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Abstract: In modern semiconductor manufacturing, the computer-integrated manufacturing system
plays an essential role in automation with plenty of software systems. Among them, the equipment
automation program (EAP) is one of the fundamental systems to support the interconnection of various
types of equipment. For the traditional EAP, the communication and logic models are tightly coupled.
The occurrence of any exception in EAP may make the EAP power down such that no equipment
is reachable. Additionally, it can handle a couple of manufacturing tools only. The extension of
manufacturing tools in a semiconductor fab makes the investment in EAP unbearable. Thus, fabs
are highly desired to solve such problems of the traditional EAP. To do so, this work designs a new
framework for a distributed EAP system with new technologies being adopted to enhance the usage
and stability of EAP. Additionally, this design philosophy makes the distributed EAP system more
compatible and expansible. Further, this EAP system can be upgraded as communication and big data
technologies advance. Experiments are carried out to verify the stability of the designed distributed
EAP system.

Keywords: equipment automation program; internet of things; semiconductor manufacturing

1. Introduction

In semiconductor manufacturing, since the early 1990s, computer-integrated manufactur-
ing (CIM) systems have been helping foundries to gain better production efficiency and
wafer quality with various control software systems and sensors [1]. With CIM, a lot of
tasks, such as uploading and changing recipes on semiconductor tools, can be performed
automatically instead of manually controlled by engineers. This greatly releases engi-
neers from complex and generous routine work. Additionally, it can avoid wafer quality
problems and semiconductor tool failures caused by manually improper operations on
semiconductor tools.

CIM was first released in the early 1970s by Dr. Joseph Harrington [2]. It is a manu-
facturing philosophy that uses computers to control an entire production process. Then,
different operations can be well synchronized such that the cycle time for a process becomes
much shorter. Additionally, CIM makes the manufacturing process less error-prone. To the
best knowledge of the authors of this work, most of the semiconductor fabs install relevant
software systems to support CIM [3], such as manufacture execution system (MES) [4–6],
material control system (MCS), automation material handling system (AMHS), recipe management
system (RMS), and EAP.

MES is the core part of CIM and helps engineers manage and control the manufactur-
ing environment and procedures. MES differs from one industry to another, even from
one factory to another in the same company, since it should reflect the manufacturing
procedure precisely that involves various details. IBM and Applied Material are the two
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main vendors in the MES market for semiconductor fabs. They can supply MES products
in a customized mode.

MCS is responsible for the material transportation inside a semiconductor fab. In
practice, MCS is operated based on the delivering tasks from MES. MES sends the delivery
information, including the start position, end position, and priority, to MCS. Then, MCS
cooperates with a stocker and trailer system to complete the tasks from MES. AMHS is
responsible for managing and controlling the transportation tools, such as the stocker and
trailer system, in the fab. In practice, AMHS always cooperates with MCS to be responsible
for the whole process of material transportation.

The main role of RMS is to manage the recipes in a fab. In a modern semiconductor fab,
there are more than one thousand tools for wafer fabrication, such as cluster tools [7–11].
Different products may be manufactured with different recipes in a tool. Thus, there may
be thousands of recipes to be managed. It is extremely hard to manage such a number of
recipes manually since there are so many tools and wafer products for processing. The
responsibility of RMS is to collect and manage the recipes such that it can determine when
and which recipe should be applied to a tool. In practice, RMS cooperates with EAP to
deploy the recipe when needed.

EAP is a basic software system that directly communicates to the manufacturing tools
and parses related production information to upper-level applications, such as RMS and
MES. EAP always communicates with manufacturing tools under SECS I, SECS II, GEM,
and HSMS protocols. The performance of EAP has a significant effect on the efficiency
of other systems in CIM for semiconductor manufacturing, such as RMS, advanced process
control (APC) [12,13], and MES. As shown in Figure 1, the traditional EAP acts as a sin-
gle hub between the manufacturing tools and software systems in CIM. Along with the
rising requirements of data analysis for fabs, the traditional EAP cannot meet the current
application demand for data collecting and delivery due to the following reasons.
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(1) The tight coupling between the communication and logic models makes the EAP
bloated and unstable. For instance, the occurrence of any exception in EAP may make
the EAP power down such that no equipment is reachable;

(2) As such, EAP was developed years ago, the deployment of EAP requires plenty of
software dependencies, the system runs on an old operating system;

(3) With the design of traditional EAP, it takes less consideration for the scalability issue,
leading to the fact that it can only handle a couple of manufacturing tools. The
extension of manufacturing tools in a fab makes the investment in EAP unbearable.

Due to the continuous advancement in communication and software technologies,
such as the internet of things (IoT) [14,15], cloud computing [16,17], distributed technol-
ogy [18], Big data [19,20], container technology [21–23], and message queue technology [24],
a new type of EAP can be designed to solve the above-mentioned problems for the tradi-
tional EAP.
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As far as we know, there are only several studies (see [25–27]) that are relative to EAP.
However, these studies do not focus on handling the above-mentioned problems for the
EAP system. Further, the semiconductor fabs currently adopt the traditional EAP system
to communicate to the manufacturing tools with the above-mentioned problems unsolved.
It is highly desired to solve these problems, and this motivates us to perform this work.

In this work, a novel implementation framework of a distributed EAP is introduced.
The essential difference between the presented EAP in this work and the traditional EAP is
that the presented one is loose coupling. To construct such a loose coupling EAP system,
the architecture and working mechanism are redesigned. In the new architecture, EAP is
composed of two principal platforms, i.e., the management and fundamental platforms. In
the meantime, the message queue is adopted for their asynchronous communication. In
this way, all models (such as the management model, business logic model, and API model),
middleware, and EAP drivers are distributed and deployed on various servers. This en-
sures that any part of the presented EAP runs independently. Under such a framework, a
couple of EAP performance indicators can be enhanced. The first one is the adaptability to
disturbances. Under the distributed architecture, the whole EAP system can be stronger
and more stable. A tiny exception in the EAP system would not affect the whole system.
This greatly improves the robustness of the EAP system by comparing it with the tradi-
tional EAP one. Second, with the advantage of container technology, the deployment
and maintenance of the EAP system become much easier and fit more operating systems.
Third, by integrating distributed architecture and message queue, the whole EAP system is
scalable as required.

The rest of the paper is organized as follows. The implementation framework of
a distributed EAP system is introduced in Section 2. Then, based on this framework,
detailed operational scenarios of every part of the system are described in Section 3. Finally,
experiments are performed to verify the system performance.

2. Implementation Framework of Distributed EAP System
2.1. Design Philosophy of IF-DEAPS

The new implementation framework of distributed EAP system (IF-DEAPS) is designed
under the following three principles so as to ensure the entire system’s stability and meet
the performance boundary in actual production conditions:

(1) The architecture of IF-DEAPS should be loose coupling;
(2) Advanced software technology is required to facilitate its loose coupling and reduce

the deployment and management costs;
(3) IF-DEAP necessarily has good scalability to meet the requirements of smart manufac-

turing.

The loose coupling is an essential factor in designing a good distributed EAP system.
The loose coupling architecture of IF-DEAPS implies that all the functional platforms in
the IF-DEAPS should maximize the independence between them. Further, if functional
models or platforms are logically tightly coupled, most of the communications, except
the critical synchronous situations, should be performed based on Message Queue so as
to achieve decoupling. With the loose coupling architecture of IF-DEAPS, the services
or models are allowed to be deployed independently as needed such that the scalability,
flexibility, and openness of the system can be enhanced. Meanwhile, IF-DEAPS can avoid
a serious influence on the whole system caused by a single node failure such that it is
highly fault-tolerant. Consequently, the whole system can benefit from the loose coupling.
Additionally, such a design pattern fits the current paradigm of software development.

In order to facilitate the loose coupling and reduce the deployment and management
costs, the latest advanced technology, i.e., container technology, is adopted in the IF-DEAPS.
Container technology has been a hot topic for the software industry in recent years. As
a software platform, Docker is one of the most popular technologies in the container
technology list [28]. Docker provides a standardized unit, called a container, to run the
image, in which the developer can pack an application with related dependencies. This
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mechanism makes the building, shipping, deployment, and maintenance of applications
across various scenes, such as development, testing, and production, much easier. Various
roles (including developers, testers, operational engineers, etc.) can benefit from it. They
can focus on their responsibility with expertise by regarding the container as a black box.
For instance, testers can simply build up a container and focus on interface testing and black
box testing, and operational engineers can spend more time on IT (Internet Technology)
fundamental infrastructures and monitoring system running performance.

Good scalability can make IF-DEAPS more matched with the requirements of smart
manufacturing. In smart manufacturing, requirements of a distributed EAP system to
connect with manufacturing tools vary from fabs to fabs. Some fabs need only a couple of
precise instruments to be equipped to obtain some essential data in some core manufactur-
ing areas, while others stepping deeply into smart manufacturing need all manufacturing
tools in the fabs to be connected for data collection as much as possible. The scalability
should be mainly considered from the following three aspects: (1) connection scalability;
(2) business logic scalability; and (3) management scalability.

The connection scalability refers to the fact that as the number of manufacturing tools
grows in a fab, a distributed EAP system can be physically connected to manufacturing
tools without restriction of architectural limit. Business logic scalability means that the
business logic (i.e., requirements) from user departments can be easily integrated into
the system, accurately transformed, and properly executed during the manufacturing
process. For instance, recipes 1 and 2 are applied to a type of manufacturing tool in
different wafer fabrication scenes. In the actual operations of the tools, they should be
correctly deployed according to wafer fabrication scenes, i.e., wafer fabrication processes.
Management scalability means that with the increments of connection, the system should
have a single place to manage and maintain the connections properly.

2.2. Architecture of IF-DEAP

According to the design principles mentioned above, the system architecture of IF-
DEAPS is designed as shown in Figure 2, which contains a management platform, message
queue, and a fundamental platform. In the architecture, semiconductor tools and sensors
are omitted.
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In the architecture, the management platform acts as a brain to control and monitor
the whole system, the message queue is responsible for delivering data through the system,
like the nervous system in the brain, and the fundamental platform works as a limbs to
execute commands and collect data.

The management platform consists of a management model, a business logic model,
a monitor model, a master model, an application interface (API) model, and a database.
All these models can be sorted for different purposes. The management model, monitor
model, and master model are for management; the business and API models are for
implementing business-related tasks; and the database is used to store models’ data across
the management platform and intermediate data that may be supplied to other systems.
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The sortation of components at the management platform is not only based on functionality
but also on the system interactions.

The business-related part is a port to interact with users and the outside systems.
Therefore, it should be standalone and provide the system functions directly and clearly.
The core function of the management part is to monitor and manage the distributed EAP
drivers at the fundamental platform. In order to implement these key functions efficiently,
master and agent models are introduced in the designed IF-DEAPS. The agent model is
deployed prior to each EAP driver and helps to deploy, configure, and monitor the health
conditions of the associated EAP driver. The number of agent models equals the number of
EAP drivers. The master model is responsible for communicating with agent models to
transmit action commands and collect data as the management model requires.

In IF-DEAPS, shown in Figure 2, the message queue has a variety of choices in the
current software development industry. Kafka [29], ActiveMQ, RabbitMQ, and RocketMQ
are the most popular ones in this area. By analyzing the virtues and defects of these
message queues, Kafka is selected as the message queue in this architecture. The detailed
reasons persuading us to use Kafka are summarized as follows: (1) Kafka is designed
as a distributed architecture that naturally fits a high throughput system; (2) it has good
document and community support during the implementation; and (3) the fact that sup-
ports multiple development languages makes this framework implementable without
language restriction.

The fundamental platform of IF-DEAPS is a loose and edge platform that hosts EAP
drivers. The drivers at the platform connect directly to manufacturing tools to collect data and
control the tools via diverse protocols, such as SECS/GEM, HTTPS, and others. The agent
models described above, at the platform, are patterned with the master model to monitor and
manage EAP drivers. The detailed operational mechanism of IF-DEAPS is described next.

3. Operational Mechanisms
3.1. The Fundamental Platform

The fundamental platform architecture of IF-DEAPS is shown in Figure 3. The es-
sential function of EAP is to collect wafer processing data from manufacturing tools, and
parses commands to the tools. As Figure 3 shows, each EAP driver is bidirectionally
communicated with the equipment and message queue. The agent model is an associated
model to ensure that the corresponding EAP driver works in a good state by configuring
the EAP driver and monitoring the EAP driver’s health condition, etc. Typical operational
scenarios of the fundamental platform, including the command executing scenario, data
collecting scenario, EAP driver configuring scenario, and EAP driver health condition
monitoring scenario are discussed as follows.
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3.1.1. Command Executing and Data Collecting Scenarios

Command executing and data collecting scenarios of the distributed EAP system are
shown in Figure 4, and the operational mechanism includes the following four steps:

(1) The message queue pushes a data-collecting command to an EAP driver. Such
a command necessarily gives the corresponding data information, such as wafer
processing parameters of a manufacturing tool, collecting time, or other specific
requirements;

(2) According to the equipment protocol, the EAP driver translates the collecting com-
mand and executes it on a tool;

(3) After the execution, the tool parses the data back to the EAP driver;
(4) After data are received by the EAP driver, the EAP driver transforms the data into

JSON format and pushes them to the message queue.
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Steps (1) and (2) together form the command executing scenario, while Steps (3) and
(4) together form the data collecting scenario.

3.1.2. EAP Driver Configuring Scenario

The EAP driver configuring scenario is shown in Figure 5. Sequentially performing
the following five steps forms the operational mechanism of this scenario:

(1) The message queue pushes an updated configuration command to an agent model;
(2) The agent model sends this updated command to the corresponding EAP driver, and

then the EAP driver turns into an updated mode;
(3) The agent model pulls the latest configuration information from the message queue;
(4) The agent model updates the EAP driver configuration files;
(5) When the update succeeds, the agent model turns the EAP driver into a normal mode

and sends feedback to the message queue.
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3.1.3. EAP Driver Health Condition Monitoring Scenario

The EAP driver, health condition monitoring, is followed by the deployment of a
distributed EAP driver and continuously works until the termination of the EAP driver.
The EAP driver deployment refers to the initialization of the EAP driver on a server with
initial settings, configurations, and default parameters. The EAP driver health condition
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monitoring scenario is shown in Figure 6, and the operational mechanism of this scenario
contains the following four steps:

(1) After the EAP driver deployment is performed, the EAP driver sends a success
message to the message queue;

(2) The corresponding associated agent model obtains the success message from the
message queue;

(3) The agent model checks the health condition data, such as the application process ID,
disk usage, network speed, etc., from the environment of the EAP driver;

(4) The agent model sends the health condition data to the message queue.
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According to the required monitoring cycle, the agent model repeats Step (2) to Step
(4) periodically.

3.2. Message Queue

The message queue enables an asynchronous data communication mechanism be-
tween two systems. The main function of the message queue is data communication,
especially applied to the decoupled micro-service architectures. A stack of data is regarded
as messages logically, and they are stored in a queue until they are processed. In general,
the message queue technology can be used to decouple heavyweight data processing,
buffer work, and batch work, as well as to smooth workloads as a balancer.

In this work, Apache Kafka is selected for the message queue in IF-EAP. The reason
that lies behind this can be concluded into three main points: (1) distributed structure;
(2) data streaming pipeline functionality; and (3) container composed and easy to install.

Kafka is a versatile, distributed, and replicated framework that implements the mes-
sage queue by using a publish–subscribe process. It is an open-source software maintained
by a community. In the operating mechanism, the publisher is named as “producer” while
the subscriber is named as “consumer”. Producer commits data, and the consumer receives
data. The general infrastructure of Kafka is illustrated in Figure 7.
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As shown in Figure 7, producers send messages to topics. The messages are known as
data. A producer can send data to one topic only at a time. Additionally, producers are
able to send messages asynchronously and point-to-point. Consumers read messages from
Topics. They maintain the partition offset to consume data from topics. The actual data
are stored in a key-value format with a timestamp indexed. Then, the data are immutable.
A topic is a stream of data subscribed to by multiple consumers. It is the highest level of
abstraction that Kafka provides. Partitions are an ordered, immutable sequence of data that
are continuously appended. It cannot be further divided across disks.

The high availability is performed by the distributed architecture since the data are
attainable from multiple partitions. Additionally, the fault tolerance in Kafka is realized by
copying the partition data to other brokers, which are known as data replicas. Each broker
holds one or more partitions, and each of them can either be the replica or the leader for
the topic. In the Kafka mechanism, the read and write operations go through to a leader of
a topic, and the leader coordinates with replicas for the data updating.

It follows from Figure 2 that Kafka serves as the main data pipeline between the
EAP management platform and the fundamental platform in this work. The fundamental
platform serves as a data producer, while the EAP management platform serves as a data
consumer. Internally, the transmitted data obtains stored in one topic where the logical
grouping of partitions performs. Partitions are the actual storage of the data, while the data
are spread over multiple partitions across the cluster within different machines. Externally,
the message queue serves as a bridge connecting two separate systems (i.e., the EAP
management and fundamental platforms) so as to form an entire distributed EAP system.

3.3. Management Platform

The management platform architecture is shown in Figure 8. As the management
platform is a port for users or other systems to use, these outside parts are added into IF-
DEAPS. Web UI and APP are graphic user interfaces that help users manage the distributed
EAP system and manipulate wafer fabrication tools through the system. As the EAP system
is fundamental to collecting data and manipulating wafer fabrication tools, other systems,
such as APC, RMS, and fault detection and classification (FDC) systems, in fabs need to obtain
data from IF-DEAPS via APIs.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 8. The management platform architecture. 

In the management platform, the management model, business logic model, and API 
model are fully or partially exported to web UI or other systems to supply services. Master 
model, monitor model, and database are mainly focused on supporting the implementa-
tion of services. For instance, the data collecting service is performed by the management 
model. When a user triggers this service in web UI, web UI then parses related parameters 
to the management model. After analyzing and transforming to the management model, 
a command is sent to the master model that is responsible for performing this command. 
Some typical operational scenarios are discussed next, including the data checking sce-
nario, updating configuration scenario, and checking EAP driver status scenario. 

3.3.1. Data Checking Scenario 
In the data checking scenario, when a user wants to check equipment data (including 

real-time and historical data), if the user is querying the real-time data, then the data 
sources should be the EAP drivers; while if the user is querying the historical data, the 
data source should be the database. The detailed scenario is shown in Figure 9, and the 
operational mechanism contains the following steps: 
(1) A user makes a command to check a series of data. This command can be made 

through APP, Web UI, or other systems invoking API service. Further, if the com-
mand is sent by other systems, it passes to the API model; while if the command is 
sent by APP and Web UI, it passes to the business logic model; 

(2) If the command is passed to the API model, this command is then transferred to the 
business logic model; 

(3) The business model analyzes the command, i.e., determining whether the required 
data are real-time or historical data. If the data are real-time ones, the business model 
sends this command to the master model so as to obtain the data from the EAP driv-
ers in real-time, while if the data are historical ones, the business model sends this 
query command to the database; 

(4) If the database receives this command, it resolves the query and sends the proper 
data to the business logic model; 

(5) If the master model receives this command, it analyzes the command, specifics the 
proper EAP driver, repackages the command with EAP parameters, and sends the 
command to topics in the message queue; 

(6) After the required data are collected from the EAP driver and sent back, the message 
queue pushes the data to the master model; 

(7) The master model sends the data to the business logic model; 
(8) After receiving the data, the business logic model manipulates the data according to 

the proper business logic and sends them back to the APP, Web UI, or the API model 
accordingly;  

(9) If the API model receives the required data, it sends a feedback message from the 
business logic model to other systems. 

Figure 8. The management platform architecture.

In the management platform, the management model, business logic model, and API
model are fully or partially exported to web UI or other systems to supply services. Master
model, monitor model, and database are mainly focused on supporting the implementation
of services. For instance, the data collecting service is performed by the management model.
When a user triggers this service in web UI, web UI then parses related parameters to
the management model. After analyzing and transforming to the management model,
a command is sent to the master model that is responsible for performing this command.
Some typical operational scenarios are discussed next, including the data checking scenario,
updating configuration scenario, and checking EAP driver status scenario.
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3.3.1. Data Checking Scenario

In the data checking scenario, when a user wants to check equipment data (including
real-time and historical data), if the user is querying the real-time data, then the data sources
should be the EAP drivers; while if the user is querying the historical data, the data source
should be the database. The detailed scenario is shown in Figure 9, and the operational
mechanism contains the following steps:

(1) A user makes a command to check a series of data. This command can be made
through APP, Web UI, or other systems invoking API service. Further, if the command
is sent by other systems, it passes to the API model; while if the command is sent by
APP and Web UI, it passes to the business logic model;

(2) If the command is passed to the API model, this command is then transferred to the
business logic model;

(3) The business model analyzes the command, i.e., determining whether the required
data are real-time or historical data. If the data are real-time ones, the business model
sends this command to the master model so as to obtain the data from the EAP drivers
in real-time, while if the data are historical ones, the business model sends this query
command to the database;

(4) If the database receives this command, it resolves the query and sends the proper data
to the business logic model;

(5) If the master model receives this command, it analyzes the command, specifics the
proper EAP driver, repackages the command with EAP parameters, and sends the
command to topics in the message queue;

(6) After the required data are collected from the EAP driver and sent back, the message
queue pushes the data to the master model;

(7) The master model sends the data to the business logic model;
(8) After receiving the data, the business logic model manipulates the data according to

the proper business logic and sends them back to the APP, Web UI, or the API model
accordingly;

(9) If the API model receives the required data, it sends a feedback message from the
business logic model to other systems.
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3.3.2. Configuration Updating Scenario

Configuration updating refers to the scenario that a user wants to change a specific
EAP driver configuration or a group of EAP drivers related to a type of wafer fabrication
tool. This scenario is shown in Figure 10, and the operational mechanism in this scenario
contains the following steps:

(1) A user makes a configuration updating command through the APP or Web UI and
then passes the command to the business logic model. In this stage, based on the
authorization consideration, this command cannot be executed by the API model;
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(2) The business logic model queries the latest configuration data in the database;
(3) The database sends back the latest configuration data to the business logic model;
(4) If the updating configuration is different from the latest stored one, the business logic

model packages the command with new configuration parameters and an EAP driver
list required to be updated to the master model and the database;

(5) The master model specifies an EAP driver or EAP drivers and sends the updating
configuration data to the message queue;

(6) After the EAP driver configuration is updated, the massage queue pushes the success-
fully updated information to the master model;

(7) The master model sends the successful information to the business logic model;
(8) The business logic model sends the successful information to the APP and Web UI.
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3.3.3. EAP Driver Status Checking Scenario

The EAP driver status-checking scenario is a continuously monitoring scenario. In an
actual production environment, all EAP drivers are involved. Note that in the following
descriptions, the checking status scenario for only one EAP driver is introduced. This
scenario is shown in Figure 11, and the operational mechanism in this scenario contains the
following steps:

(1) The master model obtains the successfully deployed message of an EAP driver from
the message queue. Then, it records the EAP driver information and adds the infor-
mation to a monitor list;

(2) The master model asks the message queue to add a new EAP driver monitoring topic
with parameters;

(3) The message queue pushes a successful topic creation message back to the master
model;

(4) At the time when the message queue receives the EAP driver status, it pushes the
EAP driver health condition information to the master model;

(5) After the required health conditions of an EAP driver are collected by the master
model, the model pushes them to the database.
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Steps (1)–(3) are performed once an EAP driver is deployed, while Steps (4)–(5) are
repeatedly performed to monitor the health conditions of an EAP driver.

3.4. Advantages of the Proposed Distributed EAP System

Compared with the traditional EAP, the common services, including the communica-
tion with and manipulation of manufacturing tools under the proper business logic, are
fully implemented in IF-DEAPS at the fundamental and management platforms. More-
over, due to the distributed architecture of IF-DEAPS, the adaptability and scalability are
enhanced greatly.

The enhancement of adaptability means a better fault tolerance of the system with
a lower cost. For the traditional EAP, any exception, such as the environmental problem
and bugs in the traditional EAP, may bring a corresponding manufacturing tool offline.
If another traditional EAP is prepared in advance, this can solve the single node (i.e.,
a traditional EAP) failure problem. However, a redundant EAP containing both business
logic and communication parts is expensive and wastes a lot of resources. For IF-DEAPS,
all models, middleware, and EAP drivers are distributed and deployed on various servers.
This ensures that any part of IF-DEAPS works independently at a lower cost. Furthermore,
when a bug occurs in some part of IF-DEAPS, another equivalent part can make up for that
so as to ensure that manufacturing tools can still operate without being affected.

The improvement in scalability is shown as follows. If more manufacturing tools
with the same type are required to be connected to IF-DEAPS, IF-DEAPS can be cheaply
scaled. For example, suppose that a fab has twenty manufacturing tools with IF-EAPS
being already installed. When the fab purchases another twenty manufacturing tools, the
IT team only needs to deploy twenty more EAP drivers. However, a traditional EAP has
a limit on the number of manufacturing tools to be connected. Assume that a traditional
EAP can connect twenty manufacturing tools. Thus, in this example, if the fab adopts the
traditional EAPs to connect manufacturing tools, then another traditional EAP is needed to
connect the newly purchased manufacturing tools. This also causes a heavy investment in
the EAP system.

As discussed above, IF-DEAPS can provide users with a more stable, cheap, and easy
way to communicate with and manipulate manufacturing tools.

4. Performance Evaluation

The purpose of the distributed EAP system performance test is to evaluate the entire
system’s stability and the performance boundary under an actual production condition.
In this work, the Jmeter tool is applied to perform such a performance test. Table 1 lists
two testing scenarios corresponding to a short-term test and a relative long-term test.
Table 2 shows the test environment. Additionally, nine indicators are used to evaluate the
performance of the EAP system, including:

(1) Request success ratio (RSR): The ratio of successful interface requests response to the
total requests;

(2) CPU consumption (CPUC): The CPU resource consumption during the EAP system
performance test;
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(3) Memory consumption (MC): The memory resource consumption during the EAP system
performance test;

(4) Time boundary of 90% data (TB-90%): The time boundary that is no less than the
request–response time of 90% data;

(5) Time boundary of 95% data (TB-95%): The time boundary that is no less than the
request–response time of 95% data;

(6) Time boundary of 99% data (TB-99%): The time boundary that is no less than the
request–response time of 99% data;

(7) Minimum time consumption (MinTC): The minimum time consumed by the interface
response;

(8) Maximum time consumption (MaxTC): The maximum time consumed by the interface
response;

(9) Average time consumption (ATC): The average time taken by the interface response.

Table 1. Test scenarios.

Test Group Scenario A Scenario B

Duration 1 × 24 h 3 × 24 h

Table 2. Test Environment.

CPU Memory Network Hard Drive OS Server Type

EAP Intel Core i-@2.9 GHz 8 GB 1 G 200 GB Win10 Virtual Machine
Jmeter Tool Intel Silver 4114 @2.2 GHz 16 GB 1 G 2 TB Win10 Physical Server

For Scenarios A and B, the performance tests of the EAP system are carried out by
observing the request–response data of nine key interfaces for 24 h and 3 × 24 h, respectively.
The detailed testing results for scenarios A and B are summarized in Tables 3 and 4.

As shown in Tables 3 and 4, the interface request success rate reaches 100% for all
interfaces. In the meantime, the CPU and memory resource consumption is controlled
within 70%, which is in a safe and controllable range for applications. More specifically,
it follows from Tables 3 and 4 that the TB-90%, TB-95%, and TB-99% for all interfaces are
controlled under a millisecond level for both Scenarios A and B. Nevertheless, values of
TB-90%, TB-95%, and TB-99% of parameter and parameter ratio setup under Scenario A are
much larger than that under Scenario B. This indicates that under Scenario A (a relatively
short-term scenario), the time boundaries that are no less than the request–response time
of 90%, 95%, and 99% of data are larger than that under Scenario B (a relative long-term
scenario). It implies that during a much longer time period, the proposed distributed EAP
achieves a more stable performance since the ratio of the long request–response time to all
response time decreases.

Further, the values of MinTC for most of the interfaces under Scenario A are corre-
spondingly larger than that under Scenario B, while the value of MaxTC for each interface
under Scenario B is larger than that under Scenario A. The reason for this phenomenon
is that during a much longer time period, it would have a higher probability to collect
unusual data under extreme situations. Note that the value of MaxTC in Table 3 or Table 4
represents an abnormal event caused by the network dithering that is commonly seen in
practice. However, it follows from Tables 3 and 4 that the values of ATC under Scenarios
A and B have no significant differences except for parameter and parameter ratio setup
interfaces. For parameter and parameter ratio setup interfaces, the values of ATC under
Scenario B are much smaller than those under Scenario A. It implies that the distributed
EAP can achieve a more stable performance during a much longer time period.

All in all, based on the testing results of RSR, CPUC, MC, TB-99%, and ATC summa-
rized in Tables 3 and 4, we conclude that the proposed distributed EPA system achieves
good performance under both Scenarios A and B.
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Table 3. Testing results for Scenario A.

Interface RSR CPUC MC TB-90%
(ms)

TB-95%
(ms)

TB-99%
(ms)

MinTC
(ms)

MaxTC
(ms)

ATC
(ms)

Login

100% 52% 43.3%

42 46 64 23 750 34
Parameter 319 328 349 42 1248 243

Parameter ratio setup 264 274 294 45 1469 203
Acquire main recipe 24 25 29 3 660 19

Search recipe list 27 29 34 11 893 21
Equipment recipe detail 20 22 26 5 1186 15
Audit recipe authority 22 24 29 10 617 16

Realtime recipe compare 26 29 34 11 883 19
Recipe download 20 22 25 8 752 15

Table 4. Testing results for Scenario B.

Interface RSR CPUC MC TB-90%
(ms)

TB-95%
(ms)

TB-99%
(ms)

MinTC
(ms)

MaxTC
(ms)

ATC
(ms)

Login

100% 51% 68.2%

35 39 53 9 9044 29
Parameter 60 65 83 7 6507 53

Parameter ratio setup 67 72 95 7 6508 60
Acquire main recipe 22 24 29 7 1108 19

Search recipe list 29 31 40 6 6472 22
Equipment recipe detail 20 22 27 7 1525 16
Audit recipe authority 22 24 29 6 904 16

Realtime recipe compare 28 31 41 6 6460 21
Recipe download 21 23 28 6 1765 16

Further, the parameter interface is important for the components in the management
platform of the distributed EAP system to obtain the parameter data from manufacturing
tools. It is one of the most frequently invoked interfaces used in the production environment.
It follows from Figures 12 and 13 that the changing of the light green line representing
the parameter interface is usually smooth. It implies that the distributed EAP system
works properly and achieves a good performance in response. There are also some needle
jumps of the light green line occurring accidentally. Those are usually caused by network
problems and computing resource competition problems occasionally. Notice that they are
extraneous to the distributed system itself. Meanwhile, even if the occasional problems
occur, the system can respond to them properly as required.

Tables 3 and 4 and Figures 12 and 13 show the stability of the proposed distributed
EAP system. Further, some quantitive results by comparing with the currently adopted
EAP system from the other three semiconductor manufacturing software companies are
also obtained. During the confidential and commercial regulations, we cannot disclose
the names of other software companies, and they are named Companies A, B, and C. The
comparisons are performed in the same manufacturing line of a semiconductor fab in
China. The comparison results are shown in Table 5, in which TPS presents the number of
Transactions per Second. Additionally, due to non-disclosure agreements with the semicon-
ductor fab, we cannot show the detailed quantitative comparison results. Nevertheless, the
order of magnitude of TPS that can be reached using each method is presented in Table 5.
It follows from Table 5 that IF-DEAP is significantly better than the others in terms of the
efficiency of TPS.
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Table 5. Comparisons on TPS between IF-DEAP and other currently adopted EAP systems.

IF-DEAP Company A Company B Company C

TPS 8000/s 3000/s 4800/s 3500/s

5. Conclusions

EAP systems are widely used to interconnect manufacturing tools so as to parse
related production information to the upper applications in semiconductor fabs. They are
the fundamental components in MES as well and play an important role in the efficiency
of other systems, such as RMS and APC. The traditional EAP acts as a single node to
interconnect a specified number of manufacturing tools without scalability. It couples the
communication model with the logic model tightly, making the EAP bloated and unstable.
Further, it has been developed for dozens of years and fails to be compatible with new
technologies that can make the EAP system perform better. To solve such problems, this

jmeter-pugins.org
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work designs a new framework of a distributed EAP system such that the management
platform acts as a brain to control and monitor the whole system, the message queue is
responsible for delivering data through the system, like the nervous system in the brain,
and the fundamental platform works as limbs to execute commands and collect data. Under
such a distributed architecture, a tiny exception in the EAP system would not affect the
whole system. This greatly improves the robustness of the EAP system by comparing it
with the traditional EAP system. Additionally, by combining the distributed architecture
and message queue, the scalability of the EAP system is greatly improved. Experiments
show that the designed distributed EAP system has good performance in terms of stability.

Our future work aims to improve the designed distributed EAP system to support
more PLC protocols and provide a more convenient way for users to program the busi-
ness logic.
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