed a decreasing
trend.
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Figure 2. (a) Three-dimensional model of AlN/ScAlN thin film SAW resonator, (b) comparison of
simulation results of three different types of films, (c) simulated impedance curve and device surface
displacement diagram at fs of the AlN/ScAlN composite thin-film SAW resonator, (d) simulation of
resonator impedance variation with temperature.

The fabrication process of the designed AlN/ScAlN-based SAW resonator is shown
in Figure 3a. First, an 8-inch high-resistivity silicon wafer was used. In order to better
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deposit the piezoelectric layer, a 100 nm-thick AlN seed layer and a 200 nm-thick Mo bottom
electrode were deposited (Figure 3(a1)). Then, 500 nm-thick AlN films were deposited using
a 12-inch 99.999% Al target, and 500 nm ScAlN films were sequentially deposited using a
12-inch 99.95% Sc0.2/Al0.8 alloyed target by magnetron sputtering (SPTS sigma), forming
a composite piezoelectric film with a total thickness of 1 µm (Figure 3(a1)). Control of
deposition parameters of AlN and ScAlN are shown in Table 1. Then, 200 nm-thick Mo was
deposited as the top electrode (Figure 3(a2)), and it was patterned to form IDT and reflectors
(Figure 3(a3)). Finally, a 100 nm-thick AlN film was deposited as a passivation layer to
protect the Mo electrode from oxidation (Figure 3(a4)). The top and bottom electrodes
were respectively exposed by etching (Figure 3(a5)). The 1 µm-thick aluminum electrode
plate was formed by a lift-off process and connected to the upper and lower Mo electrodes
(Figure 3(a6)).

Table 1. Deposition parameters of AlN and ScAlN.

Material AlN ScAlN

Target power (kW) 6 10
Pulsing frequency (kHz) 100 100

Temperature (◦C) 200 200
Ar flow (sccm) 25 19
N2 flow (sccm) 155 105

Base pressure (Torr) <5 × 10−8 <2 × 10−7

Figure 3b and shows the micrograph of the SAW. The spacing of IDT and reflective
grids was 5 µm and the spacing of IDT and reflectors was 11.25 µm. Figure 3c shows the
interface micrograph of the SAW; the actual processed device ScAlN thickness was 485 nm
and AlN thickness was 472 nm.
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2.2. Design of SAW Oscillator

Usually, an oscillation circuit is composed of an amplifier circuit and a positive feed-
back loop circuit, and the positive feedback acts as a frequency selection circuit at the same
time. The start-up of the oscillation circuit must satisfy the Barkhausen criterion [25]. The
oscillation of the oscillator must satisfy the criteria that the loop gain is greater than 1 and
the total phase shift of the loop is 0 or an integer multiple of 2π.

According to the above principles, the oscillator circuit shown in Figure 4a was
designed. In circuit analysis, the modified Butterworth–Van Dykem (mBVD) model of
the SAW resonator was extracted. The model consisted of a static capacitor C0, electrode
resistance Rs, dielectric loss R0, motional resistor Rm, motional inductor Lm, and a motional
capacitor Cm [26]. Three motional parameters can be defined as:

Cm = C0((
fs

fp
)

2
− 1), (1)

Lm =
1

(2π fs)
2Cm

, (2)

Rm =
1

ωsCmQs
, (3)

where fs is the series resonance frequency, fp is the parallel resonance frequency, and Qs is
the quality factor in fs. The mBVD parameters of the resonator were obtained by fitting
and calculating Equations (1)–(3) through the Matlab program. Figure 4b shows the test
curve and the mBVD fitting curve, and the detailed fitting parameters are listed in Table 2.
The 3 dB method quality factor (Qs-3dB) of resonator used in fs reached 2029. The coupling
coefficient Kt

2 of the SAW resonator was 0.33%.

Table 2. Fitting parameters of the resonator mBVD model.

Cm Lm Rm C0 R0 Rs

10.007 fF 12.697 nH 2.000 Ohm 3.544 pF 12.602 Ohm 15.724 Ohm

The analysis of time-domain response and harmonics of the designed oscillating
circulate were carried out by ADS software. It can be seen from the transient waveform
of Vout output in Figure 4c that the circuit formed a stable oscillation. The harmonic
analysis results are shown in Figure 4d. The frequency spectrum shows multiple high-order
frequency signals of the oscillating circuit, among which the frequency of the first-order
oscillating signal was 446.7 MHz, located between fs and fp of the SAW resonator. The
strength of the high-order signals was much lower than that of the first-order signals; it is
not necessary to discuss the high-order frequency terms in this work.
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2.3. Design of Wireless Sensor System

The first step in designing a SAW wireless sensor system is to determine the range
of the excitation signal and the response signal. Therefore, it is necessary to obtain the
response of the SAW to a specific excitation signal. When the SAW resonator is subjected
to a sinusoidal pulse excitation signal x(t) = ejωct · u(−t), the response y(t) of the SAW
sensor after the excitation is stopped as follows [27]:

y(t) = ejω0t∫ 0
−∞ ej(ωc−ω0)τhenv(t− τ)dτ t > 0

henv(t) =
∞
∑

n=1,3,5...

N
∑
l

RnT2l(
m1−1

∑
i=0

W(t− t0, (m− 1) · τ0) +
m2−1

∑
i=0

W(t− t0, (m− 1) · τ0))
, (4)

where ω0 is the series resonant angular frequency of a resonator defined by
ω0 = π/τ0 = π · (v/s) = 2π fs; s is the gap of the uniformly spaced interdigital elec-
trodes and v is the surface wave speed on piezoelectric substrate; R and T are, respectively,
the reflection and transmission coefficients of reflective gratings and |R|2 + |T|2 = 1;
m1 and m2 are, respectively, the numbers of positive electrodes and negative electrodes;
W(t, τ) = u(t)− u(t− τ) is the rectangular pulse function and u(t) is the step function.
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According to Equation (4), the resonant frequency of the resonator is equal to the
frequency of the response signal, and the maximum amplitude is obtained when the
excitation signal frequency is equal to the SAW resonator frequency. Therefore, the resonator
frequency of the SAW sensor can be obtained by measuring the frequency of the response
signal, and the excitation signal frequency should be equal to or close to the series resonator
frequency of the SAW resonator.

Generally, a wireless SAW sensor system includes a radio request unit and one or
more wireless SAW sensor units [28]. For this paper, the designed radio request unit
consisted of a excitation signal generator, a power amplifier, a radio frequency switch, and
a microcontroller chip (MCU). During circuit design, the operating frequency range of the
entire system should be able to contain the operating frequency of the SAW resonator. Since
a radio frequency switch is used to control reception and transmission, there should be a
sufficiently high isolation between the reception and transmission of the radio frequency
switch. In order to simplify the circuit power supply structure, all chips used in the circuit
must be powered by a unified voltage. Based on the above conditions, the system circuit
design in this paper is shown in Figure 5.
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According to Equation (4), the resonant frequency of the resonator is equal to the
frequency of the response signal. Therefore, the resonator frequency of the SAW sensor can
be obtained by measuring the frequency of the response signal.

The radio request process consists of two phases. One is the excitation radio trans-
mission phase, and the other is the response radio reception phase. In the excitation radio
transmission phase, the MCU controls the radio frequency switch to be in the transmission
position and the signal generator generates an excitation signal of 446.5 MHz, which is
sent to the resonator by the antenna through the power amplifier. The SAW resonator
will resonate when excited by this signal, producing a response signal whose frequency
changes with temperature. In the response radio reception phase, the MCU controls the RF
switch to be in the receiving position, and the antenna receives the sensor’s response radio
and feeds the response signal into the oscilloscope. In particular, since the duration of the
response radio signal is very short, the control signal of the radio frequency switch is also
input to the oscilloscope, and the response radio is captured by tracking the falling edge of
its signal.

3. Experiment and Result
3.1. Direct Measurement Method by Network Analyzer

Figure 6a,b shows the direct measurement system. The SAW sensor was connected to
the network analyzer via an RF probe (Figure 6b) and an RF cable. The temperature was
controlled by a vacuum probe station (Figure 6a), and the response of the SAW resonator at
different temperatures was measured by a network analyzer (Kesight N5222B). Figure 6c is
the S parameter of the SAW sensor measured using a network analyzer at room temperature
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(27 ◦C), and the impedance curve of the SAW sensor is shown in Figure 6d. As shown in
Figure 6d, the series resonant frequency of the resonator was 446.5 MHz, and the parallel
resonant frequency was 447.1 MHz.
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Researchers usually use the temperature coefficient of frequency (TCF) to express the
temperature stability or sensitivity of the sensor, which is defined as:

TCF =
d f
dT
· 1

f
. (5)

In order to measure the sensitivity (TCF) of the SAW sensor, the temperature during
the test is controlled by the temperature control system of the vacuum probe station. As
shown in Figure 6b, the SAW temperature sensor was put on the heating platform of the
probe station, and the signal was output via RF probes. A temperature test was conducted
from 30 to 100 ◦C (dynamic range = 70 ◦C) with steps of 10 ◦C, using the impedance
curve record for different temperature points by network analyzer. As the temperature
gradually rose, the fs of the SAW sensor gradually decreased, and the cooling process was
the opposite. Linearity is an index that characterizes the degree of agreement between the
sensor output-input calibration curve and the selected fitting straight line. The linearity
of the sensor can be represented by Equation (6), where ∆ fmax is the maximum difference
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between the output signal frequency and the fitting curve, and fFS is the maximum output
frequency of the full scale of the sensor.

eL = ±|∆ fmax|
fFS

× 100%. (6)

In order to reflect the linearity of the sensor, a function between frequency and tem-
perature in the temperature range is created. The function of fs changing with temperature
is shown in Equation (7).

fs = −0.0129T + 446.7755. (7)

Through the experimental results and Equations (6) and (7), it can be seen that the
linearity of the direct measurement method was 0.0019%, while from the measurement
results, it can be seen via Equation (5) that the sensitivity of the device was −28.9 ppm/◦C.
Figure 7b shows the measurement accuracy of the direct measurement method, and in the
range of 30–100 ◦C, errors through the oscillation circuit were within ±0.70 ◦C. Figure 7c
shows the minimum resolution of the sensor; the sensor responded when the temperature
changed by 0.1 ◦C.
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ature measured by direct measurement method, (b) measured temperature accuracy of measure-
ment by network analyzer, and (c) the test curve of the sensor resolution, showing the fs values
at the three temperatures of 70 ◦C, 70.1 ◦C, and 70.2 ◦C were 446.873 MHz, 446.874 MHz, and
446.875 MHz, respectively.
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3.2. Measurement by Oscillator Circuit

The actual oscillating circuit test system is shown in Figure 8a, and an enlarged view
of the fabricated circuit board is also shown in the figure. The AlN/ScAlN thin-film SAW
resonator was connected with the circuit board through the gold wire. The oscillator was
attached to the heating platform of the heating plate, and the temperature change was
controlled by the heating plate. The oscillator was connected to a signal analyzer, and
the spectrum at different temperatures was recorded by signal analyzer. The temperature
was measured with a high-precision thermocouple. The output spectrum of the oscillation
circuit at room temperature measured by Kesight N9200A signal analyzer is shown in
Figure 8b and the output frequency was 447.08 MHz.
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Figure 8. (a) Oscillation circuit test system and the PCB board of oscillator, and (b) oscillator
output spectrogram.

In the range of 30–100 ◦C, the curve of the output frequency versus temperature
measured by the oscillator is shown in Figure 9a. As with the direct measurement method,
in the range of 30–100 ◦C the output frequency of the oscillator varied with temperature
as shown in Equation (8). Combined with Equation (6), the linearity of the system can be
obtained as 0.0028%. From the measurement results shown in Figure 9a, the sensitivity
of oscillator circuit measurement was −33.6 ppm/◦C. Figure 9b shows the measurement
accuracy of the system, and in the range of 30–100 ◦C, errors through the oscillation circuit
were within ±1.6 ◦C. Figure 9c shows the minimum resolution of the sensor, and the sensor
responded when the temperature changed by 0.1 ◦C.

fo = −0.0151T + 447.502. (8)
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temperatures of 70 ◦C, 70.1 ◦C, and 70.2 ◦C were 446.449 MHz, 446.448 MHz, and 446.446 MHz,
respectively.

3.3. Measurement by Wireless Test System

As shown in Figure 10a, the wireless SAW sensor temperature test was also performed
on a heating plate. The results shown in Figure 10b were obtained through two measure-
ments. First, without connecting the antenna, a sample excitation signal was sent through
an oscilloscope at the antenna interface, using the falling edge of the control signal of the
RF switch as the trigger condition. Then, the response signal was sampled through an
oscilloscope at the response signal output interface, and the falling edge of the control
signal of the radio frequency switch was also used as the trigger condition. In this way,
the sampled excitation signal and response signal had the same time base. In the results
shown in Figure 10b, before 0 µs, mainly an excitation signal was generated by the signal
generator; the 0 µs signal generator stopped, and the SAW resonator generated a response
signal. The time from the stop of the exciting radio signal to the direct response of the
wireless sensor was about 78 ns and valid signal duration was 5 µs.
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The frequency change curves of heating and cooling obtained by the wireless mea-
surement method are shown in Figure 11a. The heating curve and the cooling curve were
respectively fitted to obtain the fitting curve and Equation (9). The relationship between
temperature and frequency measured by the wireless test system is shown in Equation (9).
From the results, we can see the sensitivity of the sensor was −29.3 ppm/◦C. Combined
with Equation (6), the linearity of the system can be obtained as 0.0090%.

fwh = −0.0131T + 446.661. (9)

Figure 11b shows the measurement accuracy of the wireless test system, and within
the range of 30–100 ◦C the error was within ± 2 ◦C. Because the RF switch could not
completely isolate the signals of the two switching ports, in Figure 11b, in addition to
the response signal, there are several signals whose frequency does not change with
temperature. These signals were excitation signals that leaked through the RF switch to the
output. Figure 11c shows the minimum resolution of the sensor, and the sensor responded
when the temperature changed by 2.0 ◦C.

In this work, the signal generator was not turned off when the RF switch was in the
receiving state, which canceled the signal generator-initiated off-start time. It improved
system response. Therefore, there was a weak excitation signal leaked through the RF
switch to the response signal output. The response in the response signal is shown in
Figure 3, and there were some signals with a higher frequency than the response signal.

In contrast to the other two methods, the transmission distance was also an important
parameter of the wireless test system. Under the test conditions of Figure 11a, changing the
distance between the sensor antenna and the wireless transceiver system antenna obtained
the results shown in Figure 11d. As shown in Figure 11d, the maximum transmission
distance to ensure that the system received valid signals was 200 mm.
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4. Discussion and Conclusions

This paper investigated three different testing methods based on SAW temperature
sensors. The experimental results showed that the sensitivities obtained with the three
schemes were−28.9 ppm/K,−33.6 ppm/K, and−29.3 ppm/K. The measurement dynamic
ranges of the three methods were all 70 ◦C. Since there was no additional external circuit
in the direct measurement method, the linearity of the SAW sensor was best when the
frequency shift of the SAW sensor was measured directly with a network analyzer, and the
linearity of directly measuring the SAW sensor was within 0.0019%. The other two methods
showed larger errors in heating and cooling results. The results showed the oscillator
also had good temperature sensing performance, and the sensitivity was even slightly
higher than that of direct measurement. Among the three methods, direct measurement
results gave the best accuracy, with an accuracy of ±0.70 ◦C. Judging from the results,
there is no doubt that direct measurement of SAW sensors is the most accurate method.
However, direct measurement requires the use of network analyzers and probe stations,
which are difficult to use outside the laboratory. An oscillator combined with a frequency
mixing and detection circuit can provide a more portable means of temperature sensing.
However, due to the inability of electronic components to work at extreme temperatures,
it cannot be used in temperatures that are too high or too low. Wireless sensing is the
most difficult of the three methods because SAW resonators have limited energy storage
and therefore respond to very weak radio signals. Their response signals are doped with
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many disturbances. So, the signal processing circuit of the wireless sensor system is very
complicated. Although the signal processing circuit is complex, sensor units composed
of an impedance matching structure and antenna have a simple structure. Therefore, this
wireless passive measurement method allows wireless sensors to be applied to various
closed conditions and high-speed moving parts.
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