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Abstract: Federated learning, a decentralized paradigm, offers the potential to train models across
multiple devices while preserving data privacy. However, challenges such as malicious actors and
model parameter leakage have raised concerns. To tackle these issues, we introduce a game-theoretic,
trustworthy anti-collusion federated learning scheme, which combines game-theoretic techniques
and rational trust models with functional encryption and smart contracts for enhanced security.
Our empirical evaluations, using datasets like MNIST, CIFAR-10, and Fashion MNIST, underscore the
influence of data distribution on performance, with IID setups outshining non-IID ones. The proposed
scheme also showcased scalability across diverse client counts, adaptability to various tasks, and
heightened security through game theory. A critical observation was the trade-off between privacy
measures and optimal model performance. Overall, our findings highlight the scheme’s capability to
bolster federated learning’s robustness and security.

Keywords: federated learning; game theory; rational trust model; smart contract; functional encryption

1. Introduction

With the rapid development of the era of big data and the internet, the issue of privacy
leakage of massive user information and data [1,2] has become increasingly prominent.
The exponential growth in data, combined with their diverse nature, has posed significant
challenges in terms of data privacy and security. As a novel distributed machine learn-
ing framework, federated learning [3] allows data to be stored on local mobile devices,
coordinating model parameters across these devices to aggregate the model. This unique
approach ensures that data remain decentralized, eliminating the need for centralized
servers that often pose security risks. During federated learning, each mobile device
uses local data for private training, eliminating the need for personal privacy data to be
transmitted over the network. This method, to some extent, protects the data privacy of
each mobile device and effectively addresses the “data island” problem [4]. Consequently,
more and more researchers are beginning to focus on the security and privacy of federated
learning [5,6].

While federated learning offers a solution to some of the data privacy issues, ensuring
the active participation of devices in the learning process remains a challenge. Devices
incur training costs and communication overheads, which can sometimes discourage them
from actively participating. In order to encourage the active participation of mobile devices
in data sharing and improve the quality and efficiency of federated learning model train-
ing, numerous research solutions have been proposed and widely applied. For instance,
Konečný et al. [7] proposed two methods to reduce the cost of uplink communication, reduc-
ing the communication cost of federated learning by two orders of magnitude. Kim et al. [8]
introduced the architecture of Blockchain Federated Learning (BlockFL), in which local
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learning model updates can be exchanged and verified. Hardy et al. [9] realized privacy
data protection for each peer mobile device and provided a significantly enhanced federated
learning environment for all mobile devices. Li et al. [10] provided an asymptotically tight
lower bound for the goals that communication compression may achieve. These research
solutions, though innovative, often operate under the assumption that participating nodes
are honest, which may not always be the case in real-world scenarios. Considering the
heterogeneity of channel performance and the competitive relationship of data transmis-
sion on wireless channels in the federated learning framework, Zhao et al. [11] proposed
a new group asynchronous model synchronization method, significantly improving the
training efficiency of federated learning. Chen et al. [12] reduced the communication cost
of each parameter of federated learning model training to below 1.78 bits through linear
techniques based on sparse random projection, thus improving the learning efficiency of
federated learning.

To address the challenges posed by potential dishonest nodes and to ensure opti-
mal participation, game theory offers a promising approach. Katz et al. [13] explored
the relationship between game theory and security protocols, especially the problem of
security protocols among distrustful participants. Game theory, with its ability to model
and predict the behavior of rational agents, can be effectively utilized in the context of
federated learning. Many scholars have introduced the idea of game theory into federated
learning schemes, using participants’ rationality as a starting point to design reasonable
utility functions to motivate participants to actively participate in model training. For ex-
ample, He et al. [14] proposed a new federated learning incentive model that encourages
mobile nodes to participate in training tasks by maximizing collective utility functions.
Martinez et al. [15] proposed a distributed learning framework based on blockchain design
to ensure data security, and made payments for gradient upload based on a new index
of validation errors, effectively enhancing the enthusiasm of each node for model train-
ing. Zhou et al. [16] used game theory and Micali–Rabin random vector representation
technology to improve the communication efficiency of model training and ensured that
all rational participants could obtain optimal utility returns. Zhu et al. [17] built a decen-
tralized parameter aggregation chain from the centralized parameter server in federated
learning, incentivizing collaborating nodes to verify model parameters, enhancing trust
between nodes, and thus improving the efficiency of federated learning. Stergiou et al. [18]
proposed a novel architectural scenario based on cloud computing, leveraging the inno-
vative models of federated learning. Their proposed model aims to provide users with a
more energy-efficient system architecture and environment, with the objective centered
around data management. Wassan et al. [19] introduced differential privacy in federated
learning, employing the adaptive GBTM model algorithm for local updates. This approach
aids in adjusting model parameters based on data characteristics and gradients.

Nevertheless, while the integration of game theory provides a mechanism to incen-
tivize honest participation, there is still a need to address the communication overhead of
federated learning. In order to effectively balance the relationship between model parame-
ter privacy security, utility returns of all rational participants, and communication overhead
during the federated learning process, we construct a new federated learning scheme using
game theory, smart contracts, rational trust models, and function encryption techniques.

The specific work includes:

• Introducing local training rational participants using game theory and rational trust
models, reducing communication frequency, and constructing a trustworthy anti-
collusion federated learning game scheme to reduce communication costs;

• Using blockchain networks and smart contract technology to ensure no new malicious
nodes can participate in model training during the federated learning process, and
recording all participants’ trust values and transaction processes through smart contracts;

• Ensuring model parameter privacy security through function encryption technology
and achieving privacy-protected sharing between task publishers and data owners;
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• Proving the correctness and security of the scheme through analysis and experimental
simulation, with empirical evidence showing that the scheme does, indeed, improve
the learning efficiency of federated learning.

This paper is structured as follows. Following the introduction, we delve into the
preliminary knowledge in Section 2. In Section 3, we introduce the “Credible Defense
Against Collusion Game Model”. Section 4 presents a detailed discussion of the “Credible
Anti-Collusion Federal Learning Scheme”. In Section 5, we analyze the proposed scheme.
The experimental results are presented in Section 6. Finally, we conclude the paper and
discuss future prospects in Section 7.

2. Preliminary Knowledge
2.1. Game Theory

Definition 1 (Game Theory). The basic structure of game theory is composed of three main
elements: the set of players P, the strategy space S, and the utility function U. Specifically, where
G = {P, S, u}, P = {P1, · · · , Pn}, S = {S1, · · · , Sn}, u = {u1, · · · , un}. The utility function:
ui : S → R(where R represents the real number space), is used to describe the benefit level of the
player i under various strategy combinations. An extensive form game can be seen as a four-tuple
(P, W, (Ii)i ∈ P, (≤i)i ∈ P), specifically:

• P represents the set of all rational participants in the agreement;
• W is the set of action sequences of the participants, satisfying the following properties:

1. Includes empty sequence ∅ ∈W;
2. If sequence (ak)

g
k=1 ∈W exists and 0 < v < g, then sequence (ak)

v
k=1 ∈W also exists;

3. If for any positive integer v, the infinite action sequence (ak)
∞
k=1 satisfies condition

(ak)
v
k=1 ∈W, then sequence (ak)

∞
k=1 ∈W exists.

• Ii represents the information set of the rational participant i ∈ P, i.e., the information that the
rational participant knows or understands before making a strategy choice action;

• ≤i represents the preference relations of the rational participants, i.e., in the protocol scheme,
each rational participant i ∈ P has a preference relation on the non-terminal sequences.

Definition 2 (Nash Equilibrium). For game G = {P, S, u}, if there exists a strategy
s∗ = (s1

∗, · · · , sn
∗) combination composed of some strategy of all game parties, where in any game

party Pi strategy si
∗, is the best strategy when dealing with other game parties’ strategy combination

(s1
∗, · · · , sn

∗). In other words, for all sj ∈ S, there exists a game ui(si
∗) ≥ ui(sj

∗, s−i
∗), for any

strategy sij ∈ S, all meet the condition that strategy (s1
∗, · · · , sn

∗) is the optimal choice of game G,
then we call this strategy combination (s1

∗, · · · , sn
∗) a Nash equilibrium of game G.

In our approach, we adopt the Nash Equilibrium as it symbolizes a fixed and consistent
strategy combination. Within this equilibrium, every participant’s strategy is the optimal
choice in relation to the strategies of other participants. In such a balanced state, no
participant has the motivation to unilaterally alter their strategy. This provides a solid
benchmark for multiple participants in federated learning, ensuring the overall system’s
stability and efficient operation. While the Nash Equilibrium might not always achieve a
global optimum, it serves as a practical and operational strategy in a scenario characterized
by multi-party interactions and decentralized decision-making.

2.2. Function Encryption

Function encryption [20] is a complex encryption technique that extends traditional
public key encryption algorithms, allowing authorized parties to selectively compute on
ciphertext and directly extract the results. A comprehensive function encryption algorithm
typically consists of the following five parts:

1. System initialization algorithm Setup, used to generate system model parameters and
the prime group G needed by the system;
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2. Key generation algorithm MasterKeyGeneration, responsible for generating the system’s
master key, which includes the master public key mpk and master private key msk;

3. Function generation algorithm FunctionKeyDerivation, by using the system function
F and master private msk key as input to generate the private key skm of the encryption
function, thereby obtaining function results F(·);

4. Encryption algorithm Encryption, used to encrypt sensitive data m, and thus produc-
ing ciphertext C(m);

5. Decryption algorithm Decryption, by using ciphertext C(m) and the corresponding
private key skm as input, the function decryption result F(m) can be obtained.

2.3. Rational Trust Model

The rational trust model [21] is a quantifiable trust model that combines the ideas of
game theory and trust management to design a trust measurement function or model in
a protocol with multiple rational parties n. In the rational trust model, by designing an
appropriate utility function, all rational participants are encouraged to actively execute the
protocol. The following is a definition of a basic trust function:

Definition 3 (Trust Function). Suppose ζN
i represents the trust value of the participant Pi in

cycle N, where −1 ≤ ζN
i ≤ +1, and ζN

i = 0 is the trust value of the new parameter participant Pi.

A trust function is a mapping from R× N to R, that is,
(

ζN−1
i , αi

)
7→ ζN

i , where ζN−1
i represents

the trust value of participant Pi in cycle N − 1; and αi ∈ (0, 1) indicates whether participant Pi
abides by the protocol in cycle N, that is, αi = 1 represents the participant that honestly executes the
protocol, and αi = 0 represents the participant betraying the protocol. Therefore, the trust function
can be formalized as:

f1 : ([ f1 :
(

ζN−1
i , αi

)
7→ ζN

i . (1)

Definition 4 (Rational Trust Function). Since all participants in the scheme are rational and
typically choose the optimal strategy to maximize their own benefits, it is necessary to introduce
appropriate parameters in the trust model to motivate rational participants, to resist various
malicious attacks, and to improve the trust value of participants. Through the analysis of rational
participants, we introduce parameter lia into the trust function to reconstruct the rational trust
function: a = a (2)

f2 :
(

ζN−1
i , αi, li

)
7→ ζN

i . (2)

where li ≥ 0 represents the lifespan of each rational mobile device end in the scheme. When
participants choose to betray the protocol, they will be punished and the protocol will be terminated.
This rational participant will lose all original trust values, and their lifespan and trust value will
start again from zero. It is difficult to regain the trust of other rational participants, thus losing the
opportunity to participate in tasks again.

3. Credible Defense against Collusion Game Model

We have constructed a credible game model for federated learning that defends against
collusion, ingeniously integrating the historical trust values of rational participants with
the utility derived from completing training tasks. The goal is to delve deep into the
learning efficiency of federated learning and to elevate the quality and accuracy of the
training of federated learning models. This credible defense against collusion game model
extensively draws from traditional federated learning and game theory. Starting from the
perspective of participants’ self-interest, a logical and effective utility function is designed
to motivate rational participants to actively engage in model training. In this model,
every rational participant adopts respective behavioral strategies aiming to maximize
their benefits. Any behavior that deviates from the established agreement will be met
with stringent penalties and, concurrently, the individual’s historical trust value will be
entirely reset.
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In this context, smart contract technology plays a pivotal role. Initially, both task
publishers and data owners establish the parameters and execution standards for federated
learning tasks through smart contracts. This ensures the transparency and fairness of the
tasks. When data owners complete model training and upload their results, the smart
contract automatically verifies these results and, based on pre-defined criteria, metes out
rewards or penalties. This not only obviates the need for manual verification but also
guarantees that every participant acts in accordance with the agreement. Additionally, the
smart contract logs the historical trust value of each data owner, providing task publishers
with a continuously updated reference for trustworthiness. This process further strengthens
the fairness and transparency of the system.

A schematic representation of the model participants is shown in Figure 1. The specific
steps of the model are as follows:

Step 1: Evaluate the historical trust value of data owners. During the model training phase,
the task publisher lacks direct insight into each data owner’s work ethic. Thus, to
predict the accuracy of model parameters post-task completion, the task publisher
participating in federated learning needs to evaluate the historical trust value of each
data owner. By opting for data owners with high historical trust values for model
training, the learning efficiency of federated learning can be further enhanced.

Step 2: Execute federated learning tasks. The task publisher posts the global model training
parameters to the blockchain and then selects apt data owners for executing model
training tasks based on the analysis of historical trust values. Upon receiving the
model parameters, data owners conduct private training based on their individual
data and upload the training outcomes to the blockchain. Subsequently, the task
publisher verifies the task results and evaluates the accuracy of the data owner’s
work during the task’s execution.

Step 3: Analyze the execution task results. Data owners upload the updated model training
parameters to the blockchain, after which the task publisher verifies these updated
parameters. Given that function encryption technology is employed to safeguard the
security of model parameters during task publication and verification, it becomes
imperative to validate the authenticity of the updated model parameters.

Step 4: Compute the utility of rational participants. Once the task issuer retrieves the
optimally updated global model parameters, the federated learning training task
concludes. At this juncture, the utility function of rational participants must be
computed. Analyzing the utility of each participant allows for gauging the efficiency
and accuracy of the task.

Figure 1. Schematic diagram of model participants.
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3.1. Model Parameters

The main parameters involved in the game-theoretic trustworthy anti-collusion feder-
ated learning model proposed in this paper are shown in Table 1 and described in detail in
the text.

Table 1. The parameters used in this model and their meanings.

Parameter Meaning

da Deposit by the task publisher
dpi Deposit by the data owner
do Deposit by the colluding owner
a Reward for optimal global parameters by the publisher
ci Data owner’s model training cost
w Reward to honest trainer by the publisher
ri Payment to data owner for training
fi Penalty for protocol breaches
v Model parameter verification cost
t1 Task publishing deadline
t2 Collusion initiation deadline
t3 Model training task deadline

In the model, as all participants are rational, they will choose the optimal behavioral
strategy to maximize their own benefits. Therefore, the credible defense against the col-
lusion game model needs to maintain balance, and the parameters in the model should
satisfy the following relationships:

• There exists a− nri > 0, otherwise the task publisher has no motivation to publish
federated learning tasks;

• There exists ri > ci, otherwise the data owner has no motivation to accept model
training tasks;

• There exist dA > a and dpi > ri; do > ri and fi > dA, because only when the deposit
and fine are large enough can participants be encouraged to follow the protocol
execution honestly;

• There exists do < dpi , otherwise the data owner has the motivation to initiate a
collusion strategy.

In the credible defense against the collusion game model of federated learning, since
every rational participant is selfish and strives to maximize their own benefits, the personal
utility of the participants is determined by their own behavioral strategies and the behav-
ioral strategies of other participants in the model. Therefore, an effective credible defense
against the collusion game model needs to reasonably design the rational participants, fea-
sible strategies, utility functions, and anti-collusion mechanisms in the model to encourage
all rational participants to actively participate in model training.

3.2. Participants

The primary entities to be modeled in the credible defense against the collusion game
model are the rational participants within the model. This game model mainly involves
two types of participants: one is the task publishers A who publish federated learning tasks,
and the other is the mobile devices or data owners Pi who perform model training tasks.
As all participants are rational, task publishers A seek to maximize their own interests
while ensuring optimal global parameters for model training. Similarly, data owners Pi
also seek to maximize their own interests while meeting the task execution requirements of
the task publishers. Therefore, the set of participants in this model can be formally defined
as P = {A, Pi}.
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3.3. Feasible Strategies

In this model, we assume that the behavioral strategy set of the rational task publishers
A is sa = {sa1, sa2}, where sa1 denotes the behavioral strategy of “incentivizing” data
owners and is assigned a value of 1; sa2 represents the strategy of “not incentivizing” data
owners and is assigned a value of 0. Similarly, the behavior strategy set for selfish rational
data owners Pi is spi =

{
spi1 , spi2

}
, where spi1 represents the “honest” strategy with a value

of 1, and spi2 represents the “collusion” strategy with a value of 0.
In the credible defense against collusion game model, we assume that task publishers

A first adopt a behavioral strategy to decide whether to incentivize data owners Pi to
honestly perform model parameter training tasks. Subsequently, data owners Pi will adopt
corresponding strategies to maximize their personal interests based on the behavioral strat-
egy of task publishers A. Therefore, this game model is an asymmetric information game,
in which each rational participant chooses the appropriate behavior strategy to update
their local state and optimize their personal utility based on different sets of information.

3.4. Utility Functions

In this model, as all participants are rational, task publishers A always hope that data
owners Pi will honestly use their own data to perform model parameter training tasks;
data owners Pi always hope that task publishers A will give the maximum rewards to
incentivize them to complete the model parameter training. At this time, the utilities of
both sides are denoted as

(
ua1, upi1

)
, respectively. However, rational participants may

choose different behavior strategies to increase profits in order to maximize their personal
interests. This can lead to the following situations:

• If task publishers A choose not to send rewards to incentivize data owners Pi, and all
data owners Pi choose to honestly perform model parameter training, the utilities of
both sides are denoted as

(
ua2, upi1

)
, respectively.

• If task publishers A choose to send rewards to incentivize data owners Pi, but data
owners Pi, in order to save training costs, choose to collude and send invalid model
update parameters, the utilities of both sides are denoted as

(
ua1, upi2

)
, respectively.

• If all participants seek to maximize their benefits by saving costs, task publishers A
choose not to send rewards and hope to obtain the optimal model training parameters;
data owners Pi will choose the collusion strategy. They will send the agreed model
update parameters, thereby saving model parameter training costs. At this time, the
utilities of both sides are denoted as

(
ua2, upi2

)
, respectively.

When participants choose different behavior strategies in the model, the utilities
obtained by both sides will also be different. The specific utility values, that is, the payoff
matrix of the credible defense against the collusion game in federated learning, are shown
in Table 2.

Table 2. Federated learning trustworthy anti-collusion game payoff matrix.

Ta
sk

pu
bl

is
he

rs
A Data Owners Pi

Honest Collusion

Incentivizing a− ri − w− v;ri + w− ci fi + dpi −w;w− fi− dpi − do− v

Not-incentivizing a− ri − v;ri − ci fi + dpi ;− fi − dpi − do − v

The above is the utility gains obtained by each rational participant in the credible
anti-collusion game model, according to different behavioral strategies. According to the
behavioral strategy analysis of rational participants, the credible anti-collusion game model
of federated learning can be divided into three stages:
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1. After the task publisher A releases the model training task, they can choose to send a
bonus to incentivize data owners to actively and honestly perform model training, or
they can choose not to send rewards;

2. Rational data owner Pi, based on the behavioral strategy of task publisher A, selects a
reaction from its strategy set {honest, collusion};

3. After the rational task publisher A obtains the updated model parameters after
training and verifies them, if the verification is passed, they need to pay the verification
fee v; if the verification is not passed, the data owner pays this verification fee.

From the above analysis, we know that, due to the asymmetric information of each
rational participant in the model, data owners will choose their own behaviors according
to the behavioral strategies chosen by task publishers. Therefore, data owners will only
maximize their benefits when they receive rewards, choose an honest behavioral strategy,
and at this time, task publishers will also obtain the optimal model update parameters.
At this time, the Nash equilibrium strategy set in the model is {Incentivize, Honest}, with a
utility of

(
ua1, upi1

)
, which means (a− ri − w− v, ri + w− ci) is the Nash equilibrium state

of this model.
While we acknowledge that the Nash Equilibrium guarantees a stable state where

no player has an incentive to deviate unilaterally from their current strategy, it does not
necessarily promise the global optimum. However, our emphasis on Nash Equilibrium is
due to its significance in ensuring consistent participation and behavior from the rational
participants in federated learning scenarios. This stable state, although it might not always
be globally optimal, ensures a predictable and reliable system behavior, which is crucial for
our approach.

3.5. Credible Anti-Collusion Mechanism

In the rational trust model, we designed a credible anti-collusion mechanism. Through
the trust management mechanism, detailed records of the behavioral strategies of all
rational data owners Pi are made and uploaded to the blockchain to prevent any participant
from tampering or denying information. The trust management mechanism mainly records
the trust value ζN

i (i = 1, 2, . . . , n) of each rational data owner after each round of training
N(N = 1, 2, . . .), as well as the life cycle li(i = 1, 2, . . . , n) of each data owner Pi in the
model. To fortify our federated learning approach against collusion and ensure participants’
genuine contributions, we employ the functional encryption technique. This technique
guarantees the security of the uploaded model parameters throughout the task publication
and validation phases. In the credible anti-collusion game model, the trust function of each
rational data owner Pi after each round of N(N = 1, 2, . . .) training is defined as:

f : ζN
i = ζN−1

i + αiµ + βli. (3)

The relationship of this function is as follows:

• −1 ≤ ζN
i ≤ +1;

• αi ∈ (0, 1) indicates whether participant Pi follows the protocol in each round of
N(N = 1, 2, · · ·) training, that is, αi = 1 indicates that the participant is honestly exe-
cuting the protocol, and αi = 0 indicates that the participant is betraying the protocol;

• li represents the life cycle of the rational data owner Pi in the model. When the
participant chooses to betray the protocol, the rational participant will lose the original
trust value li = 0, and their life cycle and trust value will start over. li only increases
when choosing an honest behavioral strategy, and all trust values are recorded in the
smart contract;

• The parameter µ is a constant, and 0 ≤ µ < 0.1 exists;
• The parameter β is a constant, and 0 ≤ βli < 1 exists.

From the behavioral strategy analysis of rational participants, we know that the utility
function of all participants is related to their individual behavioral strategies. In the credible
anti-collusion model, the utility of each rational participant also depends on their personal
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trust value. Therefore, to better incentivize all rational participants to actively participate in
model training, the utility function of data owners is defined as uPi = upi + re( f ), where

re( f ) =
{

re1( f ) = βli, αi = 1
re2( f ) = −βli, αi = 0

. (4)

At this time, the utility of data owners includes the benefits obtained after completing
the model training task and their personal trust value. Here, 0 ≤ βli < 1. To protect the
personal interests of all honest rational participants in the model, when αi = 1, rational
participants choose an honest behavioral strategy. At this time, u1Pi = upi1 + re1( f ), and
honest rational participants will get the maximum utility benefit. However, when αi = 0,
the rational data owner chooses a collusion strategy at this time, and the utility value
is u2Pi = upi2 + re2( f ). At this time, the utility benefit obtained by the data owner is
u2Pi < u1Pi . Therefore, in this model, rational data owners, in order to maximize their own
interests and improve their personal trust value, will not choose the collusion strategy.
At this time, the strategy behavior set of both parties in the anti-collusion game model
is still {incentive, honest}, with a utility of

(
ua1, u1pi

)
, and the model still reaches a Nash

equilibrium state.

4. Credible Anti-Collusion Federal Learning Scheme

In our analysis of federated learning through a credible anti-collusion game framework,
we find that a Nash equilibrium is achieved when the task publisher adopts an “incentive”
strategy and the data owner opts for an “honest” behavior strategy. Within this strategic
combination, all rational participants can maximize their utility gains. In this section, we
leverage smart contract and functional encryption technologies to architect a game theory-
based credible anti-collusion federated learning scheme. This scheme mandates that all
rational participants complete model training tasks within designated time frames. Failing
to do so will result in scheme termination and forfeiture of the deposit by those participants
who exceed the stipulated timeframe. Our game-theory-driven credible anti-collusion
federated learning approach unfolds in three phases: initialization, task execution, and
utility payment. Figure 2 depicts the structure of the trusted federated learning system we
have designed. Here, M1 and M2 could represent two different models or model updates
in the federated learning process. They could signify different versions of the model or
model updates from different participants. D1 and D2 might represent datasets or data
updates from different participants in the federated learning process.

Figure 2. Architecture diagram of trusted federated learning. M1 and M2 represent two different
models or model updates in the federated learning process. D1 and D2 represent datasets or data
updates from different participants in the federated learning process.
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4.1. Initialization Stage

Assuming that the task publisher A in the scheme needs to update and optimize the
model parameter m, the task publisher A and data owner Pi participating in the execution
of the scheme need to register in the well-deployed smart contract in order for the smart
contract to store and distribute the deposits and bonuses of various participants. During
this stage, the task publisher needs to encrypt the model parameter m to prevent the data
privacy from being tampered with or leaked by malicious participants during transmission,
and upload the encrypted model parameters to the blockchain before time t1, otherwise,
the execution of the scheme will be terminated.

The encryption process of model parameter m uses function encryption technol-
ogy. First, the system initialization algorithm Setup generates an p-order prime group G.
Then, through the secret key generation algorithm MasterKeyGeneration, initialize the
entire system (mpk, msk) → Setup

(
1λ, 1κ

)
with the global security parameter λ and κ

as input parameters, generate the main public key mpk =
(

hl = gsl
)

l∈[1]
in the sys-

tem model, where g is the generator of the prime group G, and the main private key
msk = s = (s1, s2, · · · , sς) ← Z1

p, then publish the main public key on the blockchain.
Then, use the encryption algorithm Encryption to encrypt the model parameter m with
the main public key, protecting the privacy and security of the parameters. Here, the
main public key and model parameters are used as input Encryption(mpk, m), and after
encryption with function encryption technology, the encrypted ciphertext Cm is returned,
where the ciphertext is Cm =

(
Cm0, (Cml)l∈[1]

)
, Cm0 = gr, Cml = hr

l · g
ml , l ∈ [1], and r is

a random number.

4.2. Task Execution Phase

Once the global model parameters are encrypted, task publisher A uploads the en-
crypted model parameters Cm to the blockchain, along with a preset function F that can
operate on the encrypted global model parameters. This step ensures that only legitimate
and rational data owners can access the encrypted model parameters to perform tasks.
During this process, some rational data owners might deviate from the honest course
in collusion with others to send updated model parameters that do not require training
to the task publisher, all in order to enhance personal gains. The deadline for initiating
such collusion is at point t2 and, prior to this, rational participants can make a request for
collusion; beyond this time point, they lose the right to initiate such behaviour.

In the absence of any data owners initiating collusion, those capable of performing the
model training task Pi will take action. For achieving data privacy protection and sharing,
data owners do not need to directly acquire the original model parameters but only need
to obtain the result F(m) of the preset function operating on the encrypted parameters.
Every rational data owner Pi selects the preset function F from the blockchain to decrypt
F(m) and then perform model training. Here, algorithm KeyDec(msk, y) provides a vector
y = (y1, y2, · · · , yn) for each rational data owner and generates a key sky, i.e., sky = 〈y, msk〉,
to obtain the result F(m) from the preset function. Subsequently, data owners decrypt
F(m), perform model training, and then re-encrypt the updated model parameters m′ into
a using function encryption technology, and upload Cm′ to the blockchain for validation
by the task publisher.

Upon receiving the encrypted model update parameters Cm′, the task publisher uses
decryption algorithm Decryption

(
mpk, Cm′, sky

)
to restore the model parameters. Here,

the system master key mpk, the encrypted model update parameters Cm′, and the key sky
are used as inputs to return the discrete logarithm based on the generator g of group G,
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Cm′ =
Πl∈[1]C

xl
m′ l

Cskx
m′

=
Πl∈[1]

(
gslr+m′ l

)xl

g
r
(

∑l∈[1] xlsl
)

= g
∑

l∈[1]
xlslr+∑

l∈[1]
xlm′ l−r

(
∑

l∈[1]
xlsl

)

= g
∑

l∈[1]
xlm′ l

= g〈m
′ ,x〉

(5)

thereby obtaining the updated model parameters m′. If validation is successful, the model
updating proceeds to the next round until the optimal global model update parameters are
obtained. If validation is not successful, the data owner Pi is penalized, and the penalty
information is recorded in the smart contract for invoking transactions and achieving
individual utility gains. Similarly, if a rational data owner Pi initiates collusion, then during
the verification of Formula (5), due to the discretization of the function, the verification
cannot pass. The data owners who deviate from the honesty principle will be penalized,
and their individual trust values ζN

i will be reset to zero. At this point, the model training
task also ends, directly entering the final utility payment stage.

4.3. Utility Payment Phase

Upon the completion of N rounds of global model updates and once the parameters
reach the optimum state, the training task is considered accomplished. After the task ends,
task publisher A will evaluate the quality of the parameters provided by each data owner
Pi and their performance index, then invoke the smart contract to calculate and distribute
the training task rewards. This process needs to be completed within the time frame t3;
rational participants exceeding this time node will face penalties.

According to the analysis of game model, when task publisher A sends incentives to
each data owner Pi, rational data owners, in order to maximize their own benefits, will avoid
colluding. That is, all rational participants will complete the model training task within the
specified time. At this point, the utility gain of the task publisher A is ua1 = a− ri − w− v;
similarly, the utility gain of rational data owner Pi is also u1pi = ri + w− ci + re1( f ). In this
situation, the global model will reach a Nash equilibrium state.

The blockchain will record the working status of all participants at this moment to
prevent any malicious behaviour breaching the contract at the final stage of the plan,
i.e., during the distribution of bonuses. After all participants have received their bonuses,
the smart contract will return the deposits they submitted, thus marking the end of this
federated learning task.

5. Scheme Analysis

This study proposes a reliable collusion-prevention federated learning scheme based
on game theory, which regulates all rational participants’ strategic choices through the de-
sign of collusion-prevention game models and judges the existence of malicious behaviors
that breach the contract based on each rational participant’s utility function. Therefore,
we need to validate the correctness, safety, and communication complexity of the scheme.
Simultaneously, for task publisher A and data owner Pi, their published model parameter
tasks should be privacy-preserving. However, since all data on the blockchain are publicly
visible to all participants, we also need to validate the security and privacy of data model
parameters in the scheme.

5.1. Correctness Analysis

In the scheme, all participants are involved in the collusion-prevention game model’s
federated learning training tasks. If the rational task publisher A and data owner Pi both
follow the contract stipulations, selecting the appropriate behavioral strategy to execute
the task, then all rational participants will obtain optimal utility gains. Next, we will prove
the correctness of this scheme.
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Theorem 1. The federated learning scheme is correct.

Proof. In this scheme, assume that the rational task publisher A wants to send the initial
global model parameters m to data owner Pi for model parameter training and update.
Firstly, the task publisher A needs to encrypt the initial global model parameters m and
preset function F and upload them to the blockchain within time t1. Then, within time t2,
data owner Pi, who is willing to accept this model parameter training task, needs to respond
on the blockchain and query the responded data owner Pi through the smart contract; at
the same time, any data owner wishing to collude also needs to initiate collusion within
this time.

Suppose there is a rational data owner Pe who chooses to initiate a collusion behavior
strategy, i.e., deviating from the scheme to upload invalid updated model parameters,
where e ∈ [1, 2, · · ·w], w ≤ n. In the subsequent verification, the data owners who chose
to collude will not pass the verification, and the trust management mechanism will set
the trust value ζN

i and the life cycle li of the colluding data owner Pe to zero, and the
rational data owners who are cleared will be severely impacted in the subsequent work. If
the life cycle growth process of the rational data owner Pe who is cleared after deviating
from the scheme execution is 0, 1

5 li, 2
5 li, 3

5 li, 4
5 li,li, then their losses in subsequent work will be

as follows:

Γ =β

(
(li − 0) +

(
li −

1
5

li

)
+

(
li −

2
5

li

)
+

(
li −

3
5

li

)
+

(
li −

4
5

li

)
+ (li − li)

)
= β

(
li +

4
5

li +
3
5

li +
2
5

li +
1
5

li + 0
)

= 3βli

(6)

As can be seen from the above formula, when the rational data owner Pe chooses the
collusion strategy for the first time, his life cycle is zeroed, and the loss is βli. When the life
cycle of the rational participants who colluded grows back to li, they will suffer a loss of
3βli, and their credibility will be recorded in the blockchain. For rational participants Pi, in
order to protect their credibility and gains, in this collusion-prevention game model, they
will not choose the collusion strategy but will only choose the honest behavior strategy to
maximize their own utility. Only the {incentive, honesty} strategy set is a Nash equilibrium
point of this model. Therefore, the reliable collusion-prevention federated learning scheme
designed by this study based on game theory is correct.

5.2. Security Analysis

Our scheme uses functional encryption technology to ensure the private and secure
sharing of data model parameters during the trustworthy collusion-prevention federated
learning process. The following will analyze the security of our scheme.

Theorem 2. This federated learning scheme is secure.

Proof. During the execution of the federated learning task, the initial global model pa-
rameters m are encrypted by task publisher A using functional encryption technology,
then uploaded to the blockchain. In our scheme, all security parameters are generated
and set through functional encryption technology. Our functional encryption is based
on the Decisional Diffie–Hellman assumption (DDH), ensuring the indistinguishability
of parameters in the encryption function. Let algorithm Gen be an arbitrary probabilistic
polynomial-time algorithm. When the security parameter qγ is randomly input, a triplet
(G, p, g) is generated, where G is an p-order prime group with a generator g. At this time,
if an independent parameter a, b, c is randomly chosen, then

(
g, ga, gb

)
and (g, ga, gc) are

distinguished with a non-negligible probability.
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In our scheme, the functional encryption technology initializes the entire system
through algorithm (mpk, msk) → Setup

(
1λ, 1κ

)
, generates a master public key mpk and

a master private key msk, where mpk = gsl , l ∈ [1]. After the model parameter m is
encrypted by the master public key, ciphertext Cm is returned. If there exists a malicious
third party trying to tamper with the model information, then there will be a situation where
Cm′ = hr′

l · g
ml . Since functional encryption technology is based on the DDH assumption,

no random r′ can distinguish Cm′ = hr′
l · g

ml and Cm = hr
l · g

ml for a malicious attacker.
Similarly, in the process of the data owner publishing the updated model parameters to
the blockchain, no polynomial time attacker can distinguish Cm′ ′ and Cm′. Therefore,
this game-theory-based trustworthy collusion-prevention federated learning scheme we
designed is secure and satisfies basic semantic security.

5.3. Communication Efficiency Analysis

In this section, we aim to demonstrate that our proposed solution can effectively
reduce communication complexity. We compare our approach with traditional federated
learning schemes to validate this claim.

In a traditional federated learning scheme, let us assume that the number of data
owner nodes participating in the federated learning training task is pn. The transmission
of model parameters between the task publisher and the data owners will require 2pn δ
model parameters, where δ denotes the initial model parameters that the task publisher
needs to send to the data owners. However, without using function encryption technology,
each model parameter’s size is o′, where o′ > o. Here, o represents the byte size of each
model parameter after using function encryption technology, and o′ represents the byte
size of each model parameter without using function encryption technology.

Consequently, in a traditional federated learning scheme, the communication volume
required for each round of training is 2pnδo′, and the total communication volume is
2pnδo′N, where N denotes the total number of rounds in the federated learning training
task. Assuming that d bytes can be transmitted per second, the total communication time
is tt′ = 2pnδo′N

d seconds. As there are no collusion request transmissions in a traditional
federated learning scheme, the total communication complexity is Ntt′.

To compare our solution’s communication complexity with the traditional scheme, we
derive the following equations:

tta− Ntt′ =
2pnδoN

d
+

2(pn− 1)e
d

− 2pnδo′N
d

=
2pnδN(o′ − o)

d
− 2(pn− 1)e

d
< 0

Here, tta represents the total communication time (in seconds) required in our scheme,
and e denotes the byte size of each collusion request. The above formula is valid only
when c′ < c and e > 0. That is to say, only when the size of model parameters decreases
after using function encryption technology, and when collusion request transmissions exist,
can our solution’s communication complexity be reduced. Given that function encryption
technology can effectively reduce the size of model parameters, and that collusion request
transmission is a necessary condition to prevent collusion in our scheme, these two con-
ditions can potentially be met. In conclusion, we can demonstrate that our solution has a
lower communication complexity than traditional federated learning schemes.

6. Experiment and Evaluation

To effectively gauge the communication efficiency in model parameter training, the
aggregation impact, and the incentive dynamics of various node types within our design,
we orchestrated distributed training simulations involving multiple data owner nodes via a
thread pool. The primary objective behind these systematic experiments is to meticulously
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evaluate the efficacy, adaptability, and resilience of our novel trustworthy anti-collusion
federated learning framework. By delving into diverse parameters such as data distribution
nuances, variations in client counts, dataset intricacies, and the strategic incorporation of
game theory, our intent is to furnish a holistic understanding of the scheme’s practical
feasibility, operational efficiency, and its fortified defenses against conceivable adversarial
interferences. These rigorous assessments underscore our commitment to advancing
the tenets of federated learning, emphasizing paramount security, privacy, and trust in
distributed machine learning paradigms.

6.1. Experimental Setup

The series of experiments was conducted on a desktop computer equipped with an
Intel Core i7-9700K CPU, 32GB RAM, and an NVIDIA GeForce RTX 2080 Ti GPU. This
hardware configuration was designed to meet the demands of complex federated learn-
ing training and support the implementation of game theory simulations and privacy
protection mechanisms. In terms of software, the experiment’s runtime environment was
Ubuntu 18.04, with Python 3.8 as the programming language. The experiment mainly relied
on TensorFlow 2.4 for deep learning modeling, NumPy 1.19 for numerical computation
and data processing, Matplotlib 3.3.4 for visualizing results, and specific privacy protection
libraries to implement measures such as differential privacy. The chosen datasets covered a
variety of fields, including MNIST, CIFAR-10, and Fashion MNIST, ensuring a comprehen-
sive assessment of model performance across different tasks and scenarios. To guarantee
the consistency and repeatability of the experiments, the same random seed was used for
all experiments, and each experiment’s results were computed based on the average of at
least five independent runs, effectively minimizing the impact of random factors.

6.2. Performance Evaluation
6.2.1. Experiment 1: Impact of Data Distribution on Federated Learning Performance

Central to our investigative framework is the meticulous examination of the ramifica-
tions of data distribution, specifically within IID and non-IID paradigms, on the training
potency of federated learning. Employing the MNIST dataset, an exemplar for handwritten
digit discernment, we delineated a comparative analysis between the IID data spectrum,
characterized by equitably distributed samples and uniform category delineations, and the
non-IID spectrum, which could exhibit variances in sample metrics and categorical distribu-
tions. As illustrated in Figure 3, the overarching model within the IID framework manifested
a pronounced rapidity in convergence and superior precision. This revelation accentuates the
pivotal role of data orchestration across federated learning clientele. Moreover, it serves as a
testament to the fortitude and adaptability of our approach amidst the challenges proffered
by non-uniform data landscapes, often emblematic of real-world dynamics.

Figure 3. Comparison of federated learning performance under IID and non-IID data distribution conditions.
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Subsequent evaluations on datasets such as CIFAR-10 and Fashion MNIST reaffirmed
these inferences, underscoring the robustness and pan-applicability of our federated learn-
ing architecture. The tangible performance differential between IID and non-IID constructs
underscores the exigency for nimble stratagems in federated learning, particularly when
traversing the multifaceted terrain of diverse client data orchestrations. Our elucidations
not only shed light on these inherent conundrums but also chart a course for propitious
advancements in the actualization of federated learning in pragmatic environs.

6.2.2. Experiment 2: Influence of Client Numbers on Federated Learning Performance

Examining the effect of varying client numbers (10, 20, and 50) on federated learning
performance, this experiment used the MNIST dataset and an IID data split. After 20 fed-
erated learning communication rounds, the central server aggregated weights from each
client, computed the global model weights, and redistributed them. The results showed
how different client numbers impact model accuracy, with all scenarios achieving over 97%
final accuracy (Figure 4), suggesting our scheme’s robustness, scalability, and potential
practical application value.

Figure 4. Changes in the accuracy of the global model on the test set under different numbers of clients.

6.2.3. Experiment 3: Evaluation of Different Datasets on Federated Learning Performance

Aiming to assess the influence of various datasets on federated learning performance,
this experiment used three datasets: MNIST, CIFAR-10, and Fashion MNIST, all split using
IID and allocated to 10 clients. After 20 communication rounds, the results from each
dataset were compared, with line graphs revealing accuracy dynamics (Figure 5). This
experiment highlights our scheme’s adaptability across different datasets and tasks, and
the challenges and potential of federated learning.

Figure 5. Comparison of global model accuracy across different datasets in trustworthy anti-collusion
federated learning.
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6.2.4. Experiment 4: Role of Game Theory in Trustworthy Anti-Collusion Federated Learning

This experiment delved into the significance of game theory in our federated learning
scheme. Without a game theory strategy, we presumed that an initial 20% of clients might
collude maliciously. In comparison, the scenario with game theory incorporated strategies
to validate and adjust client weights. The results displayed in Figure 6 showed that game
theory significantly bolsters federated learning robustness, emphasizing its crucial role in
enhancing federated learning system trustworthiness.

Figure 6. Performance comparison between trustworthy anti-collusion federated learning with and
without game theory.

6.2.5. Experiment 5: Specific Impact of Privacy Protection Mechanisms on Model Performance

Focusing on the influence of various privacy protection mechanisms on model perfor-
mance, this experiment compared four strategies: no privacy protection, low-noise differential
privacy, high-noise differential privacy, and a custom privacy protection mechanism. Each
weight adjustment and global update was influenced by the chosen privacy protection mecha-
nism. A bar chart (Figure 7) illustrates performance differences among the strategies, empha-
sizing the interplay between privacy protection and model performance and the importance
and challenges of implementing privacy protection in federated learning.

Figure 7. Comparative analysis of model performance with different privacy protection strategies.
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6.3. Comparative Performance Analysis

In this section, we critically assess the efficacy of our game-theory-based trustworthy
anti-collusion federated learning scheme by contrasting it with prevalent federated learning
approaches. While all models start with identical parameters, the distinct methodologies
employed for updating the model training parameters produce varied loss accuracies.
Especially noteworthy is the behavior observed during equal communication rounds when
the global model parameters attain a specified value. A meticulous evaluation underscores
the unique loss accuracies our scheme achieves in comparison to its counterparts. Table 3
encapsulates a systematic comparison of several federated learning strategies, benchmark-
ing them on criteria like loss precision, communication rounds, and demonstrable security.
In Table 3, the symbol ‘X’ denotes the presence of provable security in the respective
federated learning strategy, while the symbol ‘×’ indicates its absence.

Table 3. Performance comparison of schemes.

Loss Precision Communication Rounds Provable Security

Protocol [22] 4.26 30 ×
Protocol [23] 2.12 35 ×
Protocol [24] 2.39 37 X
Our Scheme 1.98 27 X

Based on the empirical findings, several observations emerge.
In reference [22], upon reaching the predetermined model parameter update value,

the scheme registers a loss accuracy of 4.26 over 40 communication rounds. While this
scheme lacks provable security, it innovatively introduces a sparse ternary compression
framework tailor-made for federated learning environments. Reference [23], on the other
hand, achieves a loss accuracy of 2.12 after 36 communication rounds when the set model
parameter update value is realized. This approach delineates both a foundational and
personalized strategy for the joint training of deep feed-forward neural networks within
federated learning. However, it falls short in affirming the security of its framework.
Reference [24] brings to the fore a federated learning scheme grounded in privacy protec-
tion and security. Here, a loss accuracy of 2.39 is noted over 37 communication rounds
upon hitting the pre-established model parameter update threshold. Notably, this method-
ology has undergone rigorous security validation, effectively mitigating the privacy risks
associated with federated learning model training data.

In contrast, our proposed scheme stands out, recording a remarkable loss accuracy of
1.98 with a mere 27 communication rounds upon achieving the set model parameter update
value. Equally commendable is its verified security, further accentuating its superiority
and robustness in the federated learning domain.

7. Conclusions

This study is dedicated to addressing the challenges posed by malicious participants
and model parameter leakage in federated learning. To tackle these challenges, we intro-
duced a game-theory-based trustworthy anti-collusion federated learning scheme. Guided
by the principles of game theory and rational trust models, we strategically incentivized
top-tier rational data owners to actively participate in federated learning training. Recog-
nizing the paramount importance of the privacy and security of model parameters, we
integrated blockchain networks and smart contract technologies. This integration not only
reinforced the security framework for all rational participants and their parameters but also
introduced a paradigm shift in the conventional methods of federated learning. Addition-
ally, we adopted function encryption technology to ensure the secure and privacy-centric
sharing of model parameters between task issuers and data owners. According to our
experimental data, compared to honest nodes, the communication overhead for rational
nodes decreased by 40%, while data accuracy improved by 15%.
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In summary, our scheme achieves an optimal balance between communication over-
head and data accuracy, offering a novel and effective solution for federated learning.
In future research, we will continue to explore ways to enhance the learning efficiency of
model training in a blockchain network where multiple task issuers simultaneously publish
model training tasks, ensuring the privacy and security of all participants and data.
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7. Konečný, J.; McMahan, H.B.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, D. Federated learning: Strategies for improving

communication efficiency. arXiv 2016, arXiv:1610.05492.
8. Kim, H.; Park, J.; Bennis, M.; Kim, S.L. Blockchained on-device federated learning. IEEE Commun. Lett. 2019, 24, 1279–1283.

[CrossRef]
9. Hardy, S.; Henecka, W.; Ivey-Law, H.; Nock, R.; Patrini, G.; Smith, G.; Thorne, B. Private federated learning on vertically

partitioned data via entity resolution and additively homomorphic encryption. arXiv 2017, arXiv:1711.10677.
10. Li, Y.; Bashir, A.K.; Jian, X.; Cai, S.; Guizani, M. Federated Learning Empowered Low Earth Orbit Satellite Networks for Massive

Internet of Things. IEEE Trans. Veh. Technol. 2021. [CrossRef]
11. Zhao, L.; Qu, Z.; Xie, Z. Study on Communication Optimization of Federated Learning in Multi-layer Wireless Edge Environment.

Comput. Sci. 2022, 49, 39–45.
12. Chen, W.N.; Choo, C.A.C.; Kairouz, P.; Suresh, A.T. The fundamental price of secure aggregation in differentially private federated

learning. In Proceedings of the International Conference on Machine Learning (PMLR), Baltimore, MD, USA, 17–23 July 2022;
pp. 3056–3089.

13. Katz, J. Bridging game theory and cryptography: Recent results and future directions. In Proceedings of the Theory of
Cryptography Conference, New York, NY, USA, 19–21 March 2008; pp. 251–272.

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/zalandoresearch/fashion-mnist
http://doi.org/10.1109/TNET.2018.2829173
http://dx.doi.org/10.1145/3298981
http://dx.doi.org/10.1109/TIFS.2019.2929409
http://dx.doi.org/10.1109/JSAC.2020.3041404
http://dx.doi.org/10.1109/LCOMM.2019.2921755
http://dx.doi.org/10.13140/RG.2.2.19330.40646


Electronics 2023, 12, 3867 19 of 19

14. Yu, H.; Liu, Z.; Liu, Y.; Chen, T.; Cong, M.; Weng, X.; Niyato, D.; Yang, Q. A Sustainable Incentive Scheme for Federated Learning.
IEEE Intell. Syst. 2020, 35, 58–69. [CrossRef]

15. Martinez, I.; Francis, S.; Hafid, A.S. Record and Reward Federated Learning Contributions with Blockchain. In Proceedings of the
2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Guilin, China,
17–19 October 2019; pp. 50–55.

16. Zhou, Q.; Li, Q.; Ding, H.; Fan, M. Efficient Federated Learning Scheme Based on Game Theory Optimization. Comput. Eng. 2022,
48, 144–151+159. [CrossRef]

17. Zhu, J.; Zhang, Q.; Guo, S.; Du, Q.; Yang, L. Privacy Preserving and Trustworthy Federated Learning Model Based on Blockchain.
Chin. J. Comput. 2021, 44, 2464–2484.

18. Stergiou, C.L.; Psannis, K.E.; Gupta, B.B. InFeMo: Flexible big data management through a federated cloud system. ACM Trans.
Internet Technol. (TOIT) 2021, 22, 1–22. [CrossRef]

19. Wassan, S.; Suhail, B.; Mubeen, R.; Raj, B.; Agarwal, U.; Khatri, E.; Gopinathan, S.; Dhiman, G. Gradient Boosting for Health IoT
Federated Learning. Sustainability 2022, 14, 16842. [CrossRef]

20. Dan, B.; Sahai, A.; Waters, B. Functional Encryption: Definitions and Challenges. In Proceedings of the Theory of Cryptography
Conference, Providence, RI, USA, 28–30 March 2011; Springer: Berlin/Heidelberg, Germany, 2011.

21. Mehrdad, N. Rational trust modeling. In Proceedings of the Conference on Decision and Game Theory for Security (GameSec
2018), Seattle, WA, USA, 29–31 October 2018; pp. 418–431.

22. Sattler, F.; Wiedemann, S.; Müller, K.R.; Samek, W. Robust and communication-efficient federated learning from non-iid data.
IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 3400–3413. [CrossRef] [PubMed]

23. Arivazhagan, M.G.; Aggarwal, V.; Singh, A.K.; Choudhary, S. Federated Learning with Personalization Layers. In Proceedings of
the International Conference on Artificial Intelligence and Statistics, Naha, Japan, 16–18 April 2019.

24. Mugunthan, V.; Peraire-Bueno, A.; Kagal, L. Privacyfl: A simulator for privacy-preserving and secure federated learning.
In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Online, 19–23 October
2020; pp. 3085–3092.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MIS.2020.2987774
http://dx.doi.org/10.19678/j.issn.1000-3428.0062413
http://dx.doi.org/10.1145/3426972
http://dx.doi.org/10.3390/su142416842
http://dx.doi.org/10.1109/TNNLS.2019.2944481
http://www.ncbi.nlm.nih.gov/pubmed/31689214

	Introduction
	Preliminary Knowledge
	Game Theory
	Function Encryption
	Rational Trust Model

	Credible Defense against Collusion Game Model
	Model Parameters
	Participants
	Feasible Strategies
	Utility Functions
	Credible Anti-Collusion Mechanism

	Credible Anti-Collusion Federal Learning Scheme
	Initialization Stage
	Task Execution Phase
	Utility Payment Phase

	Scheme Analysis
	Correctness Analysis
	Security Analysis
	Communication Efficiency Analysis

	Experiment and Evaluation
	Experimental Setup
	Performance Evaluation
	Experiment 1: Impact of Data Distribution on Federated Learning Performance
	Experiment 2: Influence of Client Numbers on Federated Learning Performance
	Experiment 3: Evaluation of Different Datasets on Federated Learning Performance
	Experiment 4: Role of Game Theory in Trustworthy Anti-Collusion Federated Learning
	Experiment 5: Specific Impact of Privacy Protection Mechanisms on Model Performance

	Comparative Performance Analysis

	Conclusions
	References

