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Abstract: Educational exercises are crucial factors in the successful implementation of online educa-
tion as they play a key role in assessing students’ learning and supporting teachers in instruction.
These exercises encompass two primary types of data: text and images. However, existing methods
for extracting exercise features only focus on the textual data, neglecting the rich semantic infor-
mation present in the image data. Consequently, the exercise characterization vector generated by
these methods struggles to fully characterize the exercise. To address these limitations, this paper
proposes a multimodal information fusion-based exercise characterization model called MIFM. The
MIFM model tackles the challenges of current exercise modeling methods by performing extraction
and fusion operations on the heterogeneous features present in exercises. It employs a dual-stream
architecture to separately extract features from images and text, and establishes connections between
heterogeneous data using cross-modality attention methods. Finally, the heterogeneous features are
fused using a Bi-LSTM combined with a multi-head attention mechanism. The resulting model pro-
duces a multimodal exercise characterization vector that fuses both modalities and incorporates three
knowledge elements. In the experiments, by using the model to replace the exercise characterization
modules in the three educational tasks, specifically, it achieves an increased ACC value of 72.35% in
the knowledge mapping task, a heightened PCC value of 46.83% in the exercise difficulty prediction
task, and an elevated AUC value of 62.57% in the student performance prediction task.

Keywords: multimodal fusion; educational exercise characterization; feature extraction

1. Introduction

During the COVID-19 pandemic, schools worldwide faced the threat of the outbreak,
compelling the majority of teachers and students to engage in remote education activities.
Consequently, discussions and research related to online education proliferated during
this period. For instance, Nirmalya Thakur [1] developed a dataset comprising tweets
from Twitter during the pandemic, focusing on opinions, attitudes, and feedback regarding
online learning. Research conducted at the University of Cluj Napoca, Romania, revealed
that 78% of students perceived online education during the pandemic as beneficial to
their learning, with 41.7% expressing satisfaction with the quality of online courses [2].
Objectively, the pandemic accelerated the growth of online education, but it also exposed
certain challenges. Educational exercises are pivotal in online education, and exploring
how to leverage them for more intelligent and precise assessment of student learning
remains an area of investigation. Deep learning methods have shown promising results in
intelligent assessment of student learning using educational exercises. However, prevalent
deep learning techniques still exhibit shortcomings in the extraction of multimodal data
features within the realm of online education.

Data feature extraction has garnered significant attention from researchers across
various fields, including natural language processing and imaging. This is due to the direct
impact of an effective feature extraction method on model performance. In today’s era of
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abundant data, the scenarios for training deep learning models have become diverse, and
the number of datasets is experiencing exponential growth. While a large amount of data
can enhance model performance to some extent, it also leads to a linear increase in model
training time and greater demand for computational resources [3]. The current unimodal
data format no longer meets the requirements of modern models, as real-life scenarios
often involve multimodal data, such as videos with subtitles and audio. Input data may
contain heterogeneous information, including text, images, and videos [4]. If unimodal
architecture is still employed for feature extraction, one approach is to perform feature
extraction operation only for the data in the corresponding format of the model, discarding
the remaining modal data, which will cause a certain degree of information loss and lead
to incomplete data information extraction. The textual content of the exercises fails to suffi-
ciently extract knowledge points that can encapsulate the overarching semantic information
of the entire set of exercises, resulting in a deficiency in the generated exercise representa-
tion vectors. Traditional unimodal exercise representation models overlook heterogeneous
exercise information beyond text, and output exercise text representation vectors as rep-
resentations of exercise semantic information, consequently missing out on knowledge
points, example images, and other highly relevant information associated with the exercises.
This oversight stems from the traditional approach’s exclusive focus on textual content
while neglecting the broader context of exercise elements. Another approach is to use the
same data feature encoder to extract features from different modalities, concatenating the
resulting data feature vectors to obtain the final characterization. Although these methods
have the capability to access multimodal data, they encounter issues related to parameter
disarray when employing unimodal encoders for feature extraction from multimodal data.
Additionally, the simple concatenation operation used to merge heterogeneous data fails
to effectively integrate such data, resulting in inadequately representing the semantic in-
formation of exercises in the generated exercise representation vectors. Consequently, this
approach leads to the incomplete extraction of data from various modalities. To address
these challenges, this paper proposes the Multimodal Information Fusion Model (MIFM)
to generate multimodal vectors for corresponding exercises. MIFM adopts a dual-stream
architecture for the feature extraction of multimodal data in the feature extraction mod-
ule, and constructs corresponding data feature encoders for data of different modalities,
respectively. The model outputs a heterogeneous data feature vector that fully captures the
semantic information of the input multimodal data. The main contributions of this work
are as follows:

1. A multimodal fusion-based exercise characterization method is proposed to vectorize
exercise with heterogeneous data and use the generated multimodal vectors to act on
downstream tasks.

2. Propose a dual-stream architecture for the feature extraction of heterogeneous data
and fuse cross-modal attention for the fusion of heterogeneous features.

3. Through experiments conducted on datasets collected in real educational settings
across three distinct educational tasks, the model is demonstrated to effectively en-
hance the educational task implementation.

2. Related Works
2.1. Unimodal Characterization Method

The unimodal characterization method for educational exercises primarily focuses on
extracting features from the textual content within them. The content of exercises typically
includes exercise text, example images, knowledge concepts, answers, and other relevant
information. Among these components, exercise text is essential as it must be present in
all exercises, and it is also the most explicit part of semantic information in the text [5].
Consequently, many researchers primarily rely on exercise text modeling to characterize
exercises [6–8]. For instance, Shahmirzadi et al. [9] divide the topic text into sections, assign
different weights to the resulting divisions, and combine each division vector to represent
a complete topic. Zhang et al. [10] exclude images and formula information from the input
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data, using a prefix tree-based lexicon-free word separation algorithm to extract features
from the exercise text and reference answers. The extracted results are then employed as
semantic feature vectors for the exercise. Huang et al. [11] utilize Convolutional Neural
Networks (CNNs) to capture word-to-word interactions on a larger scale, enabling the
learning of deep semantic features for characterizing exercise sentences as vectors. Her-
mann et al. [12] propose a two-layer structured Long Short-Term Memory (LSTM) model
to obtain exercise characterization vectors by learning the context of each exercise. Many of
these unimodal representation methods primarily rely on textual information present in
the exercises, such as exercise text, knowledge points, and exercise explanations. However,
they tend to disregard other modal, heterogeneous data embedded within the exercises,
resulting in a partial loss of exercise information within the exercise representation vectors.
In contrast, multimodal exercise representations integrate image information from the
exercises after appropriate feature extraction in a coherent manner with textual features,
serving as the representation vector for the exercises.

2.2. Multimodal Characterization Method

Most unimodal exercise characterization methods primarily utilize the textual infor-
mation contained within exercises, such as exercise text, knowledge concepts, and exercise
parsing. However, they ignore other modalities of heterogeneous data present in the
exercises, resulting in the omission of certain exercise information within the exercise
characterization vector. The key distinction between multimodal exercise characterization
and unimodal exercise characterization lies in the fusion of image information with text
features in the multimodal model. Multimodal exercise representations integrate image
information from the exercises after appropriate feature extraction in a coherent manner
with textual features, serving as the representation vector for the exercises. Liu et al. [13]
employ one-hot encoding to encode topic knowledge concepts and utilized CNN to extract
image features. The resulting knowledge concept vector and image features are compared
with the text feature vector converted by word2vec. Finally, the exercises are inputted
into the Attention-LSTM to generate multimodal exercise characterization vectors. This
approach yields exercise representation vectors that encompass richer semantic information
compared to unimodal exercise representation vectors and maximally capture the semantic
characteristics embedded in the exercise resources [14–16]. As a result, it exhibits a signifi-
cant improvement in performance on the “Finding Similar Exercises” task compared to
the existing baseline at the time. However, this approach solely assesses the relationships
between exercises based on semantic similarity, without considering other factors such as
exercise difficulty and knowledge mapping.

2.3. Exercise Characterization Method

Exercise characterization methods can be broadly categorized into word-level and
sentence-level approaches. Word-level methods involve converting each word in the
exercise text into a corresponding feature vector and combining them to create a charac-
terization vector that preserves the original semantic information effectively. Word-level
exercise characterization encompasses three main methods: one-hot encoding, TF-IDF
(Term Frequency-Inverse Document Frequency) based characterization [17], and word2vec-
based characterization [18]. The one-hot encoding method assumes that each word in the
text is mutually independent, disregarding interactions between words and neglecting
contextual semantics and sequential information within the text. TF-IDF representation
solely considers word frequency, overlooking positional information and interrelationships
among words. Word2Vec, while considering contextual semantic associations of words,
reduces the dimensionality of word embeddings, speeding up model training. However, it
still fails to address several issues pertaining to synonymy and word sequence relationships
in text representation.

Sentence-level characterization methods focus on extracting features from the word
sequence and text structure information of exercise text using CNN and RNN (Recurrent
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Neural Network) [19]. These methods consider the textual information of the exercise
from a sentence-level perspective, resulting in the generation of an exercise characteriza-
tion vector [20]. Sentence-level-based exercise characterization methods can be further
divided into two categories: convolutional neural network-based methods and recurrent
neural network-based methods. To address the challenges associated with RNN when
handling lengthy text, researchers have introduced an alternative recurrent neural network
architecture known as an LSTM network. Within the LSTM network, the hidden states
maintain a record of all the information in the text sequence from the input to the current
text position. Consequently, when a exercise text is fed into an LSTM model, it generates
a corresponding hidden state. This allows for the direct utilization of the final hidden
state, which encapsulates the global semantic information of the exercise, as the vector
representation of the exercise.

3. Proposed Method

To tackle the challenges posed by incomplete extraction and inadequate fusion of het-
erogeneous features in data with different modalities using conventional feature extraction
models, this paper proposes a multimodal model called MIFM (Multimodal Information
Fusion Model). MIFM is designed to extract and fuse heterogeneous features in educa-
tional exercises. The model employs distinct feature extractors for different modalities
of data, introducing a dual-stream architecture within the traditional multimodal vector
representation framework. This allows multiple feature extractors to concurrently extract
features from different modalities of data, encoding subject knowledge points, accompany-
ing images, and exercise text heterogeneous data using separate encoders. This approach
ensures the integrity of feature extraction from multimodal data while simultaneously
enhancing the efficiency of feature extraction. Additionally, a multimodal cross-attention
mechanism is employed to fuse the data from different modalities. The utilization of a
multimodal cross-attention mechanism enables the precise capturing of critical information,
facilitating efficient allocation of information processing resources. This mechanism in-
volves the weighted distribution of attention to specific local information within the input
data, granting higher attention scores to locally significant information while selectively
disregarding lower-weighted local details. This approach enhances the model’s scalability
and robustness, promoting adaptability to varying input conditions.

3.1. Overview of the MIFM

The multimodal information fusion model MIFM, illustrated in Figure 1 model archi-
tecture, comprises three main layers: heterogeneous data feature extraction, cross-modal
attention, and modal fusion. The model takes as input heterogeneous data consisting of two
modalities: text and image. The text modality includes exercise text and knowledge concept
entities derived from the exercise text. The image modality mainly contains one or more
images that complement the textual information by conveying image-related semantics.
The model outputs a multimodal semantic characterization vector that combines both
text and image data. The data feature extraction layer performs three types of element
extraction: text input, knowledge embedding, and image input. In this layer, text and image
encoders are used to extract text embedding, text entity embedding, and image embedding
from the input data. Subsequently, the text vector and knowledge concept entity vector are
concatenated with the image vector and passed to the cross-modal attention layer. In the
cross-modal attention layer, attention operations are applied to the image vector using the
text vector and to the text vector using the image vector. These operations establish internal
connections between different modal data. Finally, the data from the cross-modal attention
layer is fed into the modal fusion layer, where the heterogeneous data are fused, resulting
in multimodal characterization vectors that capture the global semantic information of the
multimodal data for the grouping task. The pseudocode for MIFM is shown in Algorithm 1.
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Algorithm 1 Pseudocode for MIFM
Input: Exercise (texti, imagei, knowledgei)
Output:Exercise Characterization Vector

1: procedure MIFM(Exercisei) . text embedding
2: textembi

= Trans f ormer(texti) . image embedding
3: imageembi

= DenseNet(imagei) . kc embedding
4: knowledgeembi

= Glove(knowledgei)
5: textembi

= textembi
⊕ knowledgeembi

6: Matrixtext = shi f t(textembi
)

7: Matriximage = shi f t(imageembi
)

8: n = len(Matrixtext) . multimodal cross attention
9: for each i ∈ [0, n− 1] do

10: q = sel f Attention(Matrixtexti , Matriximagei )
11: h = sel f Attention(Matriximagei , Matrixtexti )
12: end for . modal fusion
13: v f = MultiHeadAttention(BiLSTM(q, h))
14: return v f

15: end procedure

The algorithm employs a transformer to extract text features, utilizes DenseNet for
image feature extraction, and encodes knowledge concepts using GloVe embeddings. The
temporal and spatial complexity of these three processes depends on the temporal and
spatial complexity of the chosen network models. Let m denote the number of samples
in the dataset, and θ represent the length of the feature vectors. Subsequently, the fusion
of text and knowledge concept vectors, along with the vector shift operation, can both be
executed in O(m) time complexity. The resultant text and image matrices, denoted as n,
would require O(mnθ) space. The operation of feature fusion for each vector in the text and
image matrices, employing self-attention mechanisms, incurs a time complexity of O(mn).
Finally, feeding the fused vectors into a dual-stream structure with multi-head operations
results in the creation of the ultimate feature fusion vector v f , with a time complexity of
O(m). The resulting v f vector would occupy the O(mθ) space. Consequently, the overall
time complexity of the algorithm is O(mn) plus the time spent on the feature extraction
models, while the space complexity is O(mnθ) in addition to the space occupied by the
feature extraction models.

Figure 1. MIFM model architecture.

3.2. Text-Encoding Layer

The main purpose of the exercise text-encoding layer is to use the encoder structure in
the transformer model [21] for feature extraction of the textual content in the exercise text
data input to the model. The transformer is a deep neural network that leverages a multi-
head attention mechanism, enabling the parallel processing of input data. The model is built
upon an encoder-decoder structure, where feature extraction is accomplished by stacking
encoders and decoders. Within the model, a self-attentive mechanism and positional
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embedding method are employed to effectively extract semantic information from the
input text. Compared to traditional models such as LSTM and so on, the transformer
architecture relies solely on attention mechanisms to model dependencies between input
and output, facilitating parallelization and yielding more interpretable models. Each
attention head within the transformer can perform distinct tasks, aligning well with our
objective of feature extraction from multimodal data.

Originally designed for text translation tasks in Natural Language Processing (NLP) [22],
the transformer model utilizes its built-in encoder to encode the input text, which is then
fed to the decoder for generating corresponding translation results. In this paper, our
objective is to vectorize the text; thus, this paper only utilizes a portion of the encoder
function within the transformer model. The encoder comprises two primary components:
a multi-head attention mechanism and a fully connected feedforward network. The output
of each component is passed through the corresponding residual network structure for
further processing.

The model takes word embeddings as inputs, enriched with positional embedding in-
formation to express word-to-word distances. This is demonstrated in Equations (1) and (2),
which outline the specific positional encoding.

p2i = sin
(

p/100002i/dpos
)

(1)

p2i+1 = cos
(

p/100002i/dpos
)

(2)

where dpos represents the length of the word embedding, and the positional encoding vector
is also of length dpos. The position vector value p2i corresponds to the even-dimensional
index i, calculated using the sine function. Similarly, the position vector value p2i+1
corresponds to the odd-dimensional index i, computed using the cosine function. By
dividing by 100002i/dpos within the trigonometric function, the correlation between words
with greater relative distance in the input text becomes weaker. The p in the formula
represents the position of the word in the input text, where pi denotes the value of the
number ith element in the pth word position vector. Finally, the word embedding is directly
added to its corresponding position vector, serving as the input to the encoder.

The model utilizes a multi-head attention mechanism, which shares similarities with
the conventional method. However, the key distinction lies in the fact that the ordinary
attention mechanism produces a single attention value following the attention operation,
while the multi-head attention mechanism comprises h Scale Dot-Product Attention sub-
modules that are stacked together. As a result, h attention values are generated after the
attention operation. These h vectors are then concatenated and subjected to a linear projec-
tion to obtain the final attention value. The multi-head attention mechanism is implemented
based on the self-attention mechanism. Within each self-attentive module, independent
linear mapping matrices WV

i , WK
i , and WQ

i are maintained, since the weights are not shared
among the modules. The self-attention inputs Q, K, and V are obtained by multiplying
the input matrix X (word embedding of input text and positional embedding) with the
three mapping matrices. In the encoder of the transformer model, each attention module is
followed by a fully connected feedforward network layer and a residual connection. This
allows for the addition of input and output data at each position, enabling the training of a
deeper and more efficient network.

3.3. Image-Encoding Layer

The purpose of the exercise image-encoding layer is mainly to extract features from
the exercise accompanying images contained in the input exercise and convert each image
data into the input data into a vector characterization. Similar to text processing, this layer
acts as an image encoder, converting all images in the input data into the corresponding
characterization vectors. While traditional neural networks often deepen layers or widen
the network structure to enhance data feature extraction, this approach faces challenges
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such as the vanishing gradient problem during backpropagation and the difficulty in
training models with increased parameters. To avoid the above problems and improve
the effect of the model for feature extraction, this paper uses DenseNet [23] to extract the
image features from multimodal data and convert the attached images contained in the
exercise into corresponding image vectors. DenseNet is a convolutional neural network
with dense connections, which mitigates the gradient disappearance while enhancing
the transfer of features from layer to layer. The model structure is illustrated in Figure 2.
The network takes the feature maps of all previous layers as input for each layer while
ensuring maximum information transfer between layers. Additionally, the feature maps of
the current layer are used as input for all subsequent layers. The feature learned by the
network in the current layer will be used as input data in the subsequent layers, which
makes the number of feature maps output from each convolutional layer in the network
small, the feature transfer between layers is more efficient, and the network is easier to train,
thus enabling the extraction of more diverse image features and a significant improvement
in network performance.

Figure 2. DenseNet model architecture.

In order to improve the ability of extract features from the images contained in the
multimodal data of the exercises, DenseNet utilizes an encoder-decoder approach [24] to
pre-training the network using specific image data before its formal training operation.
Firstly, DenseNet serves as the image encoder, and then the image feature vector generated
by the encoder is reduced to the corresponding image using the deconvolutional neural
network [25] as the image decoder (DenseDec) for the purpose of pre-training. The number
of deconvolutional layers in the decoder matches the number of image encoder layers.
Throughout the pre-training process, the network parameters are adjusted and optimized
by minimizing the loss function Ldense:

Ldense = ∑
p
( DenseDec (DenseNet(I))− I)2 (3)

The loss function Ldense in Equation (3) has I as the exercise attachment in the pre-
training dataset. When extracting features from image data, images are converted into
a fixed-length vector denoted by vi = σ(DenseNet(Ii)). The vector captures the maxi-
mum characterization of image features after passing through the image feature extractor
DenseNet. Here, σ = 1

1+e−z , Ii denotes the ith image in exercise. vi represents the character-
ization vector corresponding to the ith image. If the exercise has one or more images, after
feature extraction using the image feature extractor, a vector matrix will be output as the
image features, and the vector matrix of images is represented as V = (v1, v2 . . . vn), where
n is the total number of images contained in exercise Q.

3.4. Knowledge Concept Embedding Layer

The purpose of the knowledge concept-embedding layer is mainly to perform vector-
ization operations on the exercise text input to the model to obtain a low-dimensional dense
vectorized characterization of the subject knowledge concept as one of the constituent
elements of the multimodal exercise characterization vector. Specifically, words are input
into the model and the corresponding word embeddings are output. Since knowledge
concepts consist of multiple individual words, there is no strong correlation between the
words and the contextual semantic requirements are not high. Therefore, simple word-
embedding models are generally used for implementation when doing word vectorization
operations. The commonly used method involves obtaining word embeddings through
one-hot encoding for each word. However, using one-hot encoding leads to excessively
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sparse word embeddings, which hampers the model convergence during training and im-
pacts the final model performance [26]. On the other hand, the word2vec model generates
word embeddings in a static manner, providing general applicability, but it lacks the ability
to dynamically optimize for specific tasks.

This paper employs the Glove word-embedding model [27] to implement knowledge
concept vectorization operations in the knowledge concept-embedding layer. Glove is a
global logarithmic bilinear model that utilizes unsupervised learning methods to train word
embeddings. The model combines the advantages of both global matrix decomposition and
local context windows. Unlike other models that train the entire sparse matrix or a single
context window in a large corpus, Glove directly trains on the word–word co-occurrence
matrix. This approach effectively utilizes statistical information to generate a semantically
rich vector space. The most crucial module in the Glove model is the training of the
co-occurrence matrix. There are two ways to train co-occurrence matrices in the model:
symmetric window training, which does not consider word order, and asymmetric window
training, which considers word contextual order. To obtain high-quality word embeddings,
the model trains the co-occurrence matrix using the asymmetric window method. The
specific steps are as follows:

1. Generate a word list by counting the number of occurrences of each word in the
exercise text corpus. Sort the words in the word list based on their occurrence fre-
quency, from highest to lowest. Let ci denote the ith word, fi denotes the number of
occurrences of the ith word, and n denotes the size of the word list, which refers to the
number of different words in the exercise text corpus.

2. Set the sliding window size to w and traverse all words in the corpus. Record the
frequency of word occurrences in the fixed window on the left side of the target word.
Generate a left co-occurrence matrix XL, with XL

ij denoting the words in the ith row
and jth column of the left co-occurrence matrix.

3. Use VA to represent the low-dimensional word-embedding characterization based
on the left co-occurrence matrix training. Train the model through the loss function
JA [27], which is calculated as shown in Equation (4).

JA =
n

∑
i,j=1

f
(

XL
ij

)((
vA

i

)T
vA

j + bA
i + bA

j − log XL
ij

)2
(4)

As described in Equation (4), n is the size of the lexicon (with the co-occurrence matrix
having dimensions of n × n). The vectors vA

i and vA
j are asymmetric low-dimensional

word characterization vectors of words ci and words cj, respectively. The bias terms
corresponding to vA

i and vA
j are denoted as bA

i , bA
j , respectively. Additionally, the function

f
(

XL
ij

)
is the weighting function.

3.5. Modal Fusion Layer

The main purpose of the modality fusion layer is to fuse features from the text vector
of the exercise text-encoding layer, the image vector of the exercise image-encoding layer,
and the knowledge-embedding vector of the knowledge-embedding layer. This fusion is
achieved using a cross-modal attention method based on the attention mechanism, which
establishes connections between data from different modalities through self-attention.
The resulting text feature vector and image feature vector, obtained after the cross-modal
attention operation, are then input into the multi-head attention module for fusing hetero-
geneous data features. The final output is a multimodal exercise characterization vector
that fuses two modalities and three features, effectively representing heterogeneous data
features for downstream tasks. The incorporation of attention mechanisms into respective
domain-specific base models has consistently demonstrated significant improvements in
performance across various tasks. This serves as compelling evidence of the efficacy of
attention mechanisms in the realm of feature extraction. The approach employed in the
modal fusion layer effectively combines the advantages of cross-attention and multi-head
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attention mechanisms, ensuring comprehensive feature extraction for each modality when
dealing with cross-modal data.

The text characterization vector sentenceemb is obtained from the text-encoding layer.
Similarly, the image feature vector, represented as imageemb, is obtained from the image-
encoding layer, and the knowledge-embedding vector, denotes as kcemb, is obtained from the
knowledge-embedding layer. Initially, the text characterization vector and the knowledge-
embedding vector, both of the same modality (text), are combined through summation to
generate textemb as a unified characterization of the input text data. The matrix characteriza-
tion, resulting from translating both the text vector textemb and the image vector imageemb, is
then input into the cross-modal attention module to facilitate the exchange of heterogeneous
information between the two modalities. The cross-modal attention module, illustrated
in Figure 3, processes each element of the embedded vector obtained from the encoding
layer and translates it into a matrix characterization specific to its corresponding modality.
Subsequently, attention operations are performed between the vectors and matrices of
different modalities, establishing connections between the data from each modality.

Figure 3. Modal Fusion Procedure.

This is achieved by performing attention operations between two modalities: text-
based attention operations on images and image-based attention operations on text. This
process results in a text characterization vector h that incorporates image features and an
image characterization vector q that incorporates text features. The calculation formulas
are shown in Equations (5) and (6):

hk
i = CrossAttention

(
tk−1
i ,

{
vk−1

1 , . . . , vk−1
m

})
(5)

qk
j = CrossAttention

(
vk−1

j ,
{

tk−1
1 , . . . , tk−1

n

})
(6)

where tk
i denotes the text vector, vk

j denotes the image vector, and CrossAttention denotes
the attention operation.

As depicted in Figure 3, which contains fused heterogeneous features, there are inputs
into the bidirectional Long Short-Term Memory (Bi-LSTM) [28] network to further establish
connections between the heterogeneous features. The forward hidden state volume

−→
ht at

time step t in the Bi-LSTM network is computed based on the previous forward hidden state
volume

−−→
ht−1 and the current input vector wt. Similarly, the reverse hidden state volume

←−
ht

at time step t is calculated using the next moment’s hidden state volume
←−−
ht+1 and the current

input vector wt. Consequently, the hidden state characterization of each input vector can be
calculated by concatenating the hidden states in both directions: vw = concatenate(

−→
hw,
←−
hw).

After the operation of Bi-LSTM, the vector matrix v containing heterogeneous features is
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produced. To encode the position of each vector vi in the matrix, one-hot encoding is applied
to obtain the position-encoding vector. Then, the vector position vi and its corresponding
position of the encoding vector are concatenated to form the feature vector vi

c that fuses
position information. Each feature vector vi

c serves as input for the multihead attention
mechanism, and the maximum value among all the results from the multihead attention
mechanism is selected as the final multimodal characterization vector. The utilization of a
multi-head attention mechanism enables the model to focus on information from different
modalities at various positions, thereby enriching the captured feature information. This
facilitates the model in harnessing the full potential of diverse modal data to enhance its
performance. The computation of the multimodal characterization vector is described by
Equation (7):

v f = max
{

MultiHead
(

LayerNorm
(

vi
c, vi

c, vi
c

)
+ vi

c

)}
(7)

where vi
c represents the feature vector fused with location information, and LayerNorm

refers to the multilayer normalization technique, while MultiHead denotes the multi-head
attention mechanism [21,29]. The three vectors, denoted as vi

c, undergoing LayerNorm
processing and adding vi

c, are subsequently employed as input parameters Q, K, and V for
the MultiHead mechanism.

MultiHead(Q, K, V) = Concat(head1, ..., headh)WO (8)

headi = Attention(QWQ
i , KWK

i , VWV
i ) (9)

The MultiHead operation in Equation (7) is depicted as shown in Equations (8) and (9).
Here, V represents the input feature vector, and Q and K are feature vectors used to compute
the attention weights. In this paper, the parameters Q, K, and V in Equations (8) and (9) are
all set to the value vi

c. Within the Attention(QWQ
i , KWK

i , VWV
i ) expression, each feature vec-

tor is multiplied by its corresponding mapping matrix to produce the headi result after the
attention calculation. Subsequently, the MultiHead operation concatenates multiple headi
results and multiplies them by the mapping matrix WO. The dimension of WO is the same as
that of the h concatenated headi results. Lastly, v f corresponds to the multimodal character-
ization vector of the exercise, which is formed by fusing the knowledge-embedding vector,
exercise text vector, and exercise-accompanying feature vector from the input exercise. This
fusion process results in the final global characterization vector of the exercise.

4. Experiment

This section presents experiments conducted on three tasks in the education domain:
knowledge mapping [30], exercise difficulty prediction [11], and student performance
prediction [31]. The knowledge mapping task is a multi-class classification task, while
the exercise difficulty prediction is a regression task, representing distinct tasks within
the domain of educational exercise modeling. The knowledge mapping task accurately
delineates the knowledge points encompassed by each exercise, allowing for the tracking
of a student’s engagement with specific knowledge points and identification of their weak
areas. Exercise difficulty prediction, on the other hand, enables a more rational assem-
bly of exercise sets of varying difficulties based on individual student learning profiles,
with the goal of enhancing overall learning outcomes. Finally, the student performance
prediction task serves as a valuable tool for analyzing the student learning situation, facili-
tating personalized educational services through tailored exercise sets. These three tasks
stand as quintessential and representative challenges in the field of educational exercise
modeling, and their effective utilization represents a pivotal step in advancing the field of
intelligent education. The exercise characterization modules in these tasks are replaced
with the comparison models selected in the experiments. The primary goal is to compare
the effectiveness of these models in extracting and fusing heterogeneous features across
the three tasks. Additionally, this experiment visualizes the vectors generated by the
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multimodal characterization model using T-SNE [32] to analyze their ability to capture
the semantic information of the input exercise. This analysis serves to verify the effective-
ness and advancement of the proposed MIFM model in the task of multimodal exercise
characterization.

4.1. DataSet

The experimental dataset consisted of a high school chemistry exercise obtained from
the educational website https://www.jyeoo.com using crawling techniques. The code of the
web crawler process was implemented using various libraries and tools, including Requests,
BeautifulSoup, Scrapy, and Selenium, among others. Throughout the data collection
process, the web crawler strictly adheres to the website’s crawling protocol, limiting data
crawling within the boundaries defined by the website’s terms of use. Additionally, it
is important to note that the obtained data are exclusively utilized to investigate the
model proposed in this paper, without engaging in any unauthorized or illicit activities.
This approach ensures both the integrity of the data collection process and compliance
with legal and ethical standards. The experimental dataset mainly includes three types
of exercises: multiple choice, judgment, and quiz exercises. The collected information
includes exercise text, exercises with diagrams, exercise scores, exercise difficulty, exercise
types, knowledge concepts, and other relevant information. Information pertaining to
exercise difficulty ranges from 1 to 10, categorizing the difficulty level of each exercise
into ten distinct grades. A higher numerical value indicates a greater level of difficulty
for the respective exercise. The final format for the difficulty data of the exercises is as
follows: (Exercise Number, Exercise Text, Knowledge Concept Number, Exercise Attached
Diagram Path, Difficulty Level (1–10)). During the crawling process, the issue of duplicate
the data retrieval was encountered. To address this, the experiment utilizes the Glove
word-embedding model [27] mentioned earlier to obtain word embeddings for the crawled
exercises. Subsequently, a simple cosine calculation is applied to these word embeddings to
determine the similarity between the exercises. Exercises with a similarity score exceeding
0.5 are excluded from the database insertion process. Additionally, for exercises containing
formulas, a third-party tool, MML2OMML.xsl, is employed to convert the formulas into
MathML format. This conversion facilitates further processing of the formula within the
exercises. Ultimately, the dataset of exercises, obtained through a process of duplicate
data removal, formula conversion, and punctuation elimination, comprises a total of
186,525 exercises. The dataset comprises two types of exercises: text-only exercises and
exercises containing both text and image data. The distribution of exercises with different
difficulty levels and exercises containing different knowledge points is shown in Figure 4.
Figure 5 illustrates the distribution of exercises with varying lengths after processing.

Figure 4. Difficulty of Exercises and Knowledge Distribution.

https://www.jyeoo.com
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Figure 5. Length of Exercises Distribution.

4.2. Experimental Evaluation Metrics

In the experimental process, various evaluation metrics are employed to assess the
model performance across different tasks. For the knowledge mapping task, the model
performance is evaluated using ACC, Precision, Recall, and F1 values. In the exercise
difficulty prediction task, MAE, RMSE, and PCC are utilized to evaluate the model’s
predictive accuracy. In the student performance prediction task, MAE, RMSE, ACC, and
AUC values are employed to evaluate the model’s performance. Among them, ACC,
Precision, Recall and F1 evaluation metrics are relatively common and easy to calculate, so
the calculation of other evaluation metrics and related concepts will be introduced.

MAE (Mean Absolute Error) measures the average absolute difference between the
true value and the predicted value, and it is calculated using Equation (10):

MAE =
1
n

n

∑
i=1
|yi − ŷi| (10)

where n is the number of samples, yi is the true value, and ŷi is the predicted value.
RMSE (Root Mean Square Error) calculates the square root of the mean of the squared

differences between the true value and the predicted value. It is computed using
Equation (11):

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(11)

where n is the number of samples, yi is the true value, and ŷi is the predicted value.
AUC (Area Under the ROC Curve) measures the performance of a binary classifier,

and it is determined by calculating the area under the receiver operating characteristic
curve. Equation (12) demonstrates its calculation:

AUC =
∑insi∈positive rankinsi

− M×(M+1)
2

M× N
(12)

where rankinsi denotes the ordinal number of the ith sample, M and N are the number
of positive and negative samples, respectively, and ∑insi∈ positive rankinsi represents the
summation of the ordinal numbers of the positive samples.
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PCC (Pearson Correlation Coefficient) quantifies the linear relationship between two
variables X and Y. It is computed using Equation (13):

PCC =
1

n− 1

n

∑
i=1

(
xi − x̄

sx

)(
yi − ȳ

sy

)
(13)

where x̄ and sx denote the mean and standard deviation of variable X, respectively, xi
denotes the sample, and yi denotes the prediction label.

4.3. Experimental Environment and Parameters

This experiment was conducted using Pytorch, and the experimental hardware and
software environment configuration is provided in Table 1.

Table 1. Experimental environment.

Project Enviroment

Memory 32 GB

GPU NVIDIA GeForce RTX3060

Python Version Python3.9.1

Pytorch Version Pytorch1.13.0

Several key parameters in the model are set as follows: the embedding dimension
for both the exercise text characterization vector and the exercise accompanying image
characterization vector output in the exercise feature extraction module is set to 256, the
number of LSTM layers is set to 2, and the learning rate for model training is set to 0.001
using the Adam optimizer. The maximum length of the input exercise text is set to 128, the
image dimension is 64× 64× 3, the drop_out is set to 0.5, and the batch_size is set to 128.

4.4. Experiment and Analysis

In order to assess the effectiveness of the model MIFM, comparative experiments were
conducted on three educational tasks. The first task, knowledge concept mapping, is a
multi-category task where the input data are in the format of (e, kc), where ‘e’ represents
the exercise, including its text of the exercise and accompanying diagram, and ‘kc’ denotes
the knowledge concept associated with the exercise. In this task, the comparison model
replaces the data characterization module of the classification model. The exercise vector
is obtained through the exercise characterization model, and then the classification task
assigns the exercise to its corresponding knowledge concept. Evaluation metrics such as
ACC, Precision, Recall, and F1 are primarily used to assess the performance of the model in
the knowledge concept-mapping task.

The second task, exercise difficulty prediction, involves a regression task aimed at
estimating the difficulty level of an exercise on a scale of 1 to 10. The input data for this
task follows the format (e, diff), where ‘e’ represents the exercise and ‘diff’ represents the
exercise difficulty, with 0 < diff <= 10. The comparison model replaces the data encoding
module in the exercise difficulty prediction model to compare prediction results. In this
task, model performance is evaluated using metrics such as MAE, RMSE, and PCC.

The last task is student performance prediction, which aims to predict student perfor-
mance on each exercise based on student answer records. Similar to the previous tasks, the
selected comparison model replaces the exercise characterization module in the task model.
Model performance is then evaluated using evaluation metrics such as MAE, RMSE, ACC,
and AUC.

In this experiment, the HAN model is utilized for exercise knowledge concept map-
ping, the TACNN model for exercise difficulty prediction, and the EERNN for student
performance prediction. These models serve as the baseline models for each respective
task. To evaluate the performance of the exercise characterization models, the exercise
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characterization module in the aforementioned task models is replaced, and the model’s
performance on the three tasks is compared. The selected exercise characterization models
include the following:

ELMo: This model is a pre-trained language model based on LSTM for feature extrac-
tion, generating dynamic word embeddings [33]. It employs a Bi-LSTM network to extract
features from input text. When the input data include other modalities besides text, only
the text data are considered for feature extraction, while other modal data are ignored.

BERT: This model is a text-based pre-trained model [34], implemented internally using
a stack of transformer models. It generates text characterization vectors that capture rich
contextual semantic information through self-supervised learning. Similar to ELMo, it
accepts only textual data input and disregards data from other modalities.

m-CNN: This model is an enhanced multimodal characterization model based on CNN
that can handle heterogeneous data input [35]. It employs a multimodal convolutional
approach to fuse exercise text and accompanying exercise images, generating multimodal
characterization vectors for the exercise.

MIFM: The model proposed in this paper is a multimodal information fusion model
for exercise characterization. It accepts data input from both text and image modalities,
using a dual-stream architecture with different modal encoders. Features are extracted from
the heterogeneous input data, followed by feature fusion using a cross-modal attention
mechanism. The model outputs a multimodal characterization vector that combines text
and image features, resulting in a comprehensive exercise characterization fusing both
heterogeneous features.

For the three aforementioned tasks and the selected comparison models, if it includes
the same model/network as MIFM proposed in this paper, the relevant parameters of the
same modules are tuned to be the same in order to ensure the rigor of the experimental
results. When the input exercise comprises only text data, the vectorization process is
performed solely on the text data. Conversely, if the exercise contains both text and image
data, feature extraction and fusion are carried out to create the exercise’s characterization
vector. Some of the comparison models chosen for the experiment only support unimodal
data. In such cases, feature extraction is conducted solely on the required input data type.
However, if the comparison model is multimodal, data from both modalities are obtained
concurrently. Subsequently, experiments are conducted for each educational task to assess
the performance of the selected comparison model.

Table 2 presents the experimental results of each model on the knowledge mapping
task. Upon examining the performance of each model across different metrics, it is evident
that the original model, ELMo, and BERT, being unimodal feature extraction models,
can only extract features from the text data input and do not accommodate data from
other modalities. Consequently, the exercise characterization vectors generated by these
models struggle to capture the complete semantic information of the exercises, resulting in
subpar overall performance. In contrast, the m-CNN model possesses multimodal feature
extraction and fusion capabilities. It accepts input data from both text and image modalities,
extracting text and image features and fusing them using multimodal convolution to
create exercise characterization vectors with fused heterogeneous features. However, m-
CNN employs a unimodal feature extractor to extract multimodal features, which can
lead to parameter confusion and information loss during both feature extraction and
fusion processes. As a result, the performance improvement achieved by this model
is limited. On the other hand, the MIFM model proposed in this paper adopts a dual-
stream architecture and distinct modality-specific feature extractors. It separately extracts
features from data of different modalities and employs cross-modal fusion to integrate
heterogeneous features. This approach yields significant improvements across all four
performance metrics. Tables 3 and 4 display the performance of each model on the exercise
difficulty prediction task and the student–answer performance prediction task, respectively.
A comparison of the metrics for these two tasks reveals that models with multimodal
data extraction and fusion capabilities outperform the unimodal models across various
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evaluation metrics. The effectiveness of the feature extraction and fusion method directly
influences the semantic richness of the exercise characterization vectors generated by the
multimodal models, thereby impacting the performance of downstream tasks.

Table 2. Knowledge Mapping. Bold data is the best result under the same criterion.

ACC Precision Recall F1

Original [30] 0.5281 0.3973 0.7521 0.5219
ELMo [33] 0.6435 0.7508 0.7274 0.7389
BERT [34] 0.5983 0.7102 0.6376 0.6719

m-CNN [35] 0.6521 0.7420 0.6697 0.7039
MIFM 0.7235 0.8164 0.7583 0.8065

Table 3. Exercise Difficulty Estimation. Bold data is the best result under the same criterion.

MAE RMSE PCC

Original [11] 0.2308 0.2801 0.3231
ELMo [33] 0.2378 0.2776 0.4421
BERT [34] 0.2303 0.3105 0.3753

m-CNN [35] 0.2108 0.2721 0.3809
MIFM 0.2076 0.2632 0.4683

Table 4. Student Performance Prediction. Bold data is the best result under the same criterion.

MAE RMSE ACC AUC

Original [31] 0.4362 0.4653 0.7417 0.5279
ELMo [33] 0.3635 0.4672 0.7731 0.5535
BERT [34] 0.4239 0.4534 0.7263 0.5107

m-CNN [35] 0.4152 0.4398 0.7535 0.5631
MIFM 0.3512 0.4521 0.7736 0.6257

As shown in Figure 6, the visualization experiment selects 300 exercises encompassing
five different knowledge concepts. Through the exercise multimodal characterization
model, which fuses heterogeneous exercise data (exercise knowledge concepts, exercise
text, and exercise example images), the corresponding characterization vectors are obtained.
These vectors are then visualized using T-SNE, a technique that enhances the randomized
nearest neighbor embedding algorithm to visualize high-dimensional data. It accomplishes
this by converting data similarity into joint probabilities and minimizing the dispersion
between joint probabilities of different dimensional embedding data. Consequently, each
data point is assigned a position in two- or three-dimensional space. The visualization
results reveal that the multimodal characterization vectors of exercises sharing the same
knowledge concept are closely grouped together, while exercises with different knowledge
concepts are scattered across the visualization graph. Some exercises with similar content
intersect on the graph. These visualization outcomes demonstrate that the multimodal
characterization model MIFM effectively extracts corresponding features from the input
heterogeneous data and produces multimodal exercise characterization vectors that highly
preserve the semantic information of the original data.

The performance of the MIFM model and the selected comparison models across
three distinct educational tasks, as well as the T-SNE vector visualization results, affirm the
effectiveness of the proposed multimodal information fusion-based exercise characteriza-
tion model, MIFM. The model excels in heterogeneous feature extraction and information
fusion operations, highlighting the significance of fusing heterogeneous data (exercise
knowledge concepts and exercise accompanying images) for expressive exercise vectors.
The experimental findings indicate that image data in multimodal datasets also contains
rich semantic information. By extracting image features and fusing them with text fea-
ture characterization, a global characterization vector representing multimodal data is
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obtained. The utilization of multimodal characterization vectors with fused heterogeneous
information significantly enhances the performance of downstream tasks.

Figure 6. T-SNE Vector Visualization.

4.5. Time Analysis

To substantiate the efficiency of the MIFM model proposed in this paper for extracting
features from multimodal data, the experiment conducts training under the experimental
environment and model parameters described in the “Experimental Environment and
Parameters” section. The experiment utilizes a training dataset comprising approximately
180,000 samples and employed a computing system equipped with 32 GB of RAM, a
NVIDIA GeForce RTX3060 graphics card, and an i5-12400f CPU, investing approximately
100 h in the training process to refine the MIFM model.

Subsequently, this model is applied to perform ten multimodal vectorization opera-
tions on a subset of 100 samples, each containing both text and image data. The average
processing time, from input to output, is recorded at 16.7 s, with an average execution time
of 0.0167 s per data for a single multimodal vectorization operation. The efficiency of the
MIFM model owes much to the incorporation of the transformer architecture, particularly
the multi-head attention mechanism, which enables independent weight computations for
each position, facilitating the processing of the entire sequence in a single computation.
Furthermore, the dual-stream architecture proposed in this paper further amplifies the
model’s prowess in parallelly processing multimodal data.

5. Ablation Studies

In this section, we conduct ablation experiments using the multimodal information
fusion model MIFM to demonstrate the effectiveness of the model in extracting hetero-
geneous exercise features. These studies aim to emphasize the importance of exercise
knowledge concepts and exercise accompanying images in addition to exercise text data
for exercise characterization. Specifically, the performance of MIFM is examined when
utilizing exercise information from different modalities as input data. MIFM-T, MIFM-I,
and MIFM-K represent the input data of exercise text, exercise accompanying images, and
exercise knowledge concepts, respectively. These experiments are performed on three
distinct educational tasks to evaluate the performance of different input modalities.

The results presented in Tables 5–7 indicate that MIFM-T and MIFM-TI outperform
the other input types across all three educational tasks, while MIFM-I and MIFM-K exhibit
an inferior performance. Notably, MIFM-ALL, which incorporates all three exercise data
inputs, achieves the best results across all tasks. These findings suggest that the text of the
exercise contains the primary semantic information, whereas the knowledge concept and
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accompanying image only provide partial or incomplete semantic information. Therefore,
when unimodal data are used as model input, the resulting exercise characterization vector
fails to fully capture the semantic information of the exercise. Only by combining data
from different modalities as input can the model improve the task performance compared
to using unimodal data alone. The ablation experiment underscores the significance
of heterogeneous exercise features for exercise characterization and demonstrates the
effectiveness of fusing multimodal data and knowledge information to enhance educational
task performance.

Table 5. Ablation Study for Knowledge Mapping. Bold data is the best result under the same criterion.

ACC Precision Recall F1

MIFM− T 0.4582 0.7532 0.7213 0.7378
MIFM− I 0.1726 0.1912 0.2126 0.2001
MIFM− K 0.2013 0.2063 0.2142 0.2107
MIFM− TI 0.6873 0.7605 0.7352 0.7476
MIFM− TK 0.5158 0.7513 0.7079 0.7289
MIFM− IK 0.1986 0.2146 0.2523 0.2319

MIFM− ALL 0.7235 0.8164 0.7583 0.8065

Table 6. Ablation Study for Student Performance Prediction. Bold data is the best result under the
same criterion.

MAE RMSE ACC AUC

MIFM− T 0.4536 0.4752 0.7528 0.5658
MIFM− I 0.4621 0.4821 0.6892 0.5485
MIFM− K 0.4660 0.4723 0.7013 0.5502
MIFM− TI 0.4221 0.4603 0.7664 0.6121
MIFM− TK 0.4375 0.4672 0.7592 0.5613
MIFM− IK 0.4487 0.4716 0.7121 0.5572

MIFM− ALL 0.3512 0.4521 0.7736 0.6257

Table 7. Ablation Study for Difficulty Estimation. Bold data is the best result under the same criterion.

MAE RMSE PCC

MIFM− T 0.2216 0.2834 0.3341
MIFM− I 0.2351 0.2883 0.2042
MIFM− K 0.2406 0.2763 0.2215
MIFM− TI 0.2116 0.2720 0.3631
MIFM− TK 0.2195 0.2648 0.3586
MIFM− IK 0.2374 0.2761 0.2875

MIFM− ALL 0.2076 0.2632 0.4683

6. Conclusions

This paper focuses on generating a unified characterization vector that fuses heteroge-
neous features from input data with multimodal features. To accomplish this, a multimodal
information fusion-based exercise characterization model called MIFM is proposed. MIFM
effectively extracts and fuses features from multimodal data, allowing for the extraction of
corresponding data features and the preservation of semantic information. A series of exper-
iments is conducted to validate the importance of multimodal feature extraction and fusion,
as well as the effectiveness of the multimodal exercise characterization model, MIFM.

While MIFM demonstrates a commendable performance across all three educational
tasks, there remains room for improvement. In the context of heterogeneous feature fusion,
this paper employs a cross-modal attention mechanism, which could lead to incomplete
fusion when heterogeneous information lacks precise correspondence and high-quality
exercise data. Subsequent research endeavors may involve the development of more
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advanced methods for heterogeneous feature fusion, with the aim of effectively amalga-
mating data from diverse modalities. This paper predominantly focuses on three types of
knowledge information: exercise text, exercise knowledge concepts, and accompanying
exercise images. Future investigations may encompass exercise answers, students’ exercise
practicing records, and audio information for explaining exercises, thus enabling a more
comprehensive expression of exercises and ensuring that the generated test representation
vectors align more closely with the original semantic content of the exercises.
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