Highly Efficient GaN Doherty Power Amplifier for N78 Sub-6 GHz Band 5G Applications
Abstract
:1. Introduction
- Proposed a design for a high-efficiency GaN Doherty power amplifier tailored to the N78 sub-6 GHz band, the most widely used band in active 5G NR networks.
- Significantly improved PAE by 27% through the incorporation of a 2.5:1 unequal Wilkinson power divider at the amplifier’s input, in contrast to using an equal Wilkinson divider.
- Introduced a seventh-order post-harmonic suppression network that effectively suppressed harmonics from the second to the fourth order to more than −50 dB, enhancing linearity and PAE.
- Achieved a gain of 12 dB, an output power of 42 dBm, a drain efficiency of 80%, and a power-added efficiency of 75.2% in the proposed DPA design.
- Validated the simulation results by fabricating and measuring both the power divider and the harmonic suppression network, showing good agreement.
- The paper serves as a valuable reference for future studies in the field and paves the way for further enhancements and optimizations in RF PA designs for 5G applications.
2. Doherty Power Amplifier
3. Circuit Design of RF DPA
3.1. Design of Wilkinson Power Divider
3.2. Load Modulation in DPAs
3.3. Design of Input- and Output-Matching Networks
3.4. Stability Analysis
3.5. Design of Harmonic Suppression Network
4. Implementation and Simulation Results of the N78 Band Sub-6 GHz DPA
4.1. Simulated DPA Performance
4.2. Performance Comparison of Three DPA Designs
4.3. The Performance of the Unequal Wilkinson Power Divider
4.4. The Performance of the Harmonic Suppression Network
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tayel, M.B.; Abouelnaga, T.G.; Desouky, A.F. UWB high gain antenna array for SAR based breast cancer detection system. In Proceedings of the International Conference on Electrical and Electronic Engineering (ICEEE), Istanbul, Turkey, 3–5 May 2018; pp. 311–316. [Google Scholar]
- Abdel-Haleem, M.R.; Abouelnaga, T.G.; Abo-Zahhad, M.; Ahmed, S.M. Enhancing microwave breast cancer hyperthermia therapy efficiency utilizing fat grafting with horn antenna. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22651. [Google Scholar] [CrossRef]
- Tayel, M.B.; Abouelnaga, T.G.; Elnagar, A. Dielectric loaded Yagi fed dual band pyramidal horn antenna for breast hyperthermia treatment. In Proceedings of the IEEE International Conference on Electrical and Electronic Engineering (ICEEE), Istanbul, Turkey, 3–5 May 2018; pp. 323–328. [Google Scholar]
- Akyildiz, I.F.; Guo, H. Wireless communication research challenges for extended reality (XR). ITU J. Future Evol. Technol. 2022, 3, 273–287. [Google Scholar] [CrossRef]
- Dahlman, E.; Mildh, G.; Parkvall, S.; Peisa, J.; Sachs, J.; Selén, Y.; Sköld, J. 5G wireless access: Requirements and realization. IEEE Commun. Mag. 2014, 52, 42–47. [Google Scholar] [CrossRef]
- Nasri, A.; Estebsari, M.; Toofan, S.; Piacibello, A.; Pirola, M.; Camarchia, V.; Ramella, C. Design of a wideband Doherty power amplifier with high efficiency for 5G application. Electronics 2021, 10, 873. [Google Scholar] [CrossRef]
- Cheng, Z.; Xiong, G.; Liu, Y.; Zhang, T.; Tian, J.; Guo, Y.J. High-efficiency Doherty power amplifier with wide OPBO range for base station systems. IET Microw. Antennas Propag. 2019, 13, 926–929. [Google Scholar] [CrossRef]
- Pengelly, R.; Fager, C.; Ozen, M. Doherty’s legacy: A history of the Doherty power amplifier from 1936 to the present day. IEEE Microw. Mag. 2016, 17, 41–58. [Google Scholar] [CrossRef]
- Kim, B. Doherty Power Amplifiers: From Fundamentals to Advanced Design Methods; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Piacibello, A.; Quaglia, R.; Pirolaf, M.; Cripps, S. Design of an S-Band chireix outphasing power amplifier based on a systematic bandwidth limitation analysis. In Proceedings of the 2018 13th European Microwave Integrated Circuits Conference (EuMIC), Madrid, Spain, 23–25 September 2018; pp. 186–189. [Google Scholar]
- Chen, H.; Xu, J.-X.; Zhang, X.Y. Design of Dual-Band Chireix Outphasing Power Amplifier. In Proceedings of the 2021 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Guangzhou, China, 28–30 November 2021; pp. 1–3. [Google Scholar]
- Cappello, T.; Florian, C.; Barton, T.W.; Litchfield, M.; Popovic, Z. Multi-level supply-modulated Chireix outphasing for LTE signals. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 1846–1849. [Google Scholar]
- Nguyen, D.C.; Varlamov, O.V. Simulation model for switching mode envelope elimination and restoration RF power amplifiers research. In Proceedings of the 2022 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), Arkhangelsk, Russia, 29 June–1 July 2022; pp. 1–6. [Google Scholar]
- Vasić, M.; Garcia, O.; Oliver, J.A.; Alou, P.; Diaz, D.; Cobos, J.A.; Gimeno, A.; Pardo, J.M.; Benavente, C.; Ortega, F.J. Efficient and linear power amplifier based on envelope elimination and restoration. IEEE Trans. Power Electron. 2011, 27, 5–9. [Google Scholar] [CrossRef]
- Komatsuzaki, Y.; Lanfranco, S.; Kolmonen, T.; Piirainen, O.; Tanskanen, J.K.; Sakata, S.; Ma, R.; Shinjo, S.; Yamanaka, K.; Asbeck, P. A High Efficiency 3.6–4.0 GHz Envelope-Tracking Power Amplifier Using GaN Soft-Switching Buck-Converter. In Proceedings of the 2018 IEEE/MTT-S International Microwave Symposium-IMS, Philadelphia, PA, USA, 10–15 June 2018; pp. 465–468. [Google Scholar]
- Nonet, O.; Demenitroux, W.; Ploneis, F.; Barataud, D.; Campovecchio, M. Compact Design of a L-Band 40 W 40 MHz Envelope Tracking GaN Power Amplifier for Small Cells. In Proceedings of the 2021 51st European Microwave Conference (EuMC), London, UK, 4–6 April 2022; pp. 898–901. [Google Scholar]
- Wu, C.-W.; Lin, Y.-H.; Hsiao, Y.-H.; Chou, C.-F.; Wu, Y.-C.; Wang, H. Design of a 60-GHz high-output power stacked-FET power amplifier using transformer-based voltage-type power combining in 65-nm CMOS. IEEE Trans. Microw. Theory Tech. 2018, 66, 4595–4607. [Google Scholar] [CrossRef]
- Camarchia, V.; Quaglia, R.; Piacibello, A.; Nguyen, D.P.; Wang, H.; Pham, A.-V. A review of technologies and design techniques of millimeter-wave power amplifiers. IEEE Trans. Microw. Theory Tech. 2020, 68, 2957–2983. [Google Scholar] [CrossRef]
- Yu, C.; Su, Z.; Liu, Y.; Tang, B.; Li, S. Broadband filtering high-efficiency Doherty amplifier based on a novel post-matching network. In Proceedings of the 2019 European Microwave Conference in Central Europe (EuMCE), Prague, Czech Republic, 13–15 May 2019; pp. 212–215. [Google Scholar]
- Li, C.; You, F.; Peng, J.; Wang, J.; Haider, M.F.; He, S. Co-design of matching sub-networks to realize broadband symmetrical Doherty with configurable back-off region. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 1730–1734. [Google Scholar] [CrossRef]
- Takenaka, K.; Noguchi, Y.; Takenouchi, Y.; Okabe, H.; Wada, T. Parallel Plate Coupler Based Doherty Power Amplifier Design for 5G NR Handset Applications. In Proceedings of the 2021 IEEE MTT-S International Microwave Symposium (IMS), Atlanta, GA, USA, 7–25 June 2021; pp. 523–526. [Google Scholar]
- Liu, Z.; Sengupta, K. A 44-64-GHz mmWave Broadband Linear Doherty PA in Silicon with Quadrature Hybrid Combiner and Non-Foster Impedance Tuner. IEEE J. Solid-State Circuits 2022, 57, 2320–2335. [Google Scholar] [CrossRef]
- Kim, J.; Cha, J.; Kim, I.; Kim, B. Optimum operation of asymmetrical-cells-based linear Doherty power amplifiers-uneven power drive and power matching. IEEE Trans. Microw. Theory Tech. 2005, 53, 1802–1809. [Google Scholar]
- Zhang, Z.; Fusco, V.; Cheng, Z.; Gu, C.; Buchanan, N.; Ying, J. A Broadband Doherty-like Power Amplifier with Large Power Back-off Range. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2722–2726. [Google Scholar] [CrossRef]
- Mengozzi, M.; Gibiino, G.P.; Angelotti, A.M.; Santarelli, A.; Florian, C.; Colantonio, P. Automatic optimization of input split and bias voltage in digitally controlled dual-input Doherty RF PAs. Energies 2022, 15, 4892. [Google Scholar] [CrossRef]
- Kantana, C.; Ma, R.; Benosman, M.; Komatsuzaki, Y.; Yamanaka, K. A hybrid heuristic search control assisted optimization of dual-input Doherty power amplifier. In Proceedings of the 2021 51st European Microwave Conference (EuMC), London, UK, 4–6 April 2022; pp. 126–129. [Google Scholar]
- Doherty, W.H. A new high efficiency power amplifier for modulated waves. Proc. Inst. Radio Eng. 1936, 24, 1163–1182. [Google Scholar]
- Hantula, P.; Tongta, R. Design of two L-band RF amplifiers combination using wilkinson power dividers. Int. J. Electr. Electron. Eng. Telecommun. 2020, 9, 38–42. [Google Scholar] [CrossRef]
- Rafael-Valdivia, G.; Aruquipa-Callata, L. Design of a Doherty Power Amplifier with GaN Technology in the Sub-6 GHz Band for 5G Applications with Harmonic Suppression. In Proceedings of the 2020 IEEE MTT-S Latin America Microwave Conference (LAMC 2020), Cali, Colombia, 26–28 May 2021; pp. 1–4. [Google Scholar]
- Chowdhary, C.C.; Sreelakshmi, K. GaN HEMT Based Doherty Power Amplifier with Network Matching Optimization Technique for 2.4 GHz. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018; pp. 184–188. [Google Scholar]
- Edwards, M.L.; Sinsky, J.H. A new criterion for linear 2-port stability using a single geometrically derived parameter. IEEE Trans. Microw. Theory Tech. 1992, 40, 2303–2311. [Google Scholar] [CrossRef]
- Pozar, D.M.; Steer, M. Microwave Engineering, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Cheng, P.; Wang, Q.; Li, W.; Jia, Y.; Liu, Z.; Feng, C.; Jiang, L.; Xiao, H.; Wang, X. A broadband asymmetrical GaN MMIC doherty power amplifier with compact size for 5G communications. Electronics 2021, 10, 311. [Google Scholar] [CrossRef]
- Abadi, M.N.A.; Golestaneh, H.; Sarbishaei, H.; Boumaiza, S. Doherty power amplifier with extended bandwidth and improved linearizability under carrier-aggregated signal stimuli. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 358–360. [Google Scholar] [CrossRef]
- Lotfi, S.; Roshani, S.; Roshani, S.; Gilan, M.S. A planner Doherty power amplifier with harmonic suppression with open and short ended stubs. Frequenz 2022, 76, 121–130. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Chan, W.S.; Zheng, S.Y.; Feng, W.; Liu, H.-Y.; Cheng, K.-K.M.; Ho, D. A mixed topology for broadband high-efficiency Doherty power amplifier. IEEE Trans. Microw. Theory Tech. 2019, 67, 1050–1064. [Google Scholar] [CrossRef]
- Góralczyk, M. A 3.4 to 3.8 GHz 45 W Inverted 3-Way Doherty Power Amplifier. In Proceedings of the 2020 23rd International Microwave and Radar Conference (MIKON), Warsaw, Poland, 5–8 October 2020; pp. 420–423. [Google Scholar]
- Chen, Y.; Choi, W.; Shin, J.; Jeon, H.; Bae, S.; Choi, Y.C.; Park, C.-S.; Lee, K.-Y.; Hwang, K.C.; Yang, Y. New Load Modulation Combiner Having a Capability of Back-Off Control for Doherty Power Amplifiers. IEEE Access 2023, 11, 11479–11488. [Google Scholar] [CrossRef]
- Pang, J.; Chu, C.; Wu, J.; Dai, Z.; Li, M.; He, S.; Zhu, A. Broadband GaN MMIC Doherty power amplifier using continuous-mode combining for 5G sub-6 GHz applications. IEEE J. Solid-State Circuits 2022, 57, 2143–2154. [Google Scholar] [CrossRef]
- Rubio, J.M.; Fang, J.; Camarchia, V.; Quaglia, R.; Pirola, M.; Ghione, G. 3–3.6-GHz wideband GaN Doherty power amplifier exploiting output compensation stages. IEEE Trans. Microw. Theory Tech. 2012, 60, 2543–2548. [Google Scholar] [CrossRef]
- Dardeer, O.; Abouelnaga, T.; Mohra, A.; Elhennawy, H. Compact UWB Power Divider, Analysis and Design. J. Electromagn. Anal. Appl. 2017, 9, 9–21. [Google Scholar] [CrossRef]
Q | Z1 (Ω) | Z2 (Ω) | Z3 (Ω) | Z4 (Ω) | RW (Ω) |
---|---|---|---|---|---|
0.5 | 102.988 | 51.494 | 59.46 | 42.045 | 106.066 |
1 | 70.711 | 70.711 | 50 | 50 | 100 |
1.5 | 58.327 | 87.491 | 45.18 | 55.334 | 102.062 |
2 | 51.494 | 102.988 | 42.045 | 59.46 | 106.066 |
2.5 | 47.049 | 117.622 | 39.764 | 62.872 | 110.68 |
3 | 43.869 | 131.607 | 37.992 | 65.804 | 115.47 |
3.5 | 41.45 | 145.075 | 36.556 | 68.389 | 120.268 |
4 | 39.528 | 158.114 | 35.355 | 70.711 | 125 |
4.5 | 37.953 | 170.787 | 34.329 | 72.824 | 129.636 |
5 | 36.628 | 183.142 | 33.437 | 74.767 | 134.164 |
Parameter | Gain (dB) | Pout (dBm) | DE (%) | PAE (%) | |||||
---|---|---|---|---|---|---|---|---|---|
Design | Value | Improvement | Value | Improvement | Value | Improvement | Value | Improvement | |
EPD without HS | 10.43 | - | 40 | - | 45.8 | - | 41.7 | - | |
UPD without HS | 11.54 | 10% | 41.2 | 3% | 56.57 | 23.5% | 52.6 | 27% | |
UPD with HS | 12 | 15% | 41.85 | 4.6% | 75.4 | 64.6% | 70.6 | 69.5% |
Ref. | Frequency (GHz) | Pout (dBm) | PAE (%) | Gain (dB) | Transistor |
---|---|---|---|---|---|
[6] | 2.8–3.3 | 43–44.2 | 62–76.5 (DE) | 8–13.5 | CGH40010F |
[7] | 2.9–3.3 | 43.9–44.7 | 70.8–73.3 (DE) | 6–11 | CGH40010F |
[33] | 4.5–5.3 | 39.5 | 44–54 | 11 | HIWAFER 0.25 μm GaN |
[34] | 1.7–2.2 | 42.5 | 58–72 | 8.2–10.2 | 10 W Cree GaN HEMT |
[35] | 1.2–1.6 | 33 | 60 | 19 | GaAs pHEMT |
[36] | 1.4–2.1 | 34 | 35.7 | 12.7 | CGH40010F |
[37] | 3.4–3.8 | 43 | 70 | 8 | CG2H40010F |
[38] | 3.5–4 | 41.7 | 49.6 | 11.1 | CGH40006S |
[39] | 4.1–5.6 | 38.4–39.5 | 41.2–49 | 8.3–11.2 | GaN MMIC |
[40] | 3–3.6 | 43–44 | 55–66 (DE) | 12 | CGH40010F |
This Work | 3.3–3.8 | 42 | 75.2 | 12.2 | CG2H40010F |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eid, M.A.E.; Abouelnaga, T.G.; Ibrahim, H.A.; Hamad, E.K.I.; Al-Gburi, A.J.A.; Alghamdi, T.A.H.; Alathbah, M. Highly Efficient GaN Doherty Power Amplifier for N78 Sub-6 GHz Band 5G Applications. Electronics 2023, 12, 4001. https://doi.org/10.3390/electronics12194001
Eid MAE, Abouelnaga TG, Ibrahim HA, Hamad EKI, Al-Gburi AJA, Alghamdi TAH, Alathbah M. Highly Efficient GaN Doherty Power Amplifier for N78 Sub-6 GHz Band 5G Applications. Electronics. 2023; 12(19):4001. https://doi.org/10.3390/electronics12194001
Chicago/Turabian StyleEid, Mohammed A. Elsayed, Tamer G. Abouelnaga, Hamed A. Ibrahim, Ehab K. I. Hamad, Ahmed Jamal Abdullah Al-Gburi, Thamer A. H. Alghamdi, and Moath Alathbah. 2023. "Highly Efficient GaN Doherty Power Amplifier for N78 Sub-6 GHz Band 5G Applications" Electronics 12, no. 19: 4001. https://doi.org/10.3390/electronics12194001
APA StyleEid, M. A. E., Abouelnaga, T. G., Ibrahim, H. A., Hamad, E. K. I., Al-Gburi, A. J. A., Alghamdi, T. A. H., & Alathbah, M. (2023). Highly Efficient GaN Doherty Power Amplifier for N78 Sub-6 GHz Band 5G Applications. Electronics, 12(19), 4001. https://doi.org/10.3390/electronics12194001