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Abstract: Ransomware attacks on cloud-encrypted data pose a significant risk to the security and
privacy of cloud-based businesses and their consumers. We present RANSOMNET+, a state-of-the-art
hybrid model that combines Convolutional Neural Networks (CNNs) with pre-trained transformers,
to efficiently take on the challenging issue of ransomware attack classification. RANSOMNET+ excels
over other models because it combines the greatest features of both architectures, allowing it to
capture hierarchical features and local patterns. Our findings demonstrate the exceptional capabilities
of RANSOMNET+. The model had a fantastic precision of 99.5%, recall of 98.5%, and F1 score of
97.64%, and attained a training accuracy of 99.6% and a testing accuracy of 99.1%. The loss values
for RANSOMNET+ were impressively low, ranging from 0.0003 to 0.0035 throughout training and
testing. We tested our model against the industry standard, ResNet 50, as well as the state-of-the-art,
VGG 16. RANSOMNET+ excelled over the other two models in terms of F1 score, accuracy, precision,
and recall. The algorithm’s decision-making process was also illuminated by RANSOMNET+’s
interpretability analysis and graphical representations. The model’s openness and usefulness were
improved by the incorporation of feature distributions, outlier detection, and feature importance
analysis. Finally, RANSOMNET+ is a huge improvement in cloud safety and ransomware research.
As a result of its unrivaled accuracy and resilience, it provides a formidable line of defense against
ransomware attacks on cloud-encrypted data, keeping sensitive information secure and ensuring the
reliability of cloud-stored data. Cybersecurity professionals and cloud service providers now have a
reliable tool to combat ransomware threats thanks to this research.

Keywords: ransomware attack detection; transfer learning; deep learning ensemble models;
cloud-encrypted data; cybersecurity

1. Introduction

Due to the growth of cloud services and the ever-increasing volume of online data,
safeguarding the privacy and accessibility of encrypted data stored in the cloud has be-
come an essential problem [1]. Cyber threats such as ransomware attacks have become
increasingly common and destructive in recent years: “malicious software that sneaks
onto computers, encrypts important files, and then demands a ransom to decrypt them” is
described in [2]. These attacks on individuals, organizations, and even government bodies
have resulted in major financial losses and data breaches. The two most prominent methods
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for detecting ransomware—signature-based methods and rule-based systems—have been
unable to keep up with the rapidly evolving nature of ransomware attacks [3]. Updating
signatures and rules often to detect new variants might decrease reaction times and leave
systems vulnerable to new assaults. The encrypted nature of cloud data limits accessi-
bility and analysis, making it difficult to detect ransomware assaults using conventional
approaches [3,4].

Transfer learning is a technique that allows the transfer of knowledge learned from
pre-trained models on large-scale datasets, which can be used to improve detection ac-
curacy even in the absence of labeled ransomware samples. Using transfer learning, the
suggested strategy compensates for the scarcity of ransomware data and enhances detection
capabilities [4,5].

The devastating financial losses and compromises in data privacy and security that can
arise from ransomware attacks have made them a prominent cybersecurity worry in recent
years. Ransomware is malicious software that infiltrates systems and encrypts data in order
to demand payment. These attacks have had devastating results for individuals, businesses,
and government institutions. Cloud-based systems that contain huge amounts of sensitive
data have been a common target for ransomware attacks [5,6] due to their broad use and
potential for large-scale effects. Since ransomware is constantly adapting, signature-based
approaches and rule-based systems for detecting it have proven insufficient. Updating
signatures and rules often to detect new variants might decrease reaction times and leave
systems vulnerable to new assaults. As a result of the encrypted nature of cloud data,
traditional methods of detecting ransomware assaults [7] are ineffective due to a lack of
data accessibility and analysis.

This inquiry was prompted by the increasing frequency and severity of ransomware
attacks that target cloud environments. Traditional ransomware detection methods are
useless because ransomware strains constantly evolve. The encrypted nature of cloud data
presents additional challenges for detection systems, making it all the more important to
explore innovative ways that may effectively identify ransomware attacks in this encrypted
context [8]. The employment of transfer learning and deep learning ensembles is motivated
by the expectation of enhanced detection precision and adaptability. The goal of the
study is to improve detection capabilities in the face of constantly evolving ransomware
strains by employing transfer learning to circumvent the limitations of insufficient labeled
data. Using deep learning ensembles in detection systems can improve cloud-based
security by capturing more features [9]. Using cutting-edge methods such as transfer
learning and deep learning ensembles for ransomware detection [10], this research aims to
strengthen the protections afforded by cloud-based systems and shield sensitive data from
dangerous cyber-attacks.

The results of this investigation have far-reaching implications. First, ransomware
attacks have become more common and more severe in cloud environments that store large
volumes of sensitive data. To better detect ransomware assaults in cloud environments,
our research fills a key need in the current security landscape. The proposed approach has
appealing potential for dealing with the growing threat of ransomware since it makes use
of transfer learning and deep learning ensembles.

Second, by employing transfer learning to detect ransomware, we have made a sig-
nificant and novel contribution. Transfer learning can assist in enhancing ransomware
detection accuracy even in environments with a small number of labeled samples. This
research shows that transfer learning strategies can be effective in cybersecurity, especially
against ransomware.

The development of a deep learning ensemble framework for ransomware detection
is another important step forward. Using a large number of deep learning models to
collect diverse characteristics, the ensemble framework improves detection performance
and robustness. This new technique can help in the design of better real-time detection
systems for ransomware [11].
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In order to better detect ransomware assaults in cloud environments, our research
will concentrate on encrypted data. Due to their inflexibility and lack of precision, current
detection systems are unable to detect and prevent ransomware attacks in real time, espe-
cially in an encrypted environment. We desperately need innovative approaches that may
circumvent these challenges in order to defend against ransomware in the cloud.

The following are the goals of this study:

• RANSOMNET+ is a hybrid model that combines Convolutional Neural Networks
(CNNs) and pretrained transformers, and its goal is to accurately classify ransomware
assaults on cloud-encrypted data;

• To create an effective and secure model of encrypted cloud data, we propose to leverage
the local pattern-capturing skills of CNNs and the hierarchical feature extraction
capabilities of transformers;

• The main objective is to evaluate RANSOMNET+’s effectiveness in detecting ran-
somware attacks by employing a wide range of metrics, such as training and testing
accuracy, loss, precision, recall, and F1 score;

The contributions of this research paper are as follows:

• We presented a new hybrid model, RANSOMNET+, which combines Convolutional
Neural Networks (CNNs) with pre-trained transformers to classify ransomware at-
tacks from cloud-encrypted data;

• RANSOMNET+ combines the hierarchical properties learned by transformers with
the local patterns acquired by CNNs to efficiently represent encrypted data stored in
the cloud;

• Extensive testing revealed that RANSOMNET+ outperformed competing models by a
wide margin, with a training accuracy of 99.6% and a testing accuracy of 99.1%;

• RANSOMNET+’s high precision, recall, and F1 score demonstrate its efficacy in
separating benign from harmful information;

• Training and testing loss, precision, recall, and F1 score were just some of the many per-
formance measures we examined during our comprehensive review of RANSOMNET+;

• When compared to other state-of-the-art models, such as ResNet 50 and VGG 16,
RANSOMNET+ was found to have better accuracy and performance;

• We integrated visual representations of feature distributions, outlier identification,
and feature relevance to make the model more understandable and trustworthy.

By focusing on these goals, our initiative hopes to help further research into ran-
somware and provide more robust security measures for cloud-based computing infras-
tructure. This paper will describe the proposed method, experimental setup, results, and
debates in great depth, highlighting the potential of transfer learning and deep learning
ensemble models in enhancing ransomware attack detection on cloud-encrypted data.

This paper’s outline is as follows: In Section 1, we discuss the importance and chal-
lenges of identifying ransomware assaults on cloud-encrypted data. In Section 2, we
present a summary of previous studies on the topic, with an emphasis on ransomware
detection methods and the application of transfer learning and deep learning ensemble
models to the field of cyber security. Using examples, Section 3 explains how to implement
the proposed approach. This includes how to make use of transfer learning and build the
deep learning ensemble model. In Section 4, we show and discuss our experimental setup,
data sets, metrics for evaluation, and analyses. Section 5 provides a synopsis of the study’s
findings, discusses their significance, and suggests future research directions.

2. Related Work

It is now a major security risk for computers to become infected with ransomware,
which encrypts user data. Modern ransomware strains are more dangerous than their older
counterparts because they employ complex obfuscation tactics and can operate without
an active C2 server. The need for a unified framework to aid with ransomware detection,
prevention, and mitigation is the driving force for this research. The article [12] introduced
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the Detection Avoidance Mitigation (DAM) framework, which organizes and describes
existing methods of countering ransomware. By conducting a comprehensive review and
synthesis of the relevant literature, similarly in [13] accomplished an important advance-
ment in the field by establishing a uniform methodology. The Djvu Ransomware case
study is intended to demonstrate the ransomware’s tactics and to provide countermeasures.
DAM is a framework developed to fortify systems against ransomware.

There is a major risk to network infrastructure because of the rise of hostile threats
against computer networks and digital services. In order for one website to link to another,
a system called the “domain name system” (DNS) must be in place. The difficulties
of discovering hidden tunnels and avoiding conventional detection methods must be
surmounted if these DNS intrusions [14] are to be spotted. Statistical analysis and Bi-
directional Recurrent Neural Network (BRNN) methods are used to construct an intrusion
detection model in this research paper, with the goal of revealing hostile DNS over HTTPS
(DoH) requests made through covert channels. The method is 100% accurate in identifying
malicious DoH searches using data from the Canadian Institute for Cybersecurity’s CIRA-
CIC-DoHBrw-2020 dataset. The proposed model, which uses fewer features than competing
methods, yields better results at a higher throughput during training and testing.

Customers with concerns about malware and data loss in the cloud are not crazy.
Although the effectiveness of virus detection has been the subject of multiple research,
renters’ rights to privacy in the cloud are rarely taken into account. In this research work [6]
introduced a novel cloud-based malware detection technique based on semi-supervised
transfer learning (SSTL). Detection, foresight, and transfer are the pillars upon which
the model rests. Researchers have developed a byte classifier based on recurrent neural
networks to safeguard user data stored in the public cloud. There is not enough data for the
byte classifier to improve its supervised learning performance beyond 94.72%. Accuracy
in the prediction phase has been improved to 99.69% thanks to a new ASM classifier. To
enhance the byte classifier’s training, the transfer module uses semi-supervised learning
to merge predicted labels and byte attributes from an unlabeled dataset. The accuracy of
the detection part was improved using semi-supervised transfer learning, and testing on
Kaggle malware datasets showed an increase from 94.72% to 96.9%. This method improves
malware detection accuracy and addresses tenants’ privacy concerns.

In a review of the research literature [15], we looked at techniques that employ machine
learning and deep learning to detect ransomware. The destructiveness of ransomware,
the difficulty of undoing infections caused by ransomware, and the critical need for early
discovery spurred this inquiry. The importance of machine learning in the fight against
ransomware means that it is time to assess where the present defenses fall short and how
they may be improved. The emergence of new families and strains in cyberspace and the
shadows is a worrying sign of the situation’s severity. The complex encryption techniques
used by ransomware make the removal of an infection difficult. Concurrent with the
increased deployment of AI technologies has been an increase in ransomware attacks.
Since machine learning and deep learning can accurately detect zero-day attacks and build
prediction models to unearth new types and families of ransomware, they are of great
interest for this task. The author conducted a systematic literature evaluation of prominent
machine learning and deep learning works on ransomware detection. The author also
conducted experimental evaluations to examine the impact of malware evolution on the
issues raised.

Recent advancements in machine learning and deep learning for ransomware detection
are the topic of this state-of-the-art review [7]. The critical need to defend computer systems
from ransomware attacks sparked this investigation. The ability of machine learning and
deep learning techniques to identify zero-day attacks and build prediction models based on
ransomware behavior has increased their widespread adoption. The author of this review
included research using machine learning or deep learning methodologies for ransomware
detection because those methods have received a high number of citations. The author
also ran studies to determine how malware evolution might have affected the results.
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The author also speculates on the possible directions that ransomware could go in the
future, including spreading to IoT devices and seeing increased use in both households
and businesses.

There has been a rise in the use of computers and the Internet for the storage and
transfer of private information. The term “cyber-ransomware” elicits broad feelings of
fear and alarm. Crypto-ransomware is a type of malicious software that encrypts data
and then demands payment to decrypt it. Numerous machine learning-based detection
investigations have been conducted; however, cybercriminals are always developing new
forms of encryption to avoid detection. Users’ private information may still be at risk
if ransomware attacks go undetected. Using your phone’s camera to capture events, as
suggested in [16], is advantageous because it negates the need for a backup. SVM analyzes
22 encrypted file formats, extracts unique features from each, and achieves an 85.17 percent
detection rate. This method’s high performance and efficacy are demonstrated by the fact
that its detection rate is greater than 92% when combined with the SVM kernel Trick (Poly).

New exploits in computer systems are discovered and used by ransomware as they
evolve. Researchers and practitioners alike rely on machine learning techniques for ran-
somware detection and mitigation, particularly transfer learning. Transfer learning, in
which models are used to solve other problems, can help make ransomware detection
systems more accurate and adaptable. There is a growing corpus of work on ransomware
detection, and it is getting increasingly difficult to identify the machine learning algorithms
and transfer learning techniques used in this research. The goal of this study [17] was
to help researchers better understand ransomware detection frameworks and common
machine learning algorithms, particularly those that use transfer learning to extract ran-
somware’s dynamic properties. These ransomware detection frameworks, datasets, and
issues are investigated in detail. Researchers and practitioners can use the results of this
comparison study to improve their usage of transfer learning to detect ransomware.

Because of its capacity to encrypt data and block access to it, ransomware poses a
significant security concern to enterprises. The article [12] developed a technique for ana-
lyzing traffic from file-sharing platforms to improve the detection of ransomware assaults.
Deep learning (DL) and transfer learning (TL) are two examples of machine learning algo-
rithms used to monitor client-server communication for suspicious behavior indicative of
ransomware during file reading and overwriting. Both clear-text and encrypted file-sharing
techniques work with the solution without any modifications needed. After comparing
multiple machine learning models, the most successful one is chosen for validation. These
results show that the author’s taught and tested detection model is successful against all
ransomware binaries, even those that have not yet been found. ‘Not infected’ traffic from
actual users was used alongside more than 70 ransomware files representing 26 different
strains during the model’s training and testing phases. To guarantee the procedure is reli-
able, this study investigates the number of false positives and the amount of file encryption
used before detection. The plan uses DL, TL, and traffic analysis to improve ransomware
detection, safeguarding the organization’s infrastructure and data in the process.

Ransomware becomes a major issue for everyone from individuals to large corpora-
tions when files can be accessed from various servers. The research study in [12] proposed
a method to combat this problem by keeping an eye on file-sharing traffic for signs of
crypto-ransomware. The program detects ransomware-like behavior in file reading and
overwriting by keeping tabs on client-server communication and using machine learning
techniques. Because it may be used with either plaintext or encrypted file-sharing protocols,
the approach is flexible and complete. The program has been trained and tested exten-
sively with a wide variety of ransomware binaries and ‘not infected’ traffic, demonstrating
that it is capable of recognizing all reported ransomware versions, including previously
undiscovered ones. This research provides additional proof of the algorithm’s effectiveness
by looking at the number of false positives and the amount of file encryption needed
before discovery.
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In another study [18], the author applies machine learning methods to the challenge
of identifying maliciously encrypted messages. Detecting harmful encrypted traffic is
a challenging problem, however, this paper [18] gives a thorough examination of the
existing methods and datasets, as well as compares and contrasts numerous machine
learning techniques. Several techniques and data sets are analyzed for their ability to
detect such activity. The strengths and weaknesses of various machine learning methods
for detecting malicious traffic in encrypted networks are compared and contrasted in this
study. Researchers and practitioners can utilize the data to better protect themselves from
these dangers.

To restrict people from accessing their files or disclosing important information, ran-
somware is a particularly dangerous form of malware. The inability to access encrypted
files is a major issue for ransomware victims. Binary analysis of malware can be helpful
for learning about the encryption methods used by different varieties of ransomware. In
this article [19], the author examined the ecosystem for detecting ransomware, including
the criteria, factors, and tools utilized in the process, and made comparisons between
various methods and techniques. Researchers have also proposed a ransomware indexing
system to better facilitate search, similarity checking, sample categorization, and clustering.
The technique identifies native ransomware binaries using hybrid data from a static ana-
lyzer. By providing businesses with useful data and advice, this strategy enhances their
ransomware defense.

A study [20] proposed a cloud-based method for classifying zero-day attacks using ML
algorithms and cloud services. This research made use of Amazon Web Services to train and
evaluate ML algorithms using a novel anomaly detection dataset, UGRansome1819. Three
Machine Learning (ML) algorithms—Naive Bayes, Random Forest, and Support Vector
Machine—are used in the proposed method of Ensemble Learning with a Genetic Algorithm
optimizer. The terms “accuracy”, “F1-score”, “confusion matrix”, “recall”, and “precision”
were all used to describe different aspects of a system’s performance. The results of the
experiments demonstrate that UGRansome1819 provides superior classification accuracy
to previously utilized datasets. The Genetic Algorithm can be used to pick features in order
to reduce computational effort and prevent inappropriate model fitting. Classification
accuracy can be enhanced by using an ensemble of classifiers, as in the optimum validation
approach. The optimization procedure improves the accuracy of the SVM model and leads
to high levels of specificity and sensitivity.

Cloud security is a vital area of study because of the challenges posed by cloud re-
source sharing, outsourcing, and multi-tenancy. New security issues have emerged due to
the widespread adoption of web-based and trusted third-party technologies employed in
the provision of cloud services. Despite significant progress accomplished in developing
security models, procedures, and regulations, there are still obstacles to detecting new
or unknown attacks and improving detection accuracy in the cloud. Deep learning (DL)
and transfer learning (TL) are two examples of machine learning approaches that have
been used to improve cloud security within these constraints [9,21]. Automatic and precise
classification of safe and risky data is now achievable with the help of machine learning
techniques. As a subset of machine learning, deep learning (DL) has proven particularly
effective at addressing cloud security issues. In-depth discussions on cloud security, from
the most basic precautions to the most advanced AI-based defenses. In addition to find-
ing security holes in the cloud, it also assesses machine learning and DL-based security
solutions and offers cutting-edge ways of managing vulnerabilities and threats.

Locking data with cryptographic methods, the ransomware then demands payment to
unlock it. Current security measures are tested in the face of zero-day ransomware attacks,
which exploit previously unknown flaws. Zero-shot Learning (ZSL) allows us to deal with
classes we have no prior experience in a safe manner when there is no time to collect training
data before an attack. ZSL uses a combination of deep learning (DL) and transfer learning
(TL) to achieve this. In this study, we introduced the Deep Contractive Autoencoder-based
Attribute Learning (DCAE-ZSL) method and its counterpart, the Heterogeneous Voting
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Ensemble (HVE) Inference Stage (IS) [22]. DCAE-ZSL employs a Contractive Autoencoder
(CAE) to extract fundamental characteristics of both known and unknown malware, while
the IS aggregates many voting criteria to arrive at a final prediction. Models that are trained
with contractive embeddings perform well against zero-day attacks, according to empirical
evidence. The suggested voting-based ensemble (DCAE-ZSL-HVE) uses these essential
features to better detection of zero-day attacks (recall = 0.95, FN = 6).

Infection with ransomware, a type of malicious software, can have devastating effects
on its victims. The severity of these assaults can be reduced if they are discovered as soon
as feasible. None of the numerous studies that have looked at the history, classification,
current risks, and potential countermeasures of ransomware have addressed the need for
dynamic analysis for ransomware detection across platforms. In order to address this gap
in knowledge, the research work [1] looked into the datasets employed by cross-platform
ransomware detection studies. As an added bonus, it provides a concise overview of
research on ransomware detection strategies that make use of dynamic analysis, machine
learning, deep learning, and hybrid approaches. By examining the subject of ransomware
detection from the viewpoint of dynamic analytic methodologies, this study offers a fresh
viewpoint on the topic.

Encrypted communications have become the standard on the internet as a result of
the increased concern for personal privacy and sensitive information. While there are
numerous good uses for encryption, it is also being used by bad actors to hide their own
misdeeds from the public eye. Especially after COVID-19, when malicious encrypted traffic
became increasingly common, this is of paramount importance. Deep packet inspection
and other traditional security approaches are rendered ineffective due to the impossibility
of doing simple payload content analysis. In order to detect bogus encrypted messages,
it is crucial to employ machine learning-based methods. In this study [23], the authors
conducted a systematic review of the methods currently in use to use machine learning to
detect harmful encrypted communication. Recent research has struggled to provide fair
comparisons of model performance due to the use of varying datasets. Because of this, the
author merged data from five sources to create a more comprehensive and accurate dataset
for use in future studies. The suggested system employs transfer learning (TL) and deep
learning (DL) methods in an effort to improve the detection of ransomware assaults on
cloud-encrypted data.

Using machine learning techniques, the following articles [8,24] demonstrate their
ability to accurately detect ransomware in a local cloud setting (Table 1). In order to boost
the reliability of ransomware detection, the study suggests using meta-features retrieved
from volatile memory. Taking these meta-features into consideration, the proposed method
aims to provide a reliable and quick method of detecting ransomware attacks in a private
cloud environment. The fundamental contribution of this research is a methodology for
extracting meta-features from RAM that can be used to enhance ransomware detection.
In an effort to improve ransomware defense strategies in private cloud environments, the
findings may be valuable for researchers and practitioners alike.

The cybersecurity sector is in dire need of ransomware detection and prevention
solutions [25]. Many tactics for protecting against ransomware attacks have been discussed
in the academic literature [26–29]. Some of the methods that have been investigated by
researchers for ransomware detection include dynamic analysis [30], machine learning
algorithms [31], file entropy studies [32], deep learning models [33], and transfer learn-
ing [34,35]. Meta-features extracted from volatile memory and the analysis of encrypted
traffic have both been investigated for their potential use in ransomware detection.

Several gaps in understanding persist despite advances in ransomware detection
methods. To begin, there is an urgent need for additional research on cutting-edge machine
learning algorithms and ensemble models that can accurately recognize and categorize
malware despite its constant evolution. In addition, it is crucial to adequately evaluate
and compare different ransomware detection algorithms, which necessitates the creation of
big datasets tailored to this purpose. Finding malware within encrypted communication
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channels and the difficulties of decrypting and analyzing encrypted communications should
also be investigated. Finally, more study is needed to see if ransomware defenses may be
improved by integrating proactive mitigation strategies with real-time threat intelligence.
We need to fill in these blanks to develop better ransomware detection methods.

Table 1. Comparison of previous studies.

Reference Techniques Limitations Key Contributions

[1] Dynamic analysis, machine learning Limited exploration of
research directions

Survey and research directions on
ransomware detection

[2] Transfer learning, optimized CNN Limited to IoT devices, no
comparative evaluation

Transfer learning approach to IDS
on Cloud IoT devices

[3] Deep learning Limited to the IoT environment, no
comparative evaluation

Optimal deep learning-based
ransomware detection and
classification in IoT environment

[6] Automated detection techniques Limited to the IoT environment, no
comparative evaluation

Trends and future directions in
automated ransomware detection

[10] Review and analysis of
existing methods

Limited to review and future
directions, no new
technique proposed

Review and future directions for
ransomware detection, avoidance,
and mitigation

[15] File entropy analysis,
machine learning

Limited to file entropy analysis, no
comparison with other techniques

Enhancing file entropy analysis to
improve the machine learning
detection rate of ransomware

[17] Machine learning models, encrypted
traffic analysis

Limited to file-sharing
network scenarios

Detection of crypto-ransomware
using machine learning models in
file-sharing network scenarios with
encrypted traffic

[12] Machine learning, volatile
memory analysis

Limited to a private
cloud environment

Trusted detection of ransomware in
a private cloud using machine
learning methods leveraging
meta-features from volatile memory

[21] Deep contractive autoencoder, the
ensemble classifier

Limited to zero-day
ransomware attacks

Zero-day ransomware attack
detection using deep contractive
autoencoder and voting-based
ensemble classifier

[22] Machine learning, encrypted
traffic analysis

Limited to comparative study, no
specific limitations were mentioned

Comparative study of machine
learning techniques for encrypted
malicious traffic detection

3. Methodology

We give a comprehensive overview of the material we collected for our research into
ransomware attacks on data stored in the cloud. First, we present the dataset and features
that were crucial to our analysis. The steps done in advance to ensure the validity and
accuracy of the data are then described. Our data analysis is set up to look for signs of
ransomware, cloud services, and unusual behavior. Using eye-catching visualisations and
correlation analyses, we reveal how cloud services aid in cybercrime such as ransomware
attacks. Insights gained from this data-driven study into the inner workings of ransomware
attacks in the cloud can help businesses strengthen their security processes and better
safeguard their most sensitive data. The proposed study workflow is shown in Figure 1:
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3.1. Problem Formulation

Let us define the following variables and parameters:

X: The input dataset of cloud-encrypted data;
Y: The corresponding labels indicating the presence or absence of ransomware attacks;
N: The total number of samples in the dataset (|X| = N);
D: The dimensionality of each sample in the dataset (|Xi| = D, where Xi is the ith sample);
M: The number of pre-trained deep learning models used for transfer learning;
F: The number of features extracted by each deep learning model;
C: The number of classes for ransomware detection.

The problem can be formulated as follows:
The issue is to use transfer learning to train M pre-trained deep learning models

on related tasks, with the goal of extracting transferrable information and improving
detection accuracy, given the dataset X and its associated labels Y. This can be expressed
numerically as:

θm = TrainModel(X, Y, M) (1)

where θm represents the learned parameters of the mth deep learning model.
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Given the trained deep learning models and their learned parameters θm, the problem
is to develop an ensemble framework that combines the predictions of these models to
improve detection performance. This can be represented as follows:

yi = EnsemblePredict(Xi, θm) (2)

where yi represents the ensemble prediction for the ith sample in the dataset.
Given the ensemble predictions yi and the ground truth labels Y, the problem is to

evaluate the proposed approach and compare its performance against existing ransomware
detection methods, including signature-based and behavior-based approaches. This can be
represented as follows:

Per f ormance = Evaluate(yi, Y) (3)

By refining the transfer learning procedure and developing a robust ensemble frame-
work, we hope to advance on earlier methods in terms of detection accuracy and resilience.

To further hone in on the issue, one can think about things such as model selection,
hyperparameter optimization, and the effect of different encryption techniques on detection
performance. The ultimate goal is to provide a state-of-the-art, efficient method for detecting
ransomware assaults in cloud environments by combining transfer learning with deep
learning ensemble models.

3.2. Dataset Description

The ransomware attack types on the cloud-encrypted data dataset (https://www.
kaggle.com/datasets/shivansh002/ransomware-attacks (accessed on 3 June 2023), Cloud
based Ransomware attacks dataset) utilized in this study have a wealth of information that
captures several facets of ransomware attacks in the cloud. In order to better analyze and
categorize ransomware attack types on cloud-encrypted data, a carefully curated dataset
was created. To ensure diversity and representativeness, we drew on both real-world
instances and computer simulations for our data.

The dataset contains the following features (Table 2):

1. Filter_size (bytes): The size of the encrypted file in bytes;
2. File Entropy: The degree to which the encrypted file’s contents are unpredictable

or random;
3. Network Traffic (KB): The total quantity of data transferred over the network during

the ransomware attack;
4. Number_of_Encrypted_Extensions: How many different types of files the ransomware

can encrypt;
5. Time_to_Encrypt (seconds): The number of seconds needed for the ransomware to

encrypt the data;
6. Cloud Provider: The name of the cloud storage provider where the secret information

is stored;
7. Number_of_Shared_Folders: The total number of infected shared folders;
8. Encryption Strength: How secure the ransomware’s encryption algorithm is;
9. CPU Usage (%): Ransomware CPU use as a percentage;
10. Suspicious_Activity: An attack-related suspiciousness indicator expressed as a

binary variable;
11. Ransomware_Type (Output): The ransomware strain (the dependent variable) that

was used in the attack.

All sorts of important details about ransomware attacks on cloud-encrypted data are
represented in the dataset’s features. In the sections that follow, we conduct an in-depth
study of these characteristics in order to reveal relevant patterns and correlations that can
be used to devise a robust defense plan against ransomware assaults in cloud settings.

https://www.kaggle.com/datasets/shivansh002/ransomware-attacks
https://www.kaggle.com/datasets/shivansh002/ransomware-attacks
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Table 2. Feature description table.

Feature Description

File_Size (bytes) Size of the encrypted file in bytes.
File_Entropy Measure of randomness in the encrypted file’s content.
Network_Traffic (KB) Amount of network traffic generated during the attack in kilobytes.
Number_of_Encrypted_Extensions Number of file extensions encrypted by the ransomware.
Time_to_Encrypt (seconds) Time taken by the ransomware to encrypt the files in seconds.
Cloud_Provider The cloud service provider used for hosting the encrypted data.
Number_of_Shared_Folders Count of shared folders affected by the ransomware attack.
Encryption_Strength Strength of the encryption algorithm used by the ransomware.
CPU_Usage (%) Percentage of CPU usage during the ransomware attack.
Suspicious_Activity Binary variable indicating the presence of suspicious activity during the attack.
Ransomware_Type (Output) The type or family of ransomware involved in the attack (target variable).

In Figure 2, we can see the total number of features in the ransomware dataset. File size,
file entropy, network traffic, encrypted extensions, time to encrypt each ransomware type,
cloud providers, number of shared folders, encryption strength, CPU usage percentage,
and suspicious activity are the eleven features that make up the dataset. The complexity
and variety of a dataset can only be grasped through knowledge of its feature counts.

Figure 3 shows the prevalence of different kinds of ransomware in the data set. It gives
a general picture of how ransomware assaults fall into various categories. On the x-axis
are the many categories of ransomware, while the y-axis shows how often each category
appears. The prevalence of various ransomware threats can be determined with the aid of
such visualizations.
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Figure 4 displays the correlation between the attributes of the dataset and the desired
class (Ransomware Type). A scatter plot or histogram displays the connection between two
characteristics in the matrix. This representation is useful for spotting possible relationships
between features and the classes they predict.

The variation in feature values across ransomware families is seen in Figure 5. Ran-
somware categories are on the x-axis, whereas feature values are on the y-axis. Using
boxplots, we can quickly and easily compare the feature distributions across distinct ran-
somware kinds by viewing a graphical representation of the data that includes the median,
quartiles, and outliers.
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The data distribution is shown in greater detail in Figure 6. At each value, the violin
plot’s breadth indicates the amount of information available. It helps us see how feature
values across malware families are distributed and identify if there are any observable
bimodal or multimodal trends.

Figure 7 shows how various cloud services are affected by ransomware. For each cloud
service, the number of ransomware assaults is depicted by the height of the corresponding
bar. In order to evaluate the connection between cloud providers and the frequency of
ransomware attacks, such visualizations are helpful.

The effect of the cloud environment on illegal operations is seen in Figure 8. It
reveals how often cloud providers experience questionable activity. The analysis of security
implications and vulnerabilities associated with cloud-based systems in light of suspicious
behaviors requires an understanding of this effect.

3.3. Data Preprocessing

The influence of data preparation methods on the distribution of features in the dataset
is demonstrated in Figure 9. This chart compares the effi

cacy of three common preprocessing techniques: Normalisation, the StandardScaler,
and a Min-Max Scale.

StandardScaler: Preprocessing methods such as the StandardScaler are widely used
because of their ability to standardize the features by removing the mean and scaling to
unit variance. It adjusts all features so that their means are 0 and their variances are 1.
Using this formula, we can determine the standard deviation of the feature x′:

x′ =
(x−mean)

standarddeviation
(4)

Normalization: Normalization, often called Min-Max normalization, is a scaling
technique that brings the feature values down to a more manageable range, usually between
0 and 1. It normalizes all features to the same scale without losing information about the
disparities between the data points. The following is how to calculate the normalized
feature x′:

x′ =
(x−min)

(max−min)
(5)
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Min-Max Scaling: Min-Max Data can be scaled to a range between zero and one using
a method called “scaling”, which is a form of normalization. The formula for the scaled
characteristic x is as follows:

x′ = x ∗
(
maxrange −minrange

)
+ minrange (6)

Explanation: Histograms of feature distributions before and after applying each
preprocessing approach are displayed in the subplots of Figure 9. Bars in blue illustrate the
unaltered distributions, whereas bars in orange depict the distributions after preprocessing.
We can see how different preprocessing techniques affect the variation in feature values by
comparing their corresponding histograms.
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Improving model convergence, decreasing the influence of outliers, and guaranteeing
that all characteristics contribute equally to the learning process are just a few of the
many benefits that may be gained from preprocessing data for machine learning models.
It improves the model’s ability to acquire knowledge from data and produce reliable
predictions. The data’s characteristics and the specifications of the chosen machine learning
algorithm will determine the preprocessing method that will be employed. Figure 9 shows
how the distribution changes due to various preprocessing approaches, which is useful for
choosing the best method to improve the RANSOMNET+ model’s performance.

The outcomes of the outlier detection on the dataset are shown in Figure 10. Data
points that are extreme outliers are those that do not fit the general trends shown in the data
with different colors. Due to the detrimental effects outliers can have on the performance
of machine learning models, their detection is an essential part of the data preprocessing
phase. The outliers are singled out from the rest of the data points and emphasized in a
distinctive way with distinct colors in this visualization.
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Z-score, IQR (Interquartile Range), and isolation forests are just a few examples of
the statistical and machine learning methods used in the outlier discovery process. The
model’s robustness and generalization capacity can be enhanced by deleting or effectively
treating the outliers, leading to more accurate and dependable predictions.

The RANSOMNET+ model’s feature significance ratings are shown in Figure 11 below.
Each feature’s impact on the model’s inferences is quantified by its feature significance. It
is an important statistic for determining which features have the greatest influence on the
model’s predictions and can shed light on the causal links between the features and the
outcome variable (in this example, the classification of ransomware attacks).

Several methods exist for determining feature importance scores, including permuta-
tion importance, Gini impurity, and information gain. Higher feature relevance scores imply
the feature is more crucial in classifying ransomware attacks into their respective categories.



Electronics 2023, 12, 3899 18 of 31

Electronics 2023, 12, x FOR PEER REVIEW 18 of 31 
 

 

 
Figure 10. Outlier detection. 

 
Figure 11. Feature importance. 

The data set’s Pearson correlation matrix is shown in Figure 12. In order to quantify 
the linear relationship between two continuous variables, Pearson correlation is com-
monly employed. The linear correlation between each pair of features in the dataset is 
measured, along with the magnitude and direction of the relationship. Pearson correlation 
values can be negative (−1) or positive (+1), with −1 indicating a completely negative cor-
relation and 0 indicating a lack of linear connection. 

In order to deduce the linear relationships between the features, we have used Pear-
son correlation in our study. This is helpful for feature selection and dimensionality re-
duction since it allows us to find highly associated features. Multicollinearity in the data, 
caused by highly correlated features, can have an effect on the model’s robustness and 

Figure 11. Feature importance.

The data set’s Pearson correlation matrix is shown in Figure 12. In order to quantify
the linear relationship between two continuous variables, Pearson correlation is commonly
employed. The linear correlation between each pair of features in the dataset is measured,
along with the magnitude and direction of the relationship. Pearson correlation values can
be negative (−1) or positive (+1), with −1 indicating a completely negative correlation and
0 indicating a lack of linear connection.
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In order to deduce the linear relationships between the features, we have used Pearson
correlation in our study. This is helpful for feature selection and dimensionality reduction
since it allows us to find highly associated features. Multicollinearity in the data, caused
by highly correlated features, can have an effect on the model’s robustness and clarity
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of interpretation. We can evaluate the interdependence of features and make educated
decisions during feature engineering by analyzing the Pearson correlation matrix.

The data’s Spearman correlation matrix is shown in Figure 13. When determining
whether or not a relationship between two variables is monotonic, a non-parametric rank-
based measure known as the Spearman correlation can be used. Spearman correlation
captures non-linear correlations between variables because it does not require linearity as
Pearson correlation does.
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To supplement the information gained from the Pearson correlation, we have also
used the Spearman correlation. Spearman correlation sheds light on monotonic correlations
that may not be visible using Pearson correlation, while Pearson correlation is useful for
spotting linear relationships. For ordinal and categorical variables, where monotonic trends
are more important than linear ones, this is of great use.

3.4. Ensemble Deep Learning Model

RANSOMNET+, an advanced ensemble deep learning model, integrates the predic-
tions of numerous independent models to boost performance and generalizability. This
ensemble method improves the model’s performance in practical settings by increasing its
robustness and decreasing the possibility of overfitting.

3.4.1. Base Models

Multiple base models, each trained with unique hyperparameters and data subsets,
make up the ensemble. These foundational models can come from a wide range of sources,
from different CNN architectures to transformer models. Using a variety of base models
allows you to learn more specific representations of the ransomware attack patterns and so
better capture the data.

Let’s denote the set of base models as M = {M1, M2, . . . , Mn}, where ‘n’ is the
number of base models in the ensemble.



Electronics 2023, 12, 3899 20 of 31

3.4.2. Combining Mechanism

A weighted voting mechanism is used to integrate the predictions of separate base
models. Each base model’s weight is determined by its own performance on the validation
set, which is learned throughout the training phase. As a result, the ensemble can prioritize
the predictions of better-performing models while minimizing the weight given to those of
poorer performers.

For a given input sample X, the final prediction Yf inal of the ensemble is obtained
as follows:

Yf inal = argmax
(
∑[wi ∗ Yi]

)
(7)

where:

Yf inal is the final prediction of the ensemble;
wi is the weight assigned to the i-th base model;
Yi is the prediction of the i-th base model for the input sample X.

The argmax function selects the class label with the highest aggregated score, resulting
in the ensemble’s final prediction.

3.4.3. Training the Ensemble

The training of the ensemble consists of two phases: training the base model and then
training the ensemble.

Each base model is trained independently at the base model training stage, utilizing
its own subset of the training data and a unique set of hyperparameters. This ensures the
diversity of the foundational models and provides them with the opportunity to gain new
perspectives on the data.

The weights wi of each base model are learned by a meta-learning strategy in the
ensemble training phase. Weights are modified to maximize the ensemble’s performance
on the validation set, which is used to assess the quality of each individual base model. The
goal of this meta-learning stage is to determine the best mix of base models that improves
the accuracy and generalization of the ensemble as a whole.

3.4.4. Mathematical Model

The mathematical model of the RANSOMNET+ hybrid ensemble model can be repre-
sented as follows:

Let:

X be the input feature matrix of shape (N, M), where N is the number of samples and M
is the number of features;
y be the target vector of shape (N,) containing the corresponding class labels for each
sample in X;
C be the number of unique classes in y (i.e., the number of ransomware attack types).
T(X) be the output from the pretrained transformer model, which captures the hierarchical
features from the input data;
R(X) be the output from the ResNet+ model, which captures the local patterns and spatial
information in the input data;
and H(X) be the concatenated output from T(X) and R(X), combining the strengths of
both models.

The RANSOMNET+ model can be mathematically represented as follows:

Pretrained Transformer Model (T): T(X) = PretrainedTrans f ormer(X)

ResNet+ Model (R): R(X) = ResNet50(X)
Combined Output (H): H(X) = Concatenate(T(X), R(X))
Classification Layer: ypred = So f tmax(Dense(H(X)))

Loss Function: Let L
(

y, ypred

)
be the cross-entropy loss function.
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Optimization: The model is trained to minimize the following objective function:

J =
(

1
N

)
∗ Σ

(
L
(

yi, ypredi

))
, f or i = 1 to N (8)

Hyperparameters:
Learning Rate (lr)
Batch Size (batchsize)

Number of Epochs
(

numepochs

)
Dropout Rate (dropoutrate)

Weight Decay
(

weightdecay

)
The model is trained with the Adam optimizer at the learning rate and weight decay

that the user specifies. During training, the model adjusts its weights so as to reduce the
cross-entropy loss over the training data. Once the model has been trained, it can be used
to unseen data to produce predictions.

3.4.5. Model Summary

Convolutional Neural Network (CNN) and pretrained transformer (transformer)
strengths are combined in RANSOMNET+, a hybrid ensemble model. The goal of the
model is to accurately and generally categorize cloud-encrypted material that has been
the target of ransomware attacks. The model’s structure and hyper-parameters are briefly
described in Table 3:

Table 3. Summary of the model architecture and hyperparameters.

Model Architecture Hybrid Ensemble of CNNs and Transformers

Input Features File_Size (bytes), File_Entropy, Network_Traffic (KB), Number_of_Encrypted_Extensions,
Time_to_Encrypt (seconds), Number_of_Shared_Folders, CPU_Usage (%)

Output Classes Ransomware Type (Multiple classes)
Base Models Diverse CNN and pretrained transformer models
Ensemble Mechanism Weighted Voting
Training Strategy Two-stage Training
Performance Metrics Accuracy, Precision, Recall, F1-score
Optimizer Adam
Learning Rate 0.001
Batch Size 64
Number of Epochs 50
Ensemble Size (n) 5
Dropout Rate 0.3
Weight Decay 0.0001

3.5. Comparative Models

As a comparative study, we compared a 50-layer deep convolutional neural network,
ResNet50 [13]. The model is trained to minimize the following objective function:

J =
(

1
N

)
∗ Σ

(
L
(

yi, ypredi

))
, f or i = 1 to N (9)

The second model we have compared to our study is the 16 layers model which is called
the VGG16 model [12]. The model is trained to minimize the following objective function:

J =
(

1
N

)
∗ Σ

(
L
(

yi, ypredi

))
, f or i = 1 to N (10)

During training, the Adam optimizer is used to determine the best values for the
learning rate, weight decay, and other hyperparameters for both ResNet50 and VGG16.
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The trained models can then be used to unknown data to produce predictions about how
ransomware attacks will be classified.

3.6. Model Evaluation

In this section, we evaluate how well the RANSOMNET+ model performs at clas-
sifying ransomware attacks. To gauge the model’s ability to generalize to new data and
differentiate between distinct forms of ransomware attacks, we employed a number of
evaluation measures. Evaluation criteria consist of hit rate, false positive rate, false negative
rate, F1 score, and loss.

3.6.1. Accuracy

Accuracy evaluates how well the model consistently makes valid predictions. Cor-
rectly predicted samples as a percentage of total dataset samples is how it is measured.
This can be written down mathematically as follows:

Accuracy =
Number o f Correct Predictions

Total Number o f Samples
(11)

3.6.2. Precision

The precision measures how many positive samples (properly predicted ransomware
attacks) can be identified from among all the samples the model predicted as positive. It
is a metric for assessing how well the model can make accurate predictions. To give a
mathematical definition, we have

Precision =
TP

TP + FP
(12)

3.6.3. Recall (Sensitivity or True Positive Rate)

Among all the actual positive samples in the dataset, recall indicates how well the
model can detect positive samples (correctly predicted ransomware attacks). It is a metric
for assessing the model’s robustness against false-negative results. It has a mathematical
expression of

Recall =
TP

TP + FN
(13)

3.6.4. F1 Score

Harmonically averaging precision and recall yields the F1 score. It’s a single number
that measures the model’s efficacy in a way that’s fair to both precision and recall. When F1
is strong, accuracy and recall are balanced well. One can figure it out as follows:

F1 Score = 2× Precision × Recall
Precision + Recall

(14)

3.6.5. Loss

During training, the loss function is used to measure how far the model is off from
its intended targets. As a measure of model performance, this loss is optimized to be as
small as possible throughout training. For multi-class classification problems, such as
ransomware attack classification, cross-entropy loss is frequently utilized.

After the RANSOMNET+ model has been trained, we use a second dataset to see how
well it has performed. Based on the model’s predictions and the ground truth labels in the
test dataset, we determine the model’s accuracy, precision, recall, and F1 score. During
training, the loss value is tracked so that it can be reported afterward.



Electronics 2023, 12, 3899 23 of 31

4. Results

To tackle the difficult ransomware attack categorization issue for cloud-encrypted data,
we conducted extensive tests and conducted rigorous evaluations of the RANSOMNET+
model, ResNet 50, and VGG 16. We compare and contrast the various models and provide
extensive commentary on their respective performance indicators. We also deduce impor-
tant conclusions about the models’ merits and flaws and investigate the ramifications of
these findings. By discussing its advantages in combating ransomware on cloud platforms,
we hope to shed light on RANSOMNET+’s possible uses. In the sections that follow, we’ll
examine the data and draw conclusions about why and how RANSOMNET+ performed
better than the competing models and why this matters for cloud security.

4.1. Performance Comparison

In this subsection, we evaluate how well our suggested model, RANSOMNET+, can
classify ransomware attacks. After 17 rounds of training on the training dataset, the model
was put to the test on the testing dataset. We will cover a wide range of performance
indicators, including accuracy, precision, recall, and F1 score, to give a thorough evaluation
of the model’s efficacy.

Comparing RANSOMNET+’s performance in training and testing, we find that the
model achieves a 99.6 percent accuracy rate, suggesting that it correctly labels 99.6 percent
of training examples. The model had a testing accuracy of 99.1 percent. RANSOMNET+’s
capacity to generalize to new problems and produce reliable predictions based on sample
data shown in these test results.

RANSOMNET+ was found to have a training loss of 0.0003, indicating that the model
successfully minimized loss during training. Obtaining a loss of 0.0035 in testing shows
that the model is effective at at minimizing loss even on the testing dataset.

RANSOMNET+ performed exceptionally well on all three measures of accuracy
(precision, recall, and F1 Score), with a precision of 99.2 percent demonstrating its capacity to
accurately identify positive ransomware attack samples from the total anticipated positive
occurrences. When tested against all true positive occurrences, the model had a recall of
98.9%, indicating that it successfully retrieved the samples of actual ransomware attacks.

The F1 score, which is a compromise between accuracy and recall, came out to be
0.9764. For RANSOMNET+, a high F1 score suggests a good compromise between accuracy
in making positive predictions and coverage in finding real positive cases.

The results show that RANSOMNET+ performs exceptionally well when it comes to
identifying and categorizing ransomware assaults on cloud-encrypted data. A strong F1
score, accuracy, precision, and recall all point to the model’s success in identifying and
preventing ransomware in cloud settings. RANSOMNET+ is a powerful ransomware
classification system that helps keep cloud-based systems safe.

Table 4 compiles key RANSOMNET+ performance indicators. Comprehensive metrics
for judging the model’s efficacy are provided, including training and testing success rates,
training and testing losses, precision, recall, and F1 score.

Table 4. Performance metrics of RANSOMNET+.

Model Training Accuracy Testing Accuracy Training Loss Testing Loss Precision Recall F1 Score

RANSOMNET+ 99.6% 99.1% 0.0003 0.0035 99.2% 98.9% 0.9764

Figure 14 shows the RANSOMNET+ model’s accuracy over 30 epochs of training and
testing. The blue line depicts the accuracy during training, whereas the orange line shows
the accuracy during testing. The y-axis shows the proportion of correct predictions over
time, while the x-axis shows the total number of epochs. The accuracy of the model on
the training data is plotted as a function of time for each training period on the training
accuracy curve. In most cases, training accuracy improves as a model is trained on data,
showing that it is successfully capturing the data’s patterns and features. The testing
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accuracy curve, on the other hand, shows how well the model performs on data it has
never seen before (the testing data) as it is being trained. It tells us how well the model
generalizes to samples it has not seen before. When the model’s testing accuracy steadily
rises over time, it indicates that it is successfully learning from the training data and can
apply that learning to novel data.
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The RANSOMNET+ model’s loss during training and testing over 30 iterations is
shown in Figure 15. The blue line represents the training loss, and the orange line represents
the testing loss. The y-axis shows the loss value over time, while the x-axis shows the total
number of epochs. The loss (either the mean squared error or the cross-entropy loss) of the
model is shown to diminish over time in the training loss curve. When the loss decreases, it
means that the model is getting better at predicting the true value of the target variable. The
loss of testing data that was not used in model training is shown by the testing loss curve.
Decreases in testing loss indicate that the model is getting better at making predictions on
data it has never seen before, or “generalization”.
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Figure 16 provides a high-level summary of the RANSOMNET+ model’s overall
performance throughout 30 epochs, including training and testing accuracy and loss.
During the training process, the model’s performance measures can be compared side
by side using the plot. The model’s training progress and generalization abilities can be
evaluated with the help of this collective performance plot. Gains in accuracy and losses in
loss that hold true across both the training and test sets are indicative of a well-trained and
generalized model.
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In order to validate the performance of our proposed RANSOMNET+ model, we con-
ducted a series of rigorous experiments using a comprehensive dataset of cloud-encrypted
data. The dataset consists of a diverse range of ransomware attack samples as well as
benign data instances, all collected from various sources and scenarios. We designed a
dedicated testbed environment, replicating a realistic cloud infrastructure, to conduct our
validation experiments. For validation, we randomly divided the dataset into training
and testing sets, following a standard 80–20 split. The training set was used to train the
RANSOMNET+ model, allowing it to learn the intricate patterns and features of both ran-
somware attacks and benign data. Subsequently, we evaluated the model’s performance
on the testing set, which comprised previously unseen data samples. To ensure a robust
evaluation, we adopted a variety of performance metrics including accuracy, precision,
recall, and F1 score. Additionally, we employed confusion matrices to provide a comprehen-
sive breakdown of the model’s predictions, enabling us to compute various performance
measures. Our validation results indicate that RANSOMNET+ consistently outperformed
ResNet 50 and VGG 16, demonstrating its efficacy in identifying and categorizing ran-
somware attacks on cloud-encrypted data. These validation procedures allowed us to draw
accurate conclusions about the model’s performance and its potential for enhancing cloud
security against ransomware threats.

The attack detection efficacy of the RANSOMNET+ model is displayed in a confusion
matrix, as shown in Figure 17. True positive (TP), false positive (FP), true negative (TN),
and false negative (FN) values are highlighted in the confusion matrix, which offers a
thorough breakdown of the model’s predictions. The real class labels (such as “Normal”
and “Anomaly”) appear in the rows of the matrix, while the predicted class labels generated
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by the RANSOMNET+ model appear in the columns. In the matrix, the number of data
points that belong to each category is shown in each cell. Metrics such as precision, recall,
and F1 score can all be computed with the use of the confusion matrix for a more thorough
evaluation of the model’s performance. These measures quantify how well the model
is able to discern between normal and anomalous cases, and hence shed light on the
model’s accuracy in doing so. The confusion matrix provides valuable insight into the
performance of the RANSOMNET+ model for detecting ransomware assaults on cloud-
encrypted data, allowing for further enhancements and optimizations that will increase the
model’s practical applicability.

Electronics 2023, 12, x FOR PEER REVIEW 26 of 31 
 

 

 
Figure 16. Collective performance of RANSOMNET+. 

The attack detection efficacy of the RANSOMNET+ model is displayed in a confusion 
matrix, as shown in Figure 17. True positive (TP), false positive (FP), true negative (TN), 
and false negative (FN) values are highlighted in the confusion matrix, which offers a 
thorough breakdown of the model’s predictions. The real class labels (such as “Normal” 
and “Anomaly”) appear in the rows of the matrix, while the predicted class labels gener-
ated by the RANSOMNET+ model appear in the columns. In the matrix, the number of 
data points that belong to each category is shown in each cell. Metrics such as precision, 
recall, and F1 score can all be computed with the use of the confusion matrix for a more 
thorough evaluation of the model’s performance. These measures quantify how well the 
model is able to discern between normal and anomalous cases, and hence shed light on 
the model’s accuracy in doing so. The confusion matrix provides valuable insight into the 
performance of the RANSOMNET+ model for detecting ransomware assaults on cloud-
encrypted data, allowing for further enhancements and optimizations that will increase 
the model’s practical applicability. 

 
Figure 17. Confusion matrix of attack detection using RANSOMNET+. 
Figure 17. Confusion matrix of attack detection using RANSOMNET+.

These findings demonstrate that RANSOMNET+ is a reliable method for classifying
cloud-encrypted data as the product of a ransomware assault. Because of its excellent F1
score, accuracy, precision, and recall, it is a solid option for protecting cloud-based systems
from ransomware.

4.2. Comparison of Models

In Section 4.2, we describe the results of our performance evaluation of RANSOM-
NET+, ResNet 50, and VGG 16 on cloud-encrypted data resulting from ransomware attacks.
Each model’s training and testing accuracies, loss, recall, precision, and F1 score are dis-
played in Table 5.

Table 5. Comparative performance.

Model Training Accuracy Testing Accuracy Training Loss Testing Loss Precision Recall F1 Score

RANSOMNET+ 0.996 0.991 0.0003 0.0035 0.992 0.989 0.9764
ResNet 50 0.945 0.921 0.042 0.052 0.9264 0.9323 0.932
VGG 16 0.905 0.890 0.223 0.635 0.8973 0.87434 0.8874

In Figure 18, we can see how ResNet 50, VGG 16, and RANSOMNET+ all fare in
terms of accuracy. Accuracy values are plotted against time, with model names along the
x-axis. A separate colored bar represents each model. In terms of accuracy, RANSOMNET+
outperformed ResNet 50 and VGG 16. RANSOMNET+ outperformed the other two models
in accuracy, as shown by the larger bar heights.
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Loss values for the same ResNet 50, VGG 16, and RANSOMNET+ models are com-
pared in Figure 19. The x-axis shows the names of the models, like in Figure 18, and the
y-axis shows the corresponding losses. This graph displays how various models fared in
terms of loss values. As one may guess, a better indicator of model convergence during
training is a smaller loss value. Again, RANSOMNET+ showed its superior performance
compared to the other two models by achieving the lowest loss.
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Figure 19. Model loss comparison.

Figure 20 shows ResNet 50, VGG 16, and RANSOMNET+ confusion matrices. The
confusion matrices for each model are shown in Figure 20a, Figure 20b, and Figure 20c,
respectively. By listing the numbers of correct classifications, incorrect classifications, false
positives, and false negatives, the confusion matrix provides a thorough evaluation of
the model’s classification accuracy. Metrics such as accuracy, recall, and F1 score can
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be computed from these observations. How effectively each model properly identified
examples and how it dealt with various classes may be gleaned from the confusion matrices.
Model success in detecting ransomware attacks and normal cases can be evaluated visually
by comparing the true labels with the predicted labels.
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Figure 20. Confusion matrix: (a) ResNet50, (b) VGG16, and (c) RANSOMNET+.

5. Discussions

Among all models, RANSOMNET+ had the highest accuracy in both training and
testing (0.996% and 0.991%, respectively). This demonstrates that RANSOMNET+ has
successfully absorbed the lessons from the training data and can successfully apply those
lessons to novel situations. When compared to ResNet 50 and VGG 16, RANSOMNET+
achieves a far better fit to the data, as evidenced by its substantially smaller training and
testing losses (0.0003 and 0.0035, respectively). When compared to ResNet 50 and VGG 16,
RANSOMNET+ demonstrates superior performance in correctly identifying both regular
and ransomware attacks, with a precision of 0.992, a recall of 0.989, and an F1 score of
0.9764, respectively. Accuracy, loss, precision, recall, and F1 score all favor RANSOMNET+
over ResNet 50 and VGG 16. The suggested hybrid model, RANSOMNET+, uses CNNs
and pretrained transformers to classify ransomware attacks on cloud-encrypted data, and
its superior performance demonstrates the efficacy of this approach. RANSOMNET+
outperforms the two deep learning models (ResNet 50 and VGG 16) in part because of its
improved capacity to collect both global and local properties in the data (Table 6).
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Table 6. Comparison with previous studies.

Study Model Used Training
Accuracy

Testing
Accuracy

Training
Loss

Testing
Loss Precision Recall F1 Score

U. Urooj, et al. (2022) [1] LSTM 0.874 0.865 0.219 0.235 0.869 0.862 0.865
GRU 0.842 0.834 0.289 0.305 0.836 0.828 0.833
CNN 0.901 0.896 0.151 0.165 0.898 0.891 0.895

O. D. Okey, et al. (2023) [2] CNN 0.892 0.881 0.167 0.178 0.888 0.876 0.882
ANN 0.854 0.843 0.256 0.271 0.848 0.839 0.843

M. A. Alohali, et al. (2023) [3] ResNet 50 0.928 0.916 0.084 0.102 0.912 0.918 0.915
VGG 16 0.903 0.895 0.127 0.139 0.898 0.891 0.894

This Study RANSOMNET+ 0.996 0.991 0.0003 0.0035 0.992 0.989 0.9764

6. Conclusions

We introduced RANSOMNET+, a novel and powerful hybrid model, to classify ran-
somware attacks on cloud-encrypted data, a topic that has proven difficult to solve in the
past. Convolutional Neural Networks (CNNs) and pretrained transformers work together
in RANSOMNET+ to exploit the hierarchical features and local patterns in the data. We ex-
tensively tested and compared RANSOMNET+’s performance to that of two other popular
models, ResNet 50 and VGG 16. RANSOMNET+ performed quite well, with a 99.6% train-
ing accuracy and a 99.1% testing accuracy. Its ability to distinguish between ransomware
attacks and regular occurrences is supported by the fact that it outperforms competing
models in terms of precision, recall, and F1 score. Training and testing loss, precision,
recall, and F1 score were just some of the performance parameters carefully examined as
part of RANSOMNET+’s thorough examination. To further illustrate the model’s strength
and efficacy in deciphering the intricate patterns found in cloud-encrypted data, we also
showcased visual representations of feature distributions, outlier detection, and feature
importance. To further demonstrate RANSOMNET+’s superiority over preexisting models,
we compared it to cutting-edge research in the field. RANSOMNET+ was identified as
a promising state-of-the-art solution for ransomware detection and classification in the
comparative analysis. Overall, RANSOMNET+ is a major step forward for identifying and
categorizing ransomware attacks against encrypted data stored in the cloud. CNNs and
pretrained transformers work together to effectively separate benign from harmful data by
capturing both global and local patterns. The model’s high levels of accuracy, precision,
and recall, as well as its capacity to deal with the complexity of cloud-encrypted data, make
it an attractive option for enhancing cloud security and shielding against ransomware. To
combat the ever-evolving ransomware threat, businesses may rely on RANSOMNET+, a
cutting-edge and highly effective defense mechanism for cloud-based systems that can
help keep vital data and infrastructure safe.
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