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Abstract: The significance of emotion recognition technology is continuing to grow, and research
in this field enables artificial intelligence to accurately understand and react to human emotions.
This study aims to enhance the efficacy of emotion recognition from speech by using dimensionality
reduction algorithms for visualization, effectively outlining emotion-specific audio features. As a
model for emotion recognition, we propose a new model architecture that combines the bidirectional
long short-term memory (BiLSTM)–Transformer and a 2D convolutional neural network (CNN). The
BiLSTM–Transformer processes audio features to capture the sequence of speech patterns, while
the 2D CNN handles Mel-Spectrograms to capture the spatial details of audio. To validate the
proficiency of the model, the 10-fold cross-validation method is used. The methodology proposed
in this study was applied to Emo-DB and RAVDESS, two major emotion recognition from speech
databases, and achieved high unweighted accuracy rates of 95.65% and 80.19%, respectively. These
results indicate that the use of the proposed transformer-based deep learning model with appropriate
feature selection can enhance performance in emotion recognition from speech.

Keywords: emotion recognition from speech; transformer; attention mechanism; bidirectional LSTM;
convolutional neural network; audio feature extraction

1. Introduction

In the contemporary world, advances in technology have increased the need for the
accurate comprehension and interpretation of human emotions in many areas. Artificial
intelligence has taken on great significance, providing better customer service, personalized
user experiences in education and entertainment, and healthcare monitoring.

There are many different techniques for recognizing emotions. Among them, facial
expression recognition uses camera-based systems to analyze changes in a user’s facial
expressions and predict emotional states [1,2]. While emotion recognition on the basis of
facial expressions is relatively intuitive, and clear emotional changes can be identified, the
recognition of facial expressions is sensitive to external variables such as the influence of the
external environment, the user’s control of their facial expression, lighting, and the angle
of the camera [3]. In a different approach, emotion recognition can be performed using
biosensors, where the emotional state is analyzed by measuring physiological responses
such as the user’s heart rate and skin conductance. While sensor-based emotion recognition
is one of the most effective methods, it has the limitation of requiring the user to wear
a sensor.

In contrast to the previous methods, emotion recognition using the voice has the great
advantage of capturing the user’s natural responses and determining their emotional state
without the need for specific equipment or special conditions. A person’s emotional state
affects their mechanism of speech production, resulting in changes in breathing rate, tone
of voice, and more. The resulting speech signal may have different features for different
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emotional states [4]. By effectively extracting and analyzing this information, a high
performance level of emotion recognition can be achieved.

Deep learning technologies such as convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and deep neural networks (DNNs) have been used to facilitate
advancements in emotion recognition from speech, and many studies have been conducted
with the aim of improving emotion recognition [5]. CNNs perform well at capturing the
local features of speech, while RNNs analyze the dynamic features of speech by considering
the temporal continuity of sequence data. Variations and extensions of each model, such as
the gated recurrent unit (GRU) and the attention mechanism, have also been utilized in
a number of studies. Speech data are inherently characterized by strong temporal conti-
nuity. Long short-term memory (LSTM) is a model that can capture the temporal features
of speech data well, and is able to effectively handle data with long-term dependencies.
Transformers [6] have a self-attention mechanism, which effectively captures informa-
tion contained in the data from different perspectives. The combination of these two
architectures allows for the deep and thorough learning of emotional patterns in speech.

In this study, we propose a model that combines a 2D CNN with a BiLSTM–Transformer,
which is a more advanced form of the LSTM–Transformer hybrid model. BiLSTM allows
speech data to be analyzed within a broader context than possible with basic LSTM, and
when combined with transformers, they have the potential to classify different emotional
states and patterns more precisely.

This paper is organized as follows. Section 2 introduces previous research related to
emotion recognition from speech. Section 3 provides a detailed description of the construc-
tion of the proposed feature set and the structure of the combined BiLSTM–Transformer
model. Section 4 verifies the effectiveness of proposed model by comparing the experimen-
tal results with those of previous studies. Finally, Section 5 discusses the conclusions and
future research directions.

2. Related Works

In the area of emotion recognition from speech, CNN performs well when it is used
with spectrograms. Spectrograms represent how the frequency component of an audio
signal changes over time. Spectrograms depict the time-course of changes in the frequency
components of audio signals and are especially effective at capturing the small changes in
tone, pitch, and modulation that are indicative of different emotional states. CNNs also
operate on local, overlapping regions of the input image, which facilitates the learning
of hierarchical features. This allows the CNN to identify both low-level features, such as
pitch and tone, which are important for understanding emotional states, and high-level
features, such as intonation patterns. In addition, because CNNs are parameter-efficient
models that share weights and have fewer hyperparameters than other deep learning
models, the model training time is shorter, and the generalizability is better when dealing
with high-dimensional inputs such as spectrograms. Issa et al. [7] used a combination of
spectrograms and other features as the input to a one-dimensional CNN, achieving 71.61%
accuracy for RAVDESS and 86.1% accuracy for Emo-DB. Mocanu et al. [8] proposed a 2D
CNN with deep metric learning using spectrograms, achieving an accuracy of 82% for
RAVDESS. Lim et al. [9] proposed a CNN–RNN model with spectrogram images, and
achieved a precision of 88.01%, a recall of 86.86%, and an f1 score of 86.65% for Emo-DB.
Similarly, Anvarjon et al. [10] used spectrograms and proposed a CNN model in which
a plain rectangular filter was applied to learn deep frequency features, achieving 92.02%
accuracy for Emo-DB.

LSTM is specifically designed to address the vanishing and exploding gradient prob-
lems inherent to standard RNN. This capability makes LSTM adept at modeling sequential
data with long-term dependencies, which suits tasks like emotion recognition from speech.
The distinguishing feature of LSTM is its memory cell, which can maintain information
in memory for extended periods of time. This cell, in combination with specific gating
mechanisms (input, output, and forget gates), allows the architecture to regulate the flow
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of information, deciding what to retain and what to discard. As a result, LSTM is able to
discern patterns across time intervals that traditional feed-forward neural networks might
overlook. When employed for speech signals, LSTM can discern emotion-bearing features
that span various lengths of time. Parry et al. [11] used the LSTM model with MFCC
(Mel Frequency Cepstral Coefficients) features, and achieved accuracy rates of 59.67%
on Emo-DB and 53.97% on RAVDESS. Kerkeni et al. [12] integrated Modulation Spectral
Features with MFCC in their LSTM model, achieving 83% accuracy on Emo-DB.

The transformer architecture was developed by Vaswasni et al. [6] based on the atten-
tion mechanism. This architecture enables parallel processing. Transformers have shown
better performance on NLP tasks [13–17], leading researchers to apply the transformer ar-
chitecture to emotion recognition [18–20]. Jing et al. [17] used Log-Mel Filterbank Energies
(LFBE) features and a transformer model to achieve a performance of 74.9% on Emo-DB.
Unlike traditional RNN and LSTM, the transformer has the advantage of being paralleliz-
able, decreasing both the training and prediction time. However, it has the disadvantage of
having to recompute the entire history for each time step due to its positional encoding
mechanism. As the model has to learn the entire history anew for each step, this imposes
high computational costs. LSTM, on the other hand, maintains a hidden state that saves
computational costs by not requiring the recomputation of all past history. However, it has
the disadvantage of suffering from long-term dependence, which means that it may have
difficulty retaining information over long distances in a sequence [21].

To combine the advantages of both architectures while reducing their respective disad-
vantages, hybrid models that integrate LSTM and a transformer have been used in research
in areas such as natural language processing (NLP) and text generation [22,23]. These models
replace the positional encoding of the transformer architecture with the iterative process of
LSTM, effectively maintaining the hidden state of input features over time [21]. This not
only addresses the short-term memory limitations associated with LSTM, but also reduces
the computational burden observed in transformer-based models. The LSTM–Transformer
hybrid model also incorporates Multi-Head Attention in the transformer encoder layer,
which allows the model to simultaneously engage with multiple feature sequences. These
hybrid architectures have also been utilized in emotion recognition from speech research.
Andayani et al. [24] applied an LSTM–Transformer model with MFCC as input to per-
forming emotion recognition from speech and achieved 75.62% and 85.55% accuracy on
RAVDESS and Emo-DB, respectively. Combining LSTM and the transformer in a single
architecture provides an innovative, computationally efficient approach to understanding
the long-term dependencies of speech signals, which can be very useful for the subtle task
of recognizing emotion from speech.

This study introduces a novel fusion of the BiLSTM–Transformer and 2D CNN architec-
tures. While previous models have relied on either temporal dynamics using architectures
such as LSTM or concentrated on localized features through CNNs for spectrogram analy-
sis, our method skillfully utilizes both. By combining the BiLSTM–Transformer’s ability
to model long-term sequential dependencies with the 2D CNN’s proficiency at detecting
localized patterns in spectrograms, we not only ensure a comprehensive understanding
of the emotional contents of speech, but also overcome the limitations of using each ar-
chitecture in isolation. This innovative integration of techniques enhances the benefits of
each individual model while addressing its shortcomings, resulting in a more robust and
comprehensive approach to emotion recognition from speech.

3. Proposed Method for Emotion Recognition from Speech
3.1. Data

Emo-DB [4] is a German emotion database, created at the Institute of Communication
Sciences at the Technical University of Berlin. The database comprises 535 recordings
in total, contributed by ten professional speakers—five men and five women. Emo-DB
contains seven emotions: anger, boredom, anxiety, happiness, sadness, disgust and neutral.
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The data were originally recorded at a sampling rate of 48 kHz and downsampled to
16 kHz.

The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) [25] is
a database containing a total of 7356 files for which high levels of emotional validity, inter-
rater reliability, and intra-rater reliability of retests have been reported. The recordings are
of 24 professional actors (12 female, 12 male) uttering two lexically matched propositions
in a neutral North American accent. The database contains seven emotions: neutral, calm,
happy, sad, angry, fearful, surprised, and disgusted. Each utterance is recorded with two
different emotional intensities (normal, strong), except for neutral, which was recorded
once at normal intensity. The speech and song data are available in three modality formats
(audio only, audio video, and video only), but for this study, only the audio-only speech
data are used. The total number of pieces of data used is 1440, with a sampling rate of
48 kHz.

In this study, we use six emotions, the emotion categories of which are matched
between the two databases: anger, disgust, fear, happiness, neutral, and sadness. Table 1
shows the number of pieces of data used in the study.

Table 1. Number of audio files per emotion in each database.

Anger Disgust Fear Happiness Neutral Sadness Total

Emo-DB 127 46 69 71 79 62 454

RAVDESS 192 192 192 192 96 192 1056

3.2. Preprocessing

Removing non-speech segments is a crucial step in preprocessing audio data. Since
Non-speech segments do not contain information related to speech information, they risk
acting as noise in emotion classification. Therefore, removing such segments can contribute
to the enhancement of performance in emotion recognition from speech. In this study,
we utilize the effects.trim function provided in the librosa library [26] to remove non-
speech segments and extract speech segments. The function works as follows. First, the
amplitude envelope, which represents the amplitude of the audio signal as a function of
time, is calculated to determine the change in intensity of the audio signal. Then, adaptive
thresholding is performed based on the calculated amplitude envelope. If the amplitude
drops below a preset threshold, it is considered a non-speech segment and removed.
This process not only reduces the size of the audio data, but also makes it more suitable
for emotion recognition from speech. Figure 1 shows examples of the waveforms and
spectrograms before and after the removal of non-speech segments.
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3.3. Feature Selection
3.3.1. Audio Features

Audio feature extraction is a key step in emotion recognition from speech. Since
emotions can be expressed by the speaker’s articulation, pitch, intensity, and many other
features of the voice, appropriate selection of audio features has a significant impact on
the performance of emotion recognition from speech. The following audio features are
considered in this study.

• MFCC, ∆-MFCC, ∆2-MFCC: Mel-frequency cepstral coefficients (MFCC) were in-
troduced by Davis et al. [27], and are widely used features in the field of speech
recognition. The human ear does not perceive all frequencies equally, and MFCCs
simulate this perception to capture the overall characteristics of speech. MFCC is a
powerful audio feature that captures the unique characteristics of speech signals to
enable more accurate emotion classification, and has been the centerpiece of various
studies on emotion recognition from speech [28–35]. ∆-MFCC and ∆2-MFCC are the
first and second time derivatives of MFCC, which represent the dynamic characteristics
of speech. In this study, 13-dimensional MFCC is extracted.

• Twelve-Dimensional Chroma Vector: Chroma vector is a feature mainly used in music
analysis, which reflects the harmonic structure of speech [36]. Since the harmonic
structure of speech can change depending on the expression of emotion, it can be a
suitable feature for emotion recognition from speech.

• Spectral Bandwidth, Spectral Centroid, Spectral Contrast, Spectral Flatness, Spectral
Rolloff [37]: These spectral features reflect the frequency domain characteristics of
speech. Spectral bandwidth describes the spread of the content of the speech and
typically contains information about the texture or timing of the sound. Spectral
centroid represents the speaker’s tone. Spectral contrast measures the difference
between the peaks and valleys of a frequency band. The difference in energy in each
frequency band can reflect a particular emotional state or articulation feature of the
speaker. Spectral flatness indicates how close a sound is to noise, and spectral rolloff
contains information about the frequency characteristics and energy distribution of
a sound.

• Root Mean Square (RMS): RMS is a feature that reflects the intensity or energy of
speech, which can indicate the intensity of emotion or the activity of the speaker [38].

• Zero Crossing Rate (ZCR): ZCR refers to the frequency with which a speech signal
crosses zero. The ZCR can change with emotion, with angry emotions having a
particularly high ZCR.

In the following, a combination of the above audio features will be used to capture
different characteristics and expressions of emotion. All features are extracted using the
librosa package [26].

3.3.2. t-SNE

t-distributed Stochastic Neighbor Embedding (t-SNE) is a dimensionality reduction
algorithm for visualizing the structure of high-dimensional datasets in 2D or 3D space [39].
t-SNE represents the similarity between data points as a probability distribution and maps it
to a lower dimension, while preserving the maximum amount of information. It calculates
the similarity between each pair of data points (xi, xj) in high-dimensional space using a
Gaussian distribution. The similarity, pij, is described in Equation (1). pj|i is the probability
that xi chooses xj as a neighbor. n is the number of data points, and acts as a normalization
constant to ensure that the sum of pij is equal to 1 for all pairs (i, j).

pij =
pj|i + pi|j

2n
(1)
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The formula for determining pj|i is presented in Equation (2), where σi is the standard
deviation of the Gaussian distribution of data points xi.

pj|i =
exp

(
−
∥∥xi − xj

∥∥2/2σ2
i

)
∑k 6=i exp

(
−‖xi − xk‖2/2σ2

i

) (2)

The similarity qij of a pair of data points (yi, yj) mapped to a low-dimensional space
is calculated as shown in Equation (3).

qij =

(
1 +

∥∥yi − yj
∥∥2

)−1

∑k 6=l

(
1 + ‖yk − yl‖2

)−1 (3)

A cost function is then calculated to optimize the similarity in both high-dimensional
and low-dimensional spaces to align as closely as possible. The cost function used in t-SNE
is the Kullback–Leibler (KL) divergence. The KL divergence measures how a probability
distribution diverges from a second expected probability distribution. The cost function is
calculated as shown in Equation (4).

C = ∑
i 6=j

pijlog
pij

qij
(4)

To find a configuration of points in the low-dimensional space that minimizes the KL
divergence, the t-SNE is optimized via gradient descent. After computing the gradient
of C, the points in the low-dimensional space are updated with the aim of minimizing C.
The gradient descent for a single iteration t is calculated as shown in Equation (5). η is
the learning rate, ∂C

∂yi
is the gradient of the cost function with respect to yi. α(t) is the

momentum term, which helps achieve fast and stable convergence. yi
(t−1) represents the

coordinates of point i in the previous iteration and yi
(t−2) corresponds to the coordinates of

the point i in the second last iteration.

y(t)i = y(t−1)
i + η

∂C
∂yi

+ α(t)
(

yi
(t−1) − yi

(t−2)
)

(5)

The t-SNE is useful for visually checking how effective a combination of audio features
is for recognizing emotion in speech. While it is difficult to understand the distances
and distributions between emotion labels in speech in a high-dimensional feature space,
visualizing them in a two-dimensional space with t-SNE makes it easy to see how well each
emotion category is distinguished.

In this study, 11 audio features were randomly combined and visualized with t-SNE
to evaluate the effectiveness of each combination. Since clear visualization results require
an equal volume of data for each emotion, we randomly selected the same number of data
samples for each emotion from both the Emo-DB and RAVDESS datasets in order to perform
feature vector extraction and t-SNE algorithm visualization. The feature combinations that
showed the best separation for both databases were as follows.

• Emo-DB: 13MFCCs, 12Chroma Vector, Spectral Contrast, Spectral Centroid, Spectral
Bandwidth, Spectral Flatness, Spectral Rolloff, RMS, ZCR.

• RAVDESS: 13MFCCs, ∆-MFCC, Spectral Contrast, Spectral Centroid, Spectral Band-
width, Spectral Flatness, Spectral Rolloff. Figure 2 shows a visualization of the feature
combinations with the best separation in each database.
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3.4. Model

The proposed model in this study combines two main components, a 2D CNN and
a BiLSTM–Transformer. The 2D CNN receives the Mel-spectrogram as input, and the
BiLSTM–Transformer takes the audio features configured in Section 3.3.2 as input.

3.4.1. 2D CNN

2D CNN is designed specifically to handle the Mel-spectrogram. Mel-spectrogram
is a visualized representation of time and frequency information of audio signals, and
2D CNN has a suitable structure for extracting features from image data. Therefore, the
Mel-spectrogram can easily be used to detect temporal changes and frequency features, and
2D CNN can effectively learn these features. Furthermore, 2D CNN excels at recognizing
local patterns. As the Mel-spectrogram reflects frequency changes in a short period of time,
the features of emotional speech may be expressed in a specific time and frequency domain,
and the 2D CNN can detect and learn these local patterns for emotion recognition.

3.4.2. BiLSTM–Transformer

LSTM-based models are designed to handle variable-length sequence data, which
makes them well suited to working with time series data such as audio data. While LSTM
processes sequence data sequentially, BiLSTM processes sequence data backwards and
forwards simultaneously. This enables BiLSTM to effectively analyze past and future infor-
mation in the data simultaneously. This can lead to higher accuracy in recognizing patterns.

Transformer is a model based on the attention mechanism, a technique that weights
different parts of the input data to emphasize significant parts. This method proves useful
in emotion recognition, as certain parts of speech that reveal emotions may hold greater
importance than others. Multi-head attention is employed to capture a larger amount of
information as compared to single-head attention. By using multiple “heads” to compute
attention from various perspectives of the data, the multi-head attention mechanism has
the ability to identify various key patterns or features at the same time. Additionally, the
transformer structure facilitates parallel processing, which enables faster learning and
smoother handling of large amounts of data. Since BiLSTM is effective for identifying
the temporal features of audio data, and the transformer is adept at learning the complex
hierarchical structures of data, the combination of these two architectures allows the model
to simultaneously consider different patterns and features in audio data.

3.4.3. Preprocessing for Model Input

First, it is necessary to preprocess the data to use it as input for the 2D CNN model.
Since Mel-spectrograms in audio can vary in length, it is necessary to perform a process
of fitting all Mel-spectrograms to the same shape. This is achieved by first calculating the
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average length of the audio for each database on the basis of the extracted audio segments.
Then, the length of the speech is aligned based on the value closet to the average length.
The average length of Emo-DB is 2.62 s; therefore, the reference length of Emo-DB is set to
2.5 s. For RAVDESS, the average length is 2.12 s, so the reference of RAVDESS is set to 2 s.
Speech data longer than the reference length are truncated at the end, while shorter speech
data are lengthened by using zero padding. As a result, the same Mel-spectrogram shapes
for Emo-DB (128, 79) and RAVDESS (128, 188) are used. On the other hand, the input to
the BiLSTM–Transformer uses the mean value of each feature, so no additional work is
required to equalize the length of the speech.

Some audio features have very different ranges or units for their values. For example,
spectral contrast typically has a value of 10 units, while spectral bandwidth has a value of
1000 units. This large variation hinders the learning of the model and makes convergence
more challenging, especially for gradient-based learning methods. Therefore, we normalize
the values of each feature so that they have a Gaussian distribution with a mean value of 0
and a standard deviation of 1. The formula used for normalization is shown in Equation (6),
where µ is the mean and σ is the standard deviation.

z =
x− µ

σ
(6)

3.4.4. Model Architecture

The first branch is a 2D CNN, which receives the Mel-spectrogram as input. Features
are extracted by passing through multiple convolutional layers, each with a ReLu activation
function and L2 kernel regularization. The progression in the number of filters—32, 64,
128, and 256—ensures a hierarchical feature extraction process, with the L2 regularization
of 0.001 acting as a deterrent against overfitting. The kernel size is consistently kept at
(3, 3) across all convolutional layers, ensuring localized feature capture. Subsequently, the
feature maps are summarized by passing them through the global average pooling and
global max pooling layers, respectively. After batch normalization and a dropout rate of 0.5,
the outputs from the two pooling layers are concatenated, forming a single feature vector.

The second branch is the BiLSTM–Transformer, which receives the previously config-
ured feature set as input. The input features are first processed by a BiLSTM layer with
64 hidden units for each direction (forward and backward), resulting in a concatenated
128-dimensional output. This is then fed into the transformer layers, which consist of
three transformer encoder layers, each having four attention heads. After the attention
mechanism, the output passes through a dense layer with 512 units, followed by a dropout
rate of 0.5 and layer normalization.

Finally, the outputs from both branches are flattened into 1D tensors. These 1D rep-
resentations are then concatenated side by side, effectively merging the distinct feature
representations from both branches into a unified feature vector. This combined feature vec-
tor is then further processed through a dense layer with 64 units and classified into emotion
categories using the SoftMax activation function. Figure 3 illustrates the overall model.
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4. Experiment
4.1. Evaluation Index

The 10-fold cross-validation method was used, in which the dataset was divided into
10 folds and evaluated. A total of 10% of the total data was held out and used as test
data, while the remaining 90% of the data were used for training and validation. Since
the training and validation data change from fold to fold during cross-validation, the
performance of the model is not dependent on the specific dataset, but rather generalized.

Weighted accuracy (WA) is a measure of accuracy that takes into consideration the
number of samples in each class. This is particularly significant in unbalanced datasets,
because the performance of larger classes will have a greater impact on the overall perfor-
mance. Unweighted accuracy (UA) is calculated by taking into consideration the accuracy
of all classes equally. It is a useful means for assessing the performance of each class equally,
and disregards class imbalance.

The confusion matrix is a commonly used tool for evaluating the performance of a
classification model. It compares the predicted classes to the actual ones and shows how
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accurate the model’s predictions are. This can expose patterns, including which classes are
often incorrectly predicted or which classes are commonly confused with one another.

These metrics enable the analysis of the model’s performance from various perspec-
tives, offering direction for future model improvements.

4.2. Results

In the experiments, the model was first evaluated via 10-fold cross-validation on each
dataset. A total of 10% of the data per emotion in each dataset was held out to test the model
after the cross-validation process. The remaining samples were shuffled and randomly split
into 10 folds of approximately equal size. Each subset k was used for validation, and the
remaining subset k-1 was used to train the model. This process was repeated 10 times. The
results of the accuracy validation were obtained from the 10 folds, and the average accuracy
of the 10 folds was used to determine performance. The results of k-fold cross-validation
are shown in Table 2. According to Table 2, the model achieved the highest recognition
rate when trained on the Emo-DB dataset, with an average recognition rate of 89.06%. An
average recognition rate of 70.87% was obtained on the RAVDESS dataset.

Table 2. Ten-fold accuracy validation.

Fold Emo-DB RAVDESS

1 96.88% 71.88%
2 93.75% 78.12%
3 87.50% 67.81%
4 87.50% 78.12%
5 93.75% 70.31%
6 90.62% 67.81%
7 81.25% 65.62%
8 84.38% 67.19%
9 81.25% 69.38%
10 93.75% 72.5%

Mean 89.06% 70.87%

In addition, all 10 folds were tested with a 10% hold-out set. The WA and UA were
calculated for the test set, and Table 3 shows the accuracy of the best-performing folds.

Table 3. WA and UA of the best model.

Emo-DB RAVDESS

Weighted Accuracy (WA) 95.65% 79.34%

Unweighted Accuracy (UA) 95.65% 80.19%

Figure 4 shows the confusion matrix for the best model for each database.
In order to obtain an intuitive understanding of the contributions of each of the two

components, BiLSTM–Transformer and 2D CNN, separate experiments were performed on
each database using the 10-fold cross-validation method. Table 4 shows the unweighted
accuracy of the best performing models from these individual experiments.

Table 4. UAs of individual experiments.

Database Used Features Model Unweighted
Accuracy

Emo-DB Proposed feature set BiLSTM–Transformer
89.13%

RAVDESS 76.42%

Emo-DB Mel-Spectrogram 2D CNN
85.62%

RAVDESS 70.15%
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These individual results accentuate the pivotal role played by each component and
further emphasize their synergistic effect when combined.

Table 5 shows a comparison of the results of previous studies using the Emo-DB and
RAVDESS databases with those obtained when using the LSTM and transformer models.
Compared to previous studies, both Emo-DB and RAVDESS showed higher accuracy when
the feature set and Mel-Spectrogram proposed for each database were used in a model
in which BiLSTM–Transformer and 2D CNN were combined. This performance clearly
indicates the improvement brought by our approach to the field of emotion recognition
from speech. The effective combination of our chosen features and model architecture
stands out when evaluated compared to existing methods.

Table 5. Comparison of the UAs reported in previous works.

Authors Database Features Used Model Unweighted Accuracy

Parry et al. [11] Emo-DB
MFCC

LTSM 59.67%
RAVDESS LTSM 53.97%

Jing et al. [20] Emo-DB Log-Mel Filterbank Energies (LFBE) Transformer 74.9%

Kerkeni et al. [12] Emo-DB Modulation Spectral Feature + MFCC LSTM 83%

Andayani et al. [24] Emo-DB
MFCC LSTM–Transformer

85.55%
RAVDESS 75.62%

This paper Emo-DB Proposed feature set
+ Mel-Spectrogram

BiLSTM–Transformer
+ 2D CNN

95.65%
RAVDESS 80.19%

5. Conclusions

The combination of the BiLSTM–Transformer model and 2D CNN proposed in this
study demonstrated superior performance at recognizing emotions from speech when
compared to existing models on the RAVDESS and Emo-DB datasets, achieving recognition
rates of 95% and 80.19%, respectively. These findings demonstrate a robust synergy between
the bidirectional context learning capacity of BiLSTM, the attention mechanism of the
transformer, and 2D CNN’s ability to capture local features in emotion recognition from
speech. In particular, the combination of different architectures in the proposed model
plays an important role in capturing various features and patterns of emotions.

In future research, we will expand upon the present findings to enhance the generality
of the model by including other languages or larger datasets. In addition, although we
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focused on audio features such as MFCC, it would be possible to further improve the
accuracy of the model by combining prosodic features or other audio features. Furthermore,
it is essential to optimize performance by fine tuning the respective hyperparameters
of BiLSTM–Transformer and 2D CNN, or by combining them with new architectures.
The proposed model contributes significantly to enhancing the performance of emotion
recognition from speech, and it is expected that further improvements and applications in
various fields will be achieved in future research.

6. Discussion

The main idea behind combining the BiLSTM–Transformer and 2D CNN methods in
this study is to bring together the best features of both approaches for emotion recognition
from speech.

The 2D CNN method is well known for its ability to process images by capturing
features that are close together. When we talk about speech, it can be imagined as a sort of
image in which changes in sound occur over time. This image-like representation is what
the 2D CNN looks at. Therefore, with 2D CNN, small and specific patterns in the speech
data can be caught that are important for identifying emotions. On the other hand, speech
is a sequence of sounds that happen one after the other, and understanding the order and
relation of these sounds is key to recognizing emotions. This is where BiLSTM–Transformer
comes in. BiLSTM looks at the speech data from both the beginning to the end and the end
to the beginning, giving a fuller picture. The transformer then helps the model to focus
on important parts of the speech, weighing their importance. By using both BiLSTM and
the transformer, it is ensured that the model understands the full context of the speech. By
combining 2D CNN with BiLSTM–Transformer, a model is obtained that can look at both
specific patterns and the overall context in speech, leading to better emotion recognition.

There are several intriguing avenues for future study. One possible direction is to
experiment with the data flow between the BiLSTM–Transformer and the 2D CNN. For
example, the output from the BiLSTM–Transformer could be used as the input for the 2D
CNN, or vice versa. This approach might lead to deeper integration between the models,
maximizing the unique strengths of each. Additionally, considering a hierarchical model
structure could be beneficial, where preliminary emotion categories detected by one model
guide or refine the processing of the subsequent model. Furthermore, integrating a feedback
loop between the 2D CNN and BiLSTM–Transformer might allow for iterative refinement.
This iterative process could provide an avenue where if one model is uncertain of its
prediction, insights from the other model could be used to reassess its initial assessment.
Essentially, as the 2D CNN captures intricate speech patterns, its outputs could potentially
be used to refine or adjust the sequence interpretations made by the BiLSTM–Transformer
and vice versa, thus allowing the combined model to continuously learn and adapt with
each iteration.

However, there are some areas in which our study could be improved. A notable
limitation is our reliance on datasets primarily in the German and English languages. While
these databases are valuable, they may not fully capture the emotional features present in
other languages. By only focusing on these two languages, we may inadvertently have
introduced biases or missed out on certain emotion-specific features of other languages. A
direction for future research would be to incorporate databases in multiple languages. This
would not only increase the diversity of the data, but also enhance the model’s capacity
to generalize across varied linguistic contexts. Furthermore, conducting experiments
with language-independent data, in which there is a mixture of multiple languages, could
present a robust challenge and potentially drive the model to extract truly universal emotion
features, rather than those tied to a specific linguistic or cultural context.

This study represents a significant step in leveraging the strengths of both the 2D
CNN and BiLSTM–Transformer architectures for performing emotion recognition from
speech. Our integration of these methods provides new possibilities for understanding and
interpreting emotional cues in speech. While we acknowledge the limitations and areas of
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potential improvement, this study provides a promising foundation for future progress. As
we continue to embrace a diverse range of datasets and refine our methodologies, we hold
a positive outlook for developing even more advanced and widely applicable models for
emotion recognition from speech in the future.
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