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Abstract: Robot software development can be considered as a component-driven process, and existing
ROS components, such as an ROS node, can be reused to construct robot applications. By reusing the
ROS node, the development process of robot software can be significantly accelerated. However, the
challenges in reusing ROS nodes primarily lie in the scattered organization of ROS node information.
To address this challenge, this paper proposes a method to construct an ROS node knowledge
graph (RNKG) based on high-quality open-source robot projects. In order to build a high-quality
knowledge graph of ROS nodes, we first constructed a high-quality dataset of open-source robot
projects. Since ROS node knowledge can exist in both text and code formats, we initially separated
the data in the dataset into code data and text data, and then applied different knowledge extraction
methods to extract corresponding entities. Finally, we integrated a series of ROS node knowledge
and organized it into a knowledge graph. To validate the effectiveness of the constructed ROS node
knowledge graph, we first verified the completeness of the entities and the accuracy of relationships
in the knowledge graph. Next, we evaluated the performance of the ROS node knowledge graph in
assisting developers with the downstream task of finding ROS nodes. These findings suggest that
our proposed method for constructing an ROS node knowledge graph is feasible and demonstrate
that the ROS node knowledge graph helps search ROS nodes.

Keywords: knowledge graph; ROS nodes; robotic software development

1. Introduction

The field of robot software development has witnessed significant progress. A robot
operating system (ROS) [1] is the most widely adopted platform for developing robot
software. ROS nodes serve as a fundamental component throughout the process of robot
software development, and developers can leverage ROS nodes to construct complex
and sophisticated robot software systems [2]. The ROS community and GitHub offer
a wealth of open-source ROS nodes with diverse functionalities. A knowledge graph
can serve as a shared and centralized database [3] to store a vast amount of ROS node’s
knowledge. The ROS node knowledge graph can help ROS developers develop robot
software by rapidly reusing existing ROS node components [4,5]. This method can reduce
the development time and workload required for robot software.

The challenges of reusing ROS nodes primarily lie in the scattered organization of ROS
node information, the complexity and dependencies among ROS nodes, and the difficulty
comprehending ROS node code. For the first challenge, scattered ROS node knowledge
arises from the lack of a universal standard or website for organizing and categorizing ROS
nodes, resulting in diverse contributions by scholars and institutions [6]. For the second
challenge, the ROS ecosystem encompasses thousands of nodes with complex dependency
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relationships and communication mechanisms. Gathering and organizing information
about these nodes becomes highly difficult and time-consuming [7]. For the last challenge,
the lack of consistent documentation and examples in ROS node code, which different
developers often write, poses a significant challenge in understanding and maintaining
the code.

Based on the above challenges in constructing an ROS node knowledge graph, we
propose a method for producing an ROS node knowledge graph based on high-quality
open-source robotics repositories. To accomplish knowledge graph building, we started
by creating a reliable database of robot projects sourced from open-source code platforms.
As various types of resources necessitate different knowledge extraction methods, we
categorized the ROS node resources discovered within these open-source projects. Moving
on to the second stage, we employed distinct approaches to extract ROS node entities for
different types of resources. Firstly, we utilized code snippet extraction rules to extract
the required code segments from a vast collection of ROS node code, thereby enhancing
the accuracy of ROS node entity identification. We extracted the corresponding ROS node
entities from the code snippets by applying various code parsing rules. Secondly, we
employed part-of-speech tagging to extract functional and hardware knowledge mentioned
in the ROS node description statements for the textual descriptions of ROS nodes. We
then classified the functionality and hardware of each ROS node based on predefined rules.
Finally, in the last stage, we gathered the data within the ROS node knowledge graph and
successfully constructed the knowledge graph for the ROS node.

The specific contributions of this paper can be summarized as follows:

• We constructed an ROS domain dataset from high-quality open-source robotics reposi-
tories. Using open-source robotics projects, we proposed a systematic method to build
the ROS node knowledge graph;

• We constructed RNKG: a domain knowledge graph that effectively organizes scattered
knowledge of ROS nodes and accurately represents the semantics of ROS nodes
through the defined entities and relationships;

• We validated entities’ completeness and relationship accuracy in RNKG, demonstrat-
ing its effectiveness. Furthermore, we provide evidence that RNKG can assist in
robotic software development through an ROS node search task.

The remainder of this paper is organized as follows. Section 2 introduces the related
work. Section 3 describes our methods. Evaluations are provided in Section 4. Finally, we
conclude the paper in Section 5.

2. Related Work

This section briefly summarizes the related studies of ROS component reuse and the
research status of knowledge graphs in robotics.

2.1. ROS Component Reuse

The ROS is critical in developing robotics software by offering a diverse collection
of reusable components. These components, including ROS packages, ROS nodes, ROS
messages, ROS services, and ROS actions, serve as fundamental building blocks for creating
and implementing complex robot applications. By leveraging these reusable components,
developers benefit from modularity, code reusability, and scalability throughout the robotics
software development process. The ROS community also plays a vital role in supporting
the utilization of these components. It provides developers access to numerous public
code libraries and tools contributed by the ROS community. These resources facilitate
component reuse and contribute to a rich functionalities, algorithms, and tools ecosystem.
Developers can leverage this ecosystem to accelerate their development and build more
advanced robot applications.

ROS packages [8,9] serve as practical containers for organizing and distributing related
functionalities within a robotics system. They provide a convenient way to package and
manage software components in ROS. ROS nodes [10,11] are individual processes that
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carry out specific tasks within a robot’s system. They can be reused in different robotics
software to achieve similar functions, promoting code reusability and modularity. By
utilizing ROS community-contributed messages [12], developers gain access to a wide
range of functionalities and data formats. This fosters collaboration and knowledge sharing
within the ROS community, allowing developers to leverage existing solutions and easily
exchange data between different systems. Reusing ROS services [13] enables developers
to build modular and scalable robot applications. It facilitates distributed computing and
leverages standardized interfaces, ensuring consistent and interoperable communication
between software components.

In summary, an ROS and its reusable components, supported by the ROS community,
optimize the reuse of ROS nodes and facilitate robotics software development. They offer
modularity, code reusability, and standardized interfaces, ultimately enhancing efficiency
and promoting collaborative development in robotics.

2.2. Robotics Domain Knowledge Graph Application

Due to the advanced knowledge reasoning and recommendation capabilities of knowl-
edge graphs, they have been extensively investigated in robotics, leading to significant
advancements. Integrating knowledge graphs into the knowledge reasoning process en-
hances robots’ ability to analyze and process environmental information [14]. Moreover,
knowledge graphs play a crucial role in driving robot software development through their
recommendation power. Specifically, in the context of an ROS (robot operating system),
the ROS-related knowledge graph can facilitate tasks such as searching for ROS packages [8]
and ROS messages [12], simplifying the software development process for robotics.

In the research process, the knowledge reasoning ability and recommendation search-
ability of the knowledge graph will help ROS developers find the ROS node they need.

3. Methodology

To collect scattered ROS node knowledge and employ a standardized approach using
a knowledge graph, the process is outlined in Figure 1 and is divided into three stages.
The first stage is dataset construction and resource classification, followed by the second
stage of further processing and entity extraction from the obtained resources. The final
stage involves knowledge graph construction for the ROS node knowledge graph.

Figure 1. The process of constructing ROS node knowledge graph.
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In the first stage, we built a high-quality dataset of robot projects from open-source
code platforms. Then, considering different types of resources require distinct knowledge
extraction methods, we classified the ROS node resources found in the open-source projects.
In the second stage, we adopted different approaches to extract ROS node entities for
various resource types. Firstly, for ROS node code, we applied code snippet extraction rules
to extract the necessary code segments from a vast collection of ROS node code, which
enhanced the accuracy of ROS node entity identification. Subsequently, using different code
parsing rules, we extracted the corresponding ROS node entities from the code snippets.
Secondly, we employed part-of-speech tagging to extract the functional knowledge and
hardware knowledge mentioned in the ROS node description statements for the textual
descriptions of ROS nodes. Then, based on predefined applicable and hardware rules, we
classified the functionality and hardware of each ROS node. In the final stage, we collected
the data in the ROS node knowledge graph and ultimately succeeded in constructing the
ROS node knowledge graph.

3.1. Dataset Constructing and Processing Stage

The dataset construction and dataset processing stages consist of two substeps. The first
step involves building the robot software project dataset from open-source platforms.
In contrast, the second step involves processing the constructed robot software dataset to
facilitate subsequent entity and relationship extraction.

3.1.1. Dataset Construction

The purpose of constructing the ROS node knowledge graph is to integrate dispersed
ROS node knowledge and support robot software development. While the ROS Wiki is
the predominant resource-sharing platform in the ROS community, its coverage of ROS
node knowledge is not comprehensive. Therefore, we needed gather extensive ROS node
knowledge from other data sources. Since the ROS node knowledge contained in ROS
Wiki can be found in ROS software packages available on open-source platforms, we were
able to utilize robot software projects provided by these platforms as a data source for
constructing the ROS node knowledge graph.

Ivano et al. [15] provided a high-quality dataset of robot software projects collected
from open-source platforms using a scientific approach. This dataset includes 598 robot
software projects that underwent manual quality checks and represent high-quality projects
in the real world. However, to make this dataset suitable for building the ROS node
knowledge graph, we manually analyzed each robot project and applied a set of systematic
exclusion criteria for filtering. Table 1 shows the specific filtering rules.

Table 1. Criteria for filtering robot open-source projects aimed at constructing the ROS node knowl-
edge graph.

ID Description of the Criteria for Filtering Robot Open-Source Projects

R1 Assume that a robot software project is related to a robot code development platform, then exclude
the project.

R2 Assume that a robot software project only contains launch files without the src and scripts directories,
then exclude the project.

R3 Assume that the primary programming language of a robot software project is not C++ or Python,
then exclude the project.

R4 Assume that a robot project has been deprecated (as of December 2022), then exclude the project.

R5 Assume that the core functionality of a robot software project is to simulate robots or a simulated robot
environment, then exclude the project.

R6 Assume that a robot software project provides development tools within ROS, such as genius, and rqt
bag, then exclude the project.

R7 Assume that the purpose of a robot software project is to help developers learn ROS or practice
ROS-related tasks, then exclude the project.
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Any robot software project that meets any of the filtering criteria was discarded,
and the remaining robot software projects were retained as a dataset for building the ROS
node knowledge graph. After filtering, we ended up with a total of 503 robot software
projects. The results are shown in Table 2, where we can observe the basic statistical
results of the robot software projects. These data clearly demonstrate that our dataset is of
high-quality, and the selected robot projects can represent the real-world robot software
development process.

Table 2. Descriptive statistical results of the open-source robot project dataset (SD = standard
deviation, CV = coefficient of variation).

Min. Max. Median Mean SD CV

Commits 100 7611 248 533.99 855.36 1.60
Contributors 1 233 12 19.11 24.45 1.28

Branches 2 483 6 9.78 24.65 2.52
Issues 0 983 13 48.79 101.35 2.07

Pull requests 0 2165 16 62.80 163.46 2.60
Launch files 0 579 11 26.09 48.70 1.86

3.1.2. Dataset Processing

Robot software projects are complex and challenging to handle. To improve the
accuracy of ROS node entity extraction and relationship extraction, we processed the
constructed robot project dataset and divided them into two categories: ROS node code
data and ROS node textual data.

A robot project mainly includes CMakeLists.txt, package.xml, launch files, config
directory, src directory, include directory, scripts directory, message directory, service
directory, urdf directory, world directory, and README file. The process of distinguishing
the open-source robot project into ROS node code data and ROS node file data can be
found in Figure 2. In order to obtain as much ROS node textual data as possible, we
considered the comments in the src directory, and included directory, scripts directory,
and the text information in the README file as textual data of the ROS nodes. We
considered the src directory, include directory, scripts directory, message directory, service
directory, and launch files in the robot project as ROS node code data.

Figure 2. The process and reason for distinguishing the open-source robot project into ROS node
code data and ROS node file data.

3.2. ROS Node Resource Processing Stage

The ROS node resource processing phase is divided into four subprocesses. The first
two subprocesses involve extracting ROS node entities and relationships from the ROS
node code data. The third subprocess involves extracting function-related entities from the
ROS node text data. The final subprocess involves extracting hardware-related entities from
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the ROS node text data. These four processes perform relationship and entity extraction of
ROS nodes from their respective datasets.

3.2.1. Code Snippet Extraction

To extract the required ROS node entities and relationships from ROS node code
data, we created different rule templates to extract the ROS node code knowledge. Table 3
presents the rules for extracting ROS node code snippet data from C++ files. Whenever
a code snippet met the corresponding extraction rule, we retained that code snippet for
subsequent entity and relationship extraction. Following this approach, we were able to
further design regulations and reasons for extracting Python code snippets.

Table 3. ROS code snippet extraction rules and reasons (C++).

ROS Node Code Snippet Data Ex-
traction Rules

The Reason for Extracting ROS Node Code Snippet

Extract code segments containing
“ros::init”

“ros::init” defines the name of the ROS node.

Extract code segments containing
“nh.advertise”

“nh.advertise” defines the ROS node knowledge related to publish-
ing topics.

Extract code segments containing
“nh.subscribe”

“nh.subscribe” defines the ROS node knowledge related to subscrib-
ing to topics.

Extract code segments containing
“nh.serviceClient”

“nh.serviceClient” defines the outgoing service requests in the
ROS node.

Extract code segments containing
“nh.advertiseService”.

“nh.advertiseService” defines the services provided by other
ROS node.

Extract all method definitions in the
ROS node code

A portion of the method definitions are callback functions.

Extract parameter settings in ROS
node code

A portion of the parameter definitions includes topic names and
message types.

3.2.2. Entity Extraction and Relation Extraction

After extracting code snippets related to ROS nodes, we must define extraction meth-
ods for ROS node entities in Figures 3 and 4. These methods guide us to extract the
necessary entities and relationships from the code snippets to build an ROS node knowl-
edge graph.

The code snippet entity extraction method shown in Figure 3 primarily focuses on
extracting entities related to the ‘advertise’ topic and the ‘needed service’. In this case,
if the field/name refers to ‘advertise’, the value/arguments correspond to the topic name,
and the field/arguments correspond to the ROS message. Different relationships are then
built for these entities based on the field/name. If the field/name refers to ‘ServiceClient’,
the value/arguments correspond to the service name, and the field. Statements correspond
to the ROS service.

The code snippet entity extraction method shown in Figure 4 primarily focuses on
extracting entities related to the ‘subscribe’ topic and the ‘advertise’ service. In this case,
if the function field refers to ‘subscribe’, the value/arguments correspond to the topic name,
but the ROS message cannot be found in the code snippet. To extract the ROS message
corresponding to the topic, we need to extract the code related to the ROS node and find
the ROS message associated with the called topic. Similarly, if the function/field refers
to ‘advertise Service’, the value/arguments correspond to the service name. Similarly,
the ROS service cannot be extracted from this code snippet. To extract the ROS service
corresponding to the service, we need to extract the code related to the ROS node and find
the ROS service associated with the called service.
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Figure 3. Method for extracting topic entities, message entities, and their corresponding relationships
from code snippets (advertise).

Figure 4. Method for extracting topic entities, message entities, and their corresponding relationships
from code snippets (subscribe).

3.2.3. Functionality Classification

The functional description of ROS nodes refers to the specific tasks and functionalities
that nodes perform. However, obtaining these functional descriptions of ROS nodes poses
significant challenges. Firstly, the description information about ROS nodes may be scat-
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tered across various source code and documentation fragments. Finding a comprehensive
and detailed functional description requires extensive searching and reading, incurring
high costs in terms of acquisition. Secondly, these functional descriptions of ROS nodes are
often authored by different developers, resulting in varying quality levels and making it
more difficult for developers to understand and utilize the nodes. Therefore, obtaining a
thorough and explicit description of ROS nodes is highly challenging.

However, ROS nodes are typically named following certain conventions that often
reflect their intended functionalities and tasks. Therefore, reasonable speculations based on
the names of ROS nodes can help us gain insights into their functional domains. Further-
more, within the knowledge graph of ROS nodes, it is necessary to incorporate functional
entities related to the names of ROS nodes.

Considering the diverse functionalities and modules of robot systems, we can catego-
rize ROS nodes into the following groups: hardware nodes, data processing nodes, control
nodes, navigation nodes, human–robot interaction nodes, analysis and detection nodes,
and simulation nodes.

• Hardware nodes are responsible for interacting with the physical components of the
robot, such as sensors, actuators, and other hardware device;

• Data processing nodes perform various data processing tasks, including filtering,
feature extraction, transformation, and fusion, to extract meaningful information from
raw sensor data;

• Control nodes execute algorithms and logic to regulate the robot’s behavior and
achieve desired actions based on sensor input and system state;

• Navigation nodes handle tasks related to robot motion planning, localization, map-
ping , and obstacle avoidance, and enable the robot to navigation autonomously in
its environment;

• human–robot interaction nodes facilitate interaction between the robot and humans,
encompassing speech recognition, gesture control, graphical user interface, and other
modalities for seamless human–robot interaction;

• Analysis and detection nodes focus on analyzing and detecting specific patterns,
objects, or events in sensory data, which can support higher-level perception and
decision-making processes;

• Simulation nodes provide simulated environments and virtual models to test and
evaluate robot behaviors, algorithms, and system performance in a controlled and
reproducible manner.

These entities provide a rough description of the functionality of ROS nodes and,
when combined with the existing entities obtained from the code, help developers quickly
understand and select appropriate ROS nodes, reducing the cost of searching and reading
to enhance development efficiency.

3.2.4. Hardware Classification

Storing the hardware dependencies of ROS nodes as entities in the ROS node knowl-
edge graph enables a quick understanding of the hardware requirements for each node.
This facilitates the sharing and reuse of relevant ROS node knowledge and experiences.
By including hardware entities in the knowledge graph, developers and researchers can eas-
ily access information about the specific hardware components needed by each ROS node.

By performing part-of-speech (POS) tagging on the textual descriptions of ROS nodes
and using regular expressions or other text processing techniques, we can extract noun
phrases that adhere to specific tagging patterns and filter out hardware-related information.
Firstly, we annotate the textual descriptions of ROS nodes with their corresponding POS
tags. Based on the specific domain of ROS nodes and the corpus being used, we created
a set of regular expressions that match and extract hardware-related information from
the ROS node descriptions, as shown in Table 4. Eventually, we used constructed regular
expressions for POS-tagged ROS node descriptions, searching for combinations of words
that fit the hardware-related patterns.
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Table 4. The extraction of hardware information using regular expressions.

Regular Expressions

<NNS>*<NNP>*<CD>, <NNP>*, <JJ>+<NN>+, <JJ>+<NNP>+
<NNP>*<NN><NNP>, <NNP>+<NNS>*<NN>*, <NNS>*<NN>+

Although we successfully extracted the hardware information from ROS nodes, it
remains a domain-specific field that can be challenging for developers to comprehend.
In order to facilitate a more user-friendly understanding and utilization of ROS nodes,
we propose a further detailed categorization of the hardware attributes associated with
ROS nodes in Table 5. By breaking down the hardware attributes into more granular
subcategories, we were able to systematically capture and organize information such as
hardware types and compatibility considerations.

Table 5. A classification of ROS node hardware.

Category Subcategory

Robots Aerial, Component, Ground, Manipulator, Marine

Sensors 1D range finders, 2D range finders, 3D Sensors, Audio device, Cameras, Enviromental,
Force Sensors, Motion Capture, Pose Estimation, Power Supply, RFID, IO Interfaces,
Speed

Motor Motor Controller, Servo Controller

By employing the aforementioned approaches, we were able to successfully extract
the functional and hardware information of ROS nodes from unstructured data. These
techniques enabled us to transform the textual descriptions and dependencies of ROS
nodes into structured and categorized representations.

3.3. ROS Node Knowledge Graph Construction

Through the aforementioned methods and steps, we successfully constructed a knowl-
edge graph of ROS nodes. Leveraging natural language processing and code analysis
techniques, we were able to extract entities such as nodes, topics, services, and messages
from ROS code and related information, organizing them in a structured manner within
the knowledge graph. Tables 6 and 7 present the entities and relationships within the ROS
node knowledge graph.

Table 6. Entities of the ROS node knowledge graph.

Entity Name Entity Description

ROS nodes ROS nodes are independent units of execution that perform specific functionalities or
algorithms. They communicate with each other through the publication and subscrip-
tion of topics and by calling and providing services.

Topics Topics serve as channels for message exchange between ROS nodes. A node can
publish messages to a topic, and other nodes can subscribe to that topic to receive
the messages.

Message types Message types define the data structure for communication between ROS nodes.

Services Services enable communication between ROS nodes in a request–response fashion.
One node can provide a service, and another node can call that service to request a
specific functionality.

Service types Service types define the data structure used for communication between ROS nodes
during service calls.
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Table 6. Cont.

Entity Name Entity Description

ROS package An ROS package is the fundamental organizational unit for managing ROS code.

Code file URLs Uniform resource locators (URLs) pointing to the code files of ROS nodes.

Function Function entities represent specific functionalities or algorithms provided by nodes.

Hardware Hardware entities refer to physical devices, such as sensors, actuators, etc., that interact
with ROS nodes.

Table 7. Relationships of the ROS node knowledge graph.

Relationship Relation Description

has_published/ sub-
scribed_topic

describes the connection between an ROS node and the topics it publishes to or
subscribes to.

has_provided/
called_service

describes the connection between an ROS node and the services it calls or provides.

has_message_type describes the association between a topic and its message type.

has_service_type describes the association between a service and its service type.

has_package describes the association between an ROS node and the ROS package it belongs to.

has_code_url describes the association between an ROS node and the URL of its code file.

has_function describes the association between an ROS node and a function entity.

has_hardware describes the association between an ROS node and a hardware entity.

The schema of the knowledge graph is displayed in Figure 5. The constructed ROS
node knowledge graph consists of 12,350 entities and 36,029 triples. Considering that some
ROS nodes may not have inputs and outputs with regard to services, each ROS node is
connected to 5.17 (<6) entities. Additionally, due to the inclusion of hardware and function
knowledge using entity typing, the average path length from an ROS node to hardware
and function is 2.97 and 2, respectively. In the Figure 6, the ROS node ‘keyboard_cmd’
is depicted.

Figure 5. The core ontology of ROS node knowledge graph.

This knowledge graph provides researchers and developers with a comprehensive
and accurate resource to gain a deeper understanding of the structure, functionality, and in-
terrelationships of ROS nodes. With this graph, robotics developers can explore the topics,
services, and messages involved in specific nodes, facilitating a better analysis and compre-
hension of the operational mechanisms of ROS systems.
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Figure 6. An example of ROS node ‘keyboard_cmd’.

4. Evaluation

In order to validate the quality of the constructed ROS node knowledge graph (RNKG)
and determine its utility and reliability in providing node information, node relationships,
and node search capabilities, a series of experiments were conducted. Firstly, the com-
pleteness of the RNKG was assessed by examining the presence of comprehensive node
information within the knowledge graph. Secondly, the accuracy of the edges in the RNKG
was evaluated to ensure the correctness of the relationships between various entities in the
ROS node knowledge graph. Lastly, the constructed RNKG was tested against user search
requirements to identify ROS nodes that fulfill their needs, thereby validating its suitability
for developers’ search demands. These experiments were instrumental in understanding
whether the constructed RNKG can meet the requirements of ROS developers and assess
its potential in enhancing the development efficiency of robotic systems.

4.1. The Completeness of RNKG

The dataset required to build the knowledge graph was collected in open-source
repositories. It needs to be judged whether the RNKG contains all needed ROS node
information, including ROS nodes, topic, service, and message.

4.1.1. Protocol

To ascertain the completeness of the knowledge graph for ROS nodes, it was necessary
to evaluate it from various perspectives.

Firstly, we verified whether the ROS node knowledge from the ROS Wiki was present
in the knowledge graph for ROS nodes. Since the ROS Wiki serves as the official resource
repository for ROS, it contains information about ROS nodes. By utilizing the relevant
documentation provided in the ROS Wiki, a comparison was made between the node infor-
mation in the knowledge graph for ROS nodes and the constructed ROS node knowledge
graph. This comparison helped determine whether the ROS node knowledge from the ROS
Wiki was fully incorporated within the knowledge graph, thus validating its completeness.
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Secondly, a subset of ROS node knowledge was selected from the constructed knowl-
edge graph, and its representation in the actual code was examined to ensure the accurate
manifestation of the corresponding entities. This step allowed us to ascertain the reliability
and completeness of the ROS node knowledge graph concerning the ROS node knowledge.

By employing these evaluation methods, we were able to rigorously assess the com-
pleteness of the knowledge graph for ROS nodes, ensuring that it comprehensively captured
relevant information from the official ROS Wiki and accurately reflected the corresponding
entities and their relationships in the implemented code.

4.1.2. Results and Analysis

Table 8 presents the completeness comparison results between the RNKG (ROS node
knowledge graph) and ROS Wiki. It indicates that the majority of ROS node knowledge
from the ROS Wiki could be found in the RNKG. Therefore, it can be said that the idea
of extracting ROS node knowledge from open-source projects to build the ROS node
knowledge graph is feasible and, to some extent, provides evidence that the ROS node
knowledge in our constructed graph is complete.

Table 8. The completeness of RNKG compared with ROS Wiki.

Category ROS Nodes Topic Service Message

From ROS Wiki/RNKG 345/340 345/332 345/317 345/308
Contained Percentage 98.55% 96.23% 91.88% 89.27%

Table 9 displays the matching results between the knowledge in the ROS node knowl-
edge graph (RNKG) and the knowledge found in the code files. The data indicate that the
vast majority of ROS node knowledge from the code files could be found in the RNKG. This
finding highlights the completeness of the RNKG in accurately capturing and representing
the ROS node knowledge present in the actual code implementation.

Table 9. The completeness of RNKG.

Category Precision Recall F1

Topics (subscribed) 87.50% 87.72% 87.60%
Topics (published) 87.93% 86.44% 87.17%
Services (provided) 95.71% 97.14% 96.14%
Services (needed) 89.71% 86.97% 88.31%

Service types 93.63% 88.55% 91.01%
Message types 92.07% 94.37% 93.20%
ROS package 93.45% 91.74% 92.58%

Overall, the established completeness of the ROS node knowledge graph highlights
its value as a comprehensive and reliable resource, supporting ROS developers throughout
the software development life cycle and enabling them to leverage the full potential of the
ROS ecosystem.

4.2. The Correctness of ROS Node Knowledge in RNKG

To ensure the usability of the ROS node knowledge graph for supporting robot soft-
ware development, it was crucial to assess the correctness of relationships between entities
within the ROS node knowledge graph.

4.2.1. Protocol

Validating the correctness of relationships within the ROS node knowledge graph was
essential, as the interactions of ROS nodes with topics, services, and messages are crucial.
To verify the accuracy of the knowledge graph, it was, indeed, valuable to manually assess
the relationships between different entities. Randomly selecting a series of nodes that had
existing relationships and evaluating whether their associations with related entities were
correct was a valid approach.
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We randomly selected a set of nodes from the ROS node knowledge graph that had
known relationships with topics, services, or messages. For each selected node, we verified
whether it was correctly linked to the relevant entities, such as topics, services, or messages.
In addition, we ensured that the associations accurately represented the actual interactions.

4.2.2. Result

The data presented in Table 10 represent the results of assessing the correctness of
relationships among different entities in the knowledge graph. From the data, it is evident
that the recall of the ROS node knowledge graph we constructed is relatively high. This
indicates that the knowledge graph accurately captured the relationships between many
entities, thereby reflecting the actual interactions among ROS nodes.

Table 10. The correctness of relationship in RNKG.

Triplets in RNKG Precision Recall F1

(Topics, has_subscribed_topic ,Message types) 69.55% 81.72% 75.14%
(Topics, has_published_topic ,Message types) 87.72% 86.44% 87.07%
(Services, has_provided_service, Service types) 83.80% 87.14% 85.43%
(Services, has_called_service, Message types) 74.52% 86.97% 80.26%

Consequently, the constructed knowledge graph effectively represents the relation-
ships between ROS nodes and provides a reliable reference resource for robot
software developers.

4.3. The Effectiveness of RNKG in Searching ROS Nodes

The primary objective of constructing the ROS node knowledge graph was to facilitate
the development of robot software for ROS developers. The main purpose of designing
this experiment was to assist developers in quickly searching the desired ROS nodes.

4.3.1. Protocol

To validate that the constructed ROS node knowledge graph can assist developers
in searching for ROS nodes, we compared the ROS node search algorithm based on the
ROS node knowledge graph with “Keyword Search”, “Fuzzy Search”, and “Text Search”.
Additionally, to measure the effectiveness of the ROS node search method, we primarily
focused on the normalized discounted cumulative gain (NDCG) metric [16].

• Keyword search: TF-IDF (term frequency-inverse document frequency) [17] is a
statistical method used to evaluate the importance of words in a text, and it is widely
applied in the field of information retrieval. By using the TfidfVectorizer from the
scikit-learn library, we were able to perform feature extraction and vectorization of
the ROS nodes corpus;

• Fuzzy search: While ROS documentation is not specifically designed as a website
to search for ROS nodes, it is possible to find the desired ROS nodes by performing
fuzzy matching on a large number of ROS document name. Despite its limitations
in searching for ROS nodes, this method can be considered an effective approach
provided by the official ROS resources;

• Text search: SentenceBERT [18] is a deep learning model specifically designed to
handle the problem of embedding natural language text. In the ROS node search
task, it is possible to calculate the similarity between user queries and ROS node
description sentences.

This was done to confirm that building the ROS node knowledge graph does, indeed,
help developers find ROS nodes more effectively.

4.3.2. Result

The performance of the ROS node search based on the ROS node knowledge graph
can be observed in Table 11. From the data presented in the table, it is evident that the ROS
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node search method based on the ROS node knowledge graph outperformed other ROS
node search methods in terms of accuracy when searching for ROS nodes. The accuracy
improvement across all methods was more than 10%, indicating a significant enhancement
in assisting the task of locating ROS nodes using the ROS node knowledge graph we
constructed. This confirms the utility of the ROS node knowledge graph we built in aiding
ROS developers in robot software development.

Table 11. Comparison of different ROS node search methods.

Method Classification Method
NDCG@1 NDCG@5

Accuracy Performances Accuracy Performances

Keyword-Based TF-IDF 0.3377 −59.69% 0.5746 −43.37%
Subgraph Matching VF2++ 0.2575 −66.15% 0.4112 −47.62%

Fuzzy Search ROS Doc 0.4562 −38.23% 0.6738 −14.17%
NLP Search SentenceBert 0.5458 −26.10% 0.68077 −13.28%

- RNKG-based 0.7386 0.7851

The ROS node knowledge graph is crucial for ROS developers during robot software
development. It provides a structured and reliable approach for acquiring, learning,
and referencing ROS node information, bolstering development efficiency and accuracy,
and fostering rapid advancement in robot software.

5. Conclusions and Future Work

In this paper, we propose a method to construct a robotic node knowledge graph
(RNKG) with 12,350 entities and 36,029 triples for better serving ROS developers. We
systematically describe how it was automatically built from source code knowledge from
open-source robotics repositories and ROS Wiki. Following the previous two experiments,
which demonstrated the completeness and accuracy of the constructed knowledge graph,
we conducted another experiment to validate the effectiveness of the knowledge graph in
assisting robot development. The experiment ultimately confirmed that the constructed
ROS node knowledge graph is capable of supporting robot development and provides
accurate representations of ROS nodes through structured knowledge.

In the future, we plan to continue in-depth research on the ROS node knowledge
graph from two perspectives. Firstly, we aim to explore how to integrate code knowledge
that is highly relevant to functionality into the ROS node knowledge graph. Secondly,
we want to investigate how to leverage the ROS node knowledge graph to accelerate the
development process of robot software. After in-depth mining of robot software project
information, the new data acquired by it will be integrated into the constructed RNKG. We
will continually enlarge the RNKG to cover emerging ROS nodes. On the other hand, we
can better apply the reasoning ability of the knowledge map to the development tasks of
robot software and use better semantic technology to support developers in searching for
the ROS node they need.
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