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Abstract: Heterogeneous architecture-based systems-on-chip enable the development of flexible and
powerful multifunctional RF systems. In complex and dynamic environments where applications
arrive continuously and stochastically, real-time scheduling of multiple applications to appropriate
processor resources is crucial for fully utilizing the heterogeneous SoC’s resource potential. However,
heterogeneous resource-scheduling algorithms still face many problems in practical situations, includ-
ing generalized abstraction of applications and heterogeneous resources, resource allocation, efficient
scheduling of multiple applications in complex mission scenarios, and how to ensure the effective-
ness combining with real-world applications of scheduling algorithms. Therefore, in this paper, we
design the Multi-Application Scheduling Algorithm, named MASA, which is a two-phase scheduler
architecture based on Deep Reinforcement Learning. The algorithm is made up of neural network
scheduler-based task prioritization for dynamic encoding of applications and heuristic scheduler-
based task mapping for solving the processor resource allocation problem. In order to achieve stable
and fast training of the network scheduler based on the actor–critic strategy, we propose optimization
methods for the training of MASA: reward dynamic alignment (RDA), earlier termination of the
initial episodes, and asynchronous multi-agent training. The performance of the MASA is tested
with classic directed acyclic graph and six real-world application datasets, respectively. Experimental
results show that MASA outperforms other neural scheduling algorithms and heuristics, and ablation
experiments illustrate how these training optimizations improve the network’s capacity.

Keywords: multiapplication scheduling; heterogeneous resources; combinatorial optimization; deep
reinforcement learning; training optimization methods

1. Introduction

With the rapid development of software-defined technologies and hardware architec-
tures, next-generation terminal systems are possible that can simultaneously implement
communication, radar, timing, and other radio-frequency (RF) functions [1]. Heterogeneous
System-on-Chip (SoC) integrates General Purpose, Special Purpose, and other types of
processor resources (FPGAs, Accelerators, etc.) on a single chip [2], realizing a balance
between performance and energy and enabling the development of flexible and powerful
multifunction RF systems. As the complexity of RF functions increases, heterogeneous SoCs
that power multifunctional RF systems must meet stringent performance requirements
before deployment. For example, RF systems in autonomous vehicles must simultane-
ously process multiple applications under highly dynamic environmental conditions to
accomplish their missions safely [3,4]. Therefore, how to efficiently schedule multiple
strong real-time applications onto a limited heterogeneous resource system is the key to
fully utilize the potential of heterogeneous SoC, as well as to enhance the flexibility and
scalability of the terminal’s RF system.

Efficient scheduling of applications on heterogeneous resource requires complex com-
binatorial optimization algorithms. The prime objective of scheduling algorithms is to
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optimize the deployment of structurally different RF applications, such as communications
and radar, by assigning the application’s different functional modules to the appropriate
Processing Elements (PEs) in the heterogeneous resources. Meanwhile, intra-application
dependencies are generally described by the form of a directed acyclic graph (DAG) that
illustrates the relationship between tasks in a point-to-point format, and these tasks can
organize fine-grained parallel computation on different PEs. Tasks and PEs should be
matched as closely as possible. If a processor with low computing capability is assigned
to a task with high computational demand, it could easily cause the task to become a
computational bottleneck for the system. Conversely, if a fast processor is assigned to a
task with low computational demand, the processor’s efficiency cannot be guaranteed. Fur-
thermore, in comparison to scheduling a single application, the task of runtime scheduling
for multiple applications becomes significantly more complicated. To address this issue,
this paper to study a multi-application scheduling algorithm designed for heterogeneous
resources.

Static scheduling algorithms generally generate optimal schedules for individual
applications on a resource system. However, compared to the scheduling of a single
application, the processing of multiple applications for heterogeneous runtime scheduling
is more complex. Currently, the neural network approach has proved its advancement in
resource management in cloud computing, edge computing and other environments [5–9],
so this paper draws on its ideas to apply neural network scheduling algorithms to the
resource management problem of terminal heterogeneous resources. Therefore, for the
characteristics of continuous stochastic arrival of applications, interdependence among
application and terminal resource heterogeneity in multifunctional RF systems, this paper
designs a Multi-Application Scheduling Algorithm (MASA) based on Deep Reinforcement
Learning (DRL) to minimize the average application execution time (denoted as avg. JET)
as the optimization global objective.

The main contributions of this paper are summarized as follows:

1. Designing a DRL-based multi-application scheduling algorithm-MASA, which con-
sists of two parts: a neural network scheduler (NN-Scheduler) and a Heuristic sched-
uler, to solve heterogeneous resource management in a dynamic environment.

2. Adopting a self-attention mechanism [10] in NN-Scheduler to realize feature vec-
tor extraction for multiple applications, and a hybrid allocation algorithm DEFT in
Heuristic scheduler to reduce the idle time of PE and improve the actual performance
of scheduling.

3. Proposing optimizing methods for network training with respect to the practical
problems of terminal heterogeneous resources. The Reward Dynamic Alignment
(RDA) method is proposed to obtain the correct empirical data, initial episodes early
termination method and asynchronous multi-agents joint training method to improve
the speed and utility of network training.

The rest of the paper is organized as follows. Section 2 presents research related to
the task scheduling algorithm. Section 3 introduces the multi-application scheduling sce-
nario and defines the average application execution time minimization problem. Section 4
proposes the multi-application scheduling algorithm-MASA and presents RDA, early ter-
mination of the initial episodes and asynchronous multi-agents joint training optimization
methods. Simulation results of the proposed algorithm are discussed in Section 5 to validate
its performance. Finally, the paper is summarized in Section 6.

2. Related Work

The complexity of DAG scheduling has been demonstrated to be NP-complete [11],
and its complexity is greatly increased when PE resources are heterogeneous. Scheduling
strategies can broadly be classified into two types: dynamic and static DAG scheduling. In
static DAG scheduling, the DAG information is known in advance (at the beginning of the
scheduling process). Conversely, the DAG topology in dynamic scheduling is unknown in
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advance, and all configuration information is obtained at runtime. Scheduling decisions
are then made in real time.

Most current static scheduling algorithms on heterogeneous resources aim to optimize
the time required to execute a single DAG. For example, the Mixed Integer Program-
ming approach uses objective functions and constraints to formulate the task scheduling
problem, exchanging computational and time complexity for an optimal solution [12].
Genetic algorithms and particle swarm algorithms based on heuristic stochastic search
algorithms can find the optimal value of the parameter set through a large number of
iterative experiments, and such algorithms can be applied to multi-objective optimization
problems [13–16]. Heuristic-based list task scheduling algorithms demonstrate their high
execution capabilities in a heterogeneous processor resource. HEFT (Heterogeneous Ear-
liest Finish Time) is the dominant algorithm for heterogeneous static list scheduling [17].
HEFT assigns priority to each task based on the critical path length, and later assigns PEs
to tasks with the highest priority on the list based on the earliest finish time (EFT),mapping
the task to the active PE with the minimum EFT value; in addition, HEFT uses a scheme
that tries to insert tasks into the PE’s idle time slots, and CPATH is a critical path aware
dynamic scheduler for heterogeneous systems that prioritizes tasks in the DAG based on
the lowest-cost longest-path approach, submitting high priority tasks to high frequency
PEs and low frequency PEs when work is enabled. This scheduling approach does not
consider communication costs for tasks [18]. These algorithms have been further expanded
and extended in recent years and applied to the scheduling of real hardware platforms,
such as FPGA [19].

Dynamic scheduling algorithms for multiple DAGs are also investigated, and many
machine learning based scheduling algorithms for dynamic scheduling scenarios are de-
scribed below. Xie G et al. proposed an adaptive scheduler (ADS) based on RL with the
aim of improving reliability and minimizing completion time. However, ADS dynami-
cally schedules DAGs with higher-level DAGs from the priority level of DAGs alone, and
the large computational granularity is not suitable for radio application streaming analy-
sis [3,20]. Biao H et al. investigated how to dynamically schedule dynamic applications on
heterogeneous embedded systems and proposed energy-efficient scheduling algorithms
for the optimization of the system energy consumption problem. However, this paper uses
an objective function and a constraint formulation to design the scheduling problem, which
has a relatively high time complexity [21]. Tegg T et al. proposed SoCRATE, a task schedul-
ing scheme for the domain of System-on-a-Chip based on the DRL algorithm. SoCRATE
employs an integrated network structure to generate scheduling decisions. This results in a
higher level of complexity in the neural network’s decision space, which prevents the neural
network from converging to a steady state more quickly [22]. Amarnath A et al. designed a
heterogeneous-aware multilevel scheduler, HetSched, which utilizes information about the
runtime state of the underlying heterogeneous SoCs as well as the real-time nature of the
application to meet the growing throughput requirements of self-driving cars. However,
it takes into account the task security level and the granularity of task division is large,
which is not adapted to the RF application environment [4]. Mao H et al. proposed the
Decima algorithm to solve the task scheduling problem in the field of cloud computing
with a combination of graph neural network and actor–critic training strategy, but Decima
is used to solve the isomorphic resource-scheduling problem and is not applicable to the
scheduling problem of heterogeneous resource systems [23].

3. A Multi-Application Scheduling Formal Definition

Resource management for terminal heterogeneous SoCs is a domain-specific resource
management problem, and the following are some of the definitions that will be used later.

Definition 1. An RF application consists of multiple specific function modules, such as Fast
Fourier Transforms (FFTs), encoders and decoders, and other computationally intensive software
components. In this paper, an application (WiFi-TX/RX, Range Detection, etc.) is defined as a
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job, and a function module is defined as a task. The terms task and node are used interchangeably
throughout this paper.

Definition 2. Task scheduling includes task prioritization and task mapping, where task mapping
describes the process of assigning PEs to tasks.

3.1. Scheduling Scenario Description

RF signal-processing applications are mostly computationally intensive tasks, and
assigning the task to a suitable PE is an essential step, e.g., the FFT can be processed
10 times faster on a hardware accelerator than on a GPP. If directly using the neural
network to process both job DAGs and PE information and generate executable tasks and
available PE pairs, the complexity of the neural network’s decision space is exponentially
increased, preventing the neural network from converging to a steady state. Therefore, in
this paper, we design a two-phase scheduling algorithm MASA to reduce the complexity of
the decision space, i.e., task prioritization and task-mapping phases, as shown in Figure 1.
Firstly, in the task prioritization phase, the NN-Scheduler mainly processes the information
of job DAG without considering the information of PE. Second, in the task-mapping phase,
the Heuristic Scheduler makes decisions based only on the identified high-priority tasks
and PE information.

Figure 1. Multi-application scheduling scenario.

The NN-Scheduler sorts the tasks in the multi-DAG, and the high priority tasks are
moved to the ready queue to wait for execution, while the low priority tasks waiting for
pretasks to be completed are left in the outstanding queue. The hardware database includes
static profiles (PE type, estimated computational execution time for each task, maximum
number of tasks to be processed by the PE) and dynamic profiles (PE utilization, status
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of the PE as busy or idle) of the PE. In each mapping phase, ready tasks are deployed to
available PEs according to the Heuristic Scheduler and assigned to executable tasks after
waiting for the PEs to become idle. After PEs have processed the executable tasks, the
SCHEDULER removes the dependencies of the tasks and updates the status information
of the tasks and the PEs. After the above is completed, a new scheduling decision phase
is triggered and the NN-Scheduler moves the outstanding tasks to the ready queue if all
of their predecessors have been deleted. After each scheduling decision is completed,
SCHEDULER updates the environment state to continue in subsequent decision phases
until all waiting tasks in the outstanding queue are removed.

3.2. Optimization Objective

The simulation environment for heterogeneous resources includes m independent jobs,
referred to as J = [j1, j2, . . . , jm], and K heterogeneous processing elements (PE), referred to
as P = [p1, p2, . . . , pK]. It is necessary to investigate the impact of randomly arriving jobs
(streaming mode) on the scheduling algorithm in different mission scenarios of varying
scales, thus the scale shown in Algorithm 1 is an adjustable parameter value.

Algorithm 1. Flowchart of Heterogeneous Resource Simulation Environment

1. Input: Job’s profile J = [j1, . . . , jm], PE’s profile P = [p1, . . . , pK ], Maximum simulation
length CLK, Job Queue capacity maximum C, job inject interval’ expectation Scale

2. Output: Average execution time for multi-application (avg.JET)
3. for each episode do
4. clk=0

5. clkinj ∼ exp
(

1
Scale

)
6. repeat
7. if Job Queue capacity maximum not reached
8. Inject job into the Job Queue every clkinj

9. end if
10. for all tasks for each job in the job Queue do
11. Task coding based on feature networks
12. Task ordering based on policy network
13. for Ready Task do
14. Mapping task to PE based on heuristic algorithm
15. end for
16. end for
17. clk← clk + 1
18. until clk→CLK
19. Computer avg.JET using Equation (5)
20. end for

Each job is modeled as a DAG, denoting the job DAG as G{N, E}, in which each task
ni ∈ N represents the software components that composed the application, and the directed
edge ei,j ∈ E is the link from task ni to nj. For any ni ∈ N, the parent node has a higher
priority than the child nodes. comp(ni, pm) represents the computational execution time of
task ni on pm, as provided by the profile of the heterogeneous resource PE. comm

(
ni, nj

)
represents the communication delay from ni to nj, as shown in Equation (1). wi,j is the
transmission data volume between ni and nj, task ni is mapped to processor pm, denoted

pm(ni)
. B
(

pm (ni)
, pn (nj)

)
denotes the bandwidth between pm and pn. For task ni and its

parent node pred(ni), assignment to different PEs incurs communication overhead, and
frequent switching of PEs leads to an increase in task execution time.

comm
(
ni, nj

)
= max

nj∈pred(ni)

wi,j

B
(

pm(ni)
, pn(nj)

) (1)
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The earliest start time (EST) and earliest finish time (EFT) of task ni on processor pm
are given by Equations (2) and (3), where pred(ni) is the parent node of task ni, avail [pm]
denotes the earliest time that pm can be used to perform the task, and AFT

(
nj
)

is the time
that nj actually finishes.

EST(ni, pm) = max

{
avail[pm], max

nj∈pred(ni)

(
AFT

(
nj
)
+ comm(nj, ni)

)}
(2)

EFT(ni, pm) = comp(ni, pm) + EST(ni, pm) (3)

The true execution time of a completed application j ∈ Jcomp is exec (j), given by Equa-
tion (4), where nexit is the exit node of application and AFT (nexit) is the actual completion
time of the exit node.

exec(j) = max{AFT(nexit)} (4)

In this paper, the final objective of the scheduling algorithm is to minimize the average
execution time of multiple applications (avg.JET) as shown in Equation (5). Where Jcomp is

the set of completed job DAGs and Jcomp ∈ J,
∣∣∣Jcomp

∣∣∣ is the number of completed job DAGs.

min avg.JET =
∑j∈Jcomp

exec(j)∣∣∣Jcomp

∣∣∣ (5)

4. Multi-Application Scheduling Algorithm (MASA) Based on DRL

The MASA proposed in this paper mainly addresses two key issues of multi-application
scheduling in dynamic environments: (1) scheduling decisions for multiple job DAGs in
streaming mode, and (2) neural network training methods in dynamic mission environ-
ments.

Task scheduling is essentially a sequential decision optimization problem, as shown in
Figure 2. This section represents the multi-application scheduling scenario as a Markov
Decision Making (MDP) process [24], when the ready task completes (releasing PEs) or a
new application arrives (adding a job DAG), SCHEDULER takes the information of the
job in the current job Queue as the input state, outputs the scheduling action, and after the
action completes and returns a reward to SCHEDULER to determine whether the action
is good or bad. The reward is designed according to the framework’s final optimization
objective.

Figure 2. MASA Diagram.
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4.1. Framework of MASA
4.1.1. NN-Scheduler

NN-Scheduler solves the multitask prioritization problem, which contains state encod-
ing network and policy network. As shown in Figure 3, the state encoding network is used
to encode the job DAG into feature vectors, and the policy network is used to prioritize
the tasks.

Figure 3. NN-Scheduler Implementation.

1. State encoding network

The state encoding network design references graph neural networks and self-attention
mechanisms [10] to achieve scalable network input dimensions. The input states contain
the jobs DAG’s attributes (e.g., number of remaining tasks, examined task computational
execution time, the PE types to which the tasks can be mapped, and DAG dependency
structure), and the outputs are feature vectors at the task-level, the job-level, and the
global-level, respectively.

The task-level feature vector is performed by the g1-network, which transforms the
attribute information of each job DAG through a nonlinear transformation into a task-level
feature vector ei

v. ei
v captures the dependencies of the front and back nodes, as shown in

Equation (6):
ei

v = g [ ∑
u∈sub(ni

v)

f(u)] + xi
v (6)

where xi
v represents the attribute information of each node ni

v and sub
(
ni

v
)

is the set
of child nodes of ni

v. g1 (∗) contains the nonlinear transformation, where f ∼ log(·/n),
g ∼ exp(n× ·), n→ ∞ .

The g2-network’s input vectors, ei
v, derived from |J| × |j| space. We adopt the attention

mechanism to represent the complex relationship between ei
v, transforming the raw data

into scalable states to capture the feature vectors yi of the entire job DAG. The job-level
feature vector yi is obtained by summarizing all the feature vectors ei

v in the DAG, as
indicated in the blue box in Figure 3. Equation (7) calculates the weighted vector ϕi

score,
while Equation (8) represents the attention function that computes the weighted sum. This
sum indicates the correlation between the weighted vector ϕi

score and the vector sequence
ei =

{
ei

1, ei
2 . . . , ei

|j|

}
, where |j| is the number of tasks in job ji.

ϕi
score = softmax

(
ϕq ·ϕk√

dk

)
·ϕv = softmax

((
wq · ei

v
)T(wk · ei

v
)

√
dk

)(
wv · ei

v

)
(7)
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yi = att
(
ϕi

score , ei
)
=
|j|

∑
v=1

ϕi
score · ei

v (8)

In order to be able to better represent the connection between all job DAGs, a global
feature vector z, z = ψ

(
y1, y2 . . . yn) represents a nonlinear function.

2. Policy network for task prioritization

The prioritization of tasks is achieved using the policy network after obtaining the
feature vectors that correspond to the tasks in the job DAG. For each node n in the job DAG,
its priority value qi

v is calculated according to Equation (9), as indicated by the red box in
Figure 3.

qi
v = q

(
ei

v, yi, z
)

(9)

It can be seen from the formula that the qi
v of each node in each DAG is related

to three elements, i.e., the task-level vector ei
v containing the attribute information and

dependencies of the node itself; the information yi contained in the DAG where each node
is located; and all the global vectors z representing the connections between job DAGs.

Tasks ni
v with high priority values qi

v in the state space are transferred to the set
of ready tasks At. Each episode updates At. Subsequently, the sofmax function is used
to calculate the mapping probability P

(
ni

v ∈ At
)

for each ready task in At, as shown in
Equation (10).

P(ni
v ∈ At) =

exp
(
qi

v
)

∑ni
v∈At

exp(qi
v)

(10)

4.1.2. Heuristic Scheduler

Because it involves the selection of PE type, the heterogeneous computing environ-
ment makes the assignment of PEs more difficult than the problem of assigning PEs in
a homogeneous environment. Therefore, after obtaining the mapping probabilities cor-
responding to high-priority tasks, the task-mapping problem in the second scheduling
phase is realized based on a heuristic algorithm. There are some implicit constraints in
the resource allocation process, such as the sum of the computational requirements of
multiple tasks deployed on a PE must not exceed the upper limit of this PE’s computational
resources, and the sum of the task data volume overlays must not exceed the physical
bandwidth between the PEs.

This paper aims to improve execution efficiency in a continuous dynamic environment
through the inclusion of a heuristic algorithm that duplicates critical parent nodes, reducing
application execution time. The mapping scheme of the selected node in this study is based
on the DEFT algorithm [25]. Comparison of the computational results of the EFT algorithm
and the Copy Parent Earliest Finish Time (CPEFT) algorithm helps select the smallest result
as the most optimal value. Equations (11) and (12) detail how the CPEFT algorithm tries
to replicate each parent node of the selected node in order to compare and arrive at the
earliest possible completion time. Equation (13) explains how the DEFT algorithm selects
the minimum result of the EFT and CPEFT algorithms, regardless of whether it involves
duplicated parent nodes or not. This ensures that computations are performed with the
minimum result.

CPEST(perd(ni), ni, pm) = minnj∈pred(ni)

(
AFT

(
nj
)
+ comm

(
nj, ni

))
(11)

CPEFT(ni, pm) = maxna,nb∈perd(ni),a 6=b{CPEST(na, ni, pm), CPEST(nb, ni, pm)}+ comp(ni, pm) (12)

DEFT(ni) = min{CPEFT(ni, pm), EFT(ni, pm)} (13)
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4.1.3. Description of the Empirical Data

The NN-Scheduler obtains state information st and executes action {an,t}n′
n =1 at each

interaction time step t. This paper differs from standard MDP processes in that the moment
when the environment state changes is uncertain. The policy network generates multiple
task decisions in time step t. When all the actions in time slot t (time step [t, t + 1)) are
completed, rewards are generated and the environment state is updated. The environment
state changes if a new job DAG is reached during action execution.

1. State space

The NN-Scheduler receives an input state represented by S = [s1, s2, . . . , so]. sn
represents the state of the nth job, and o is the number of concurrent jobs in the job queue at
the current time, where o is a variable and its value cannot exceed the maximum job queue
capacity C. Concurrent jobs include previously unfinished jobs and newly arrived jobs,
and the NN-Scheduler can learn about the potential interference between concurrent jobs
through training. The state sn of the nth job can be represented by the following equation:

sn =
((

pv, EETv, statusv
)|j|

v=1, |OT|, |RT|, JWT
)

(14)

The task nv’s assignable PE number is pv; EETv is the estimated execution time
corresponding to the task; statusv is the current state of the task, classified by the labels
ready, completed, or outstanding; |j| is the number of task nodes in job j. |OT| refers to the
number of outstanding tasks that are waiting for the parent node to finish its execution.
Similarly, |RT| refers to the number of ready tasks in the set of ready tasks At, and JWT is
the time that job jn has been running from the time it arrived on the system to the time it is
currently running.

2. Action space

At each time step, the SCHEDULER observes the state st of the environment and
performs the number of n′ actions, {an,t ∼ πθ(a|s t)}

n′
n=1. The action space is shown in the

red box in Figure 3, and the NN-Scheduler outputs the set of selected high-priority tasks
ni

v.

3. Reward

The correct reward is computed according to the RDA method (Section 4.2.1), taking
into account the inconsistency between the time step of the scheduler’s interaction with the
environment and the time step of the environment’s interaction with the scheduler. rt is
computed by constructing the reward under each clock signal as r′clk, and then calculating
rt from it. r′clk is given by Equation (15), where

∣∣ncomp
∣∣ is the number of newly completed

tasks under each clock.
r′clk =

∣∣ncomp
∣∣ (15)

4.2. Network Training

This paper addresses the problem of training neural networks based on the policy
gradient algorithm, Actor Critic (AC) [26,27]. AC evaluates the merits of an action by using
a dominance function, and if the action value function Q (S, A) is better than the state value
function V (S), the corresponding action is improved. At each time step t, the actor network
observes the environment state st and chooses to execute action {an,t}n′

n =1 ∼ πθ,n(st). n′
denotes the number of tasks with the same priority.

The Actor network’s loss function is

Lossactor = ∑T
t=0 logπθ(an,t|st)

(
Qπθ

(st, an,t)−Vπθ
(st)
)

(16)
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The Critic network assesses the state value function Vπθ
(st) and computes its loss

function as shown in Equation (17).

Losscritic =
1
2
(
Qπθ

(st, an,t)−Vπθ
(st)
)2 (17)

∇θJ(θ) , ∇θ[Lossactor + Losscritic + η · ES[H(πθ(·|st ))]] (18)

The training policy learns the optimal strategy using the regular entropy to make the
output probability distribution of actions more uniform and to prevent convergence to a
single output action. This paper considers introducing entropy regularity η·ES[H(πθ(·|st ))]
into the loss function, represented with entropy H (·) and weight η. In summary, the
gradient strategy is as follows.

To achieve stable and fast training convergence, this paper also employs the following
methods to optimize the training process: (1) Reward Dynamic Alignment (RDA) is used
to address the problem of incorrect reward propagation. This problem arises due to incon-
sistent interaction time steps between SCHEDULER and the environment. (2) Gradually
increasing the length of episodes can improve the initial training phase’s inference ability
for neural networks and help address the challenge of making multiple job DAG scheduling
decisions. (3) Asynchronous multi-agent joint training is another method used to speed up
the neural network’s training process.

Algorithm 2 shows the pseudocode of the network training process in MASA. Through-
out the training process, asynchronous multi-agent joint training is performed. In order to
avoid wasting training time, the initial events are terminated early, and Line 4 samples the
event length T from an exponential distribution with a small initial expectation Tmean. (See
Training Optimization Method 2 for more information). In order to avoid errors caused by
randomness during job arrivals and inconsistent task execution times, Line 11 calculates the
correct time-step reward based on the clock reward (see Training Optimization Method 1).
Additionally, Line 22 implements the increment of the average length of episodes Tmean.
Lastly, the strategy parameter θ of MASA is updated in Line 23.

4.2.1. Reward Dynamic Alignment Method

The standard MDP process is suitable for round-based decision problems, where the
change in the state of the environment occurs after the agent has executed an action [28].
In heterogeneous resource systems, external factors such as the random arrival of jobs
and internal factors such as the different completion times of multiple actions at the same
timestep can cause the state of the environment to change while the SCHEDULER is
executing an action. This paper proposes the RDA method as a solution to incorrect reward
propagation during finite MDP.

1. incorrect rewards

Scenario 1. SCHEDULER can achieve real-time task scheduling by observing the real-time
environment state and taking immediate actions while making decisions in the current time step.
For instance, as depicted on the Figure 4a, when the action an,t ends at time step, denoted by t’, the
immediate reward for the action is also granted at t’. While the action ai,t is being executed, the
random arrival of a job can modify the priority relation between tasks, and SCHEDULER observes
St + 1 when t′ ∈ (t + 1, t + 2]. This circumstance leads to the incidence of the incorrect reward for
the action at time t + 1.

Scenario 2. Scheduling decisions of tasks with the same priority are formed at the same timestep.
However, due to the differences in the performance of heterogeneous PE as well as the task require-
ments, each decision process completes at a different time, resulting in an inconsistency between
the immediate rewards and the observed rewards, a situation that also leads to the occurrence of
incorrect rewards. For example, as shown on the Figure 4b, although task T1 has been accomplished
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earlier than expected, the scheduling policies for the subsequent tasks T3, T4 and T5 are applied after
the completion of task T2. As a result, there is a delay in the reward for task T1.

Figure 4. (a) Incorrect reward lead by external factors; (b) Incorrect reward lead by internal factors.

Algorithm 2. Training Algorithm

1. //Assume global shared parameter vector θ1 and θ2, one-thread parameter θ′1 and θ′2,
globally shared iteration counter M, globally shared iteration max.counter Mmax, maximum
episode length mean Tmean, decay factor γ,

2. Initial thread time step counter t← 1
3. repeat
4. sample episode length T
5. Reset actor/critic network’s policy gradient: θ1 ← 0 and θ2 ← 0
6. Synchronize global parameter to one-thread parameters θ′1 = θ1 and θ′2 = θ2
7. tstart = t, get state st
8. repeat
9. Perform at according to policy πθ′1 (at|st)

10. Assign PE for task
11. Calculate the reward by clock’s reward according to Equation (19)
12. Receive reward rt and new state st+1
13. t← t + 1
14. M← M + 1
15. until Job Queue is empty (terminal st) or t− tstart == T

16. Q(s, t) =

{
0 f or terminal

Vπθ′2
(st) f or non− terminal st

17. for j ∈ {t− 1, . . . , tstart} do
18. Q(s, j)← rj + γQ(s, j + 1)
19. Accumulate actor’s local gradient updates:

dθ1 ← dθ1 +Oθ′1
logπθ′1

(
aj, sj

)(
Q(s, j)−Vπθ′2

(
sj

))
+ ηOθ′1

H
(
πθ′1

(
·
∣∣∣sj

))
20. Accumulate critic’s local gradient updates: dθ2 ← dθ2 +Oθ′2

1
2

(
Q(s, j)−Vπθ′2

(
sj

))2

21. end for
22. Tmean ← Tmean + ε

23. Update global network parameters θ1 = θ1 + αdθ1 and θ2 = θ2 + βdθ2
24. Until M > Mmax
25. Output the global network parameters θ1 and θ2

2. Implementation of RDA

The RL process of an MDP can be summarized as a
{

st, {an,t} n ′
n =1, {rn,t} n ′

n =1
}T

t =1
sequence. The reward rt corresponding to the previous decision affects the SCHEDULER’s
action decision at +1 at time step t + 1, so how to obtain the correct rt. The essential
reason for generating incorrect rewards is the inconsistency of the time step at which the
SCHEDULER interacts with the environment. Therefore, this paper proposes to compute
the reward r′clk on each clock signal so that the computation of r′clk is independent of the
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interaction time step. The time-step reward rt consists of the clock reward r′clk, i.e., the value
of rt consists of a superposition of

{
r′clk
}

. The RDA method is specifically described below.

• Step 1: Decouple the empirical data associated with the time step to obtain the sequence
{st, at}T

t =1 as well as {rt}T
t =1. T is the last interaction time step in the episodes. To

obtain the sequences
{

r′clk
}CLK

clk =1 and
{

∑clknow
clk =1 r′clk

}CLK

clknow=1
, compute the r′clk on each

clock signal and perform the ∑clknow
clk =1 r′clk computation independently of the interaction

timestep. Here, CLK refers to the clock length of the simulation.
• Step 2: At the beginning of the action, memorize the clock signal clkstart, and at the

end, memorize the clock signal clkend. Use Equation (19) to calculate rt.

rt = ∑clkend
clk=1 r′clk,t −∑clkstart

clk=1 r′clk,t = ∑clkend
clkstart

r′clk,t (19)

In summary, the RL process based on the RDA method can be summarized in
Equation (20).

{
st, {an,t}n′

n=1, {rn,t}n′
n=1

}T

t=1
→
{

st, {an,t}n′
n=1,

{
∑clkend

clkstart
r′clk,n,t

}n′

n=1

}T

t=1
(20)

In this way, the correct empirical data can be obtained using the RDA method during
the interaction between SCHEDULER and the environment, no matter how dynamically
the set of actions is changing.

4.2.2. Early Termination of the Initial Episode Method

During the initial phase of neural network training, network parameters are randomly
set, resulting in a weak initial scheduling decision for SCHEDULER. As jobs randomly
and successively arrive during the training process, the initial job DAG may not receive
a reasonable scheduling decision. This may result in a negative impact on the final job
execution time, and this process is irreversible. Furthermore, in most of the initial episodes,
the outstanding queue may accumulate a large number of waiting tasks. If too much
empirical data are sampled during these episodes, it will lead to increased duration of
network training. To prevent such a situation, this paper limits the initial episode length
and increases it gradually during the training process. The memoryless termination process
is employed for achieving incrementally longer episodes. Timestep T is randomly sampled
from an exponential distribution, causing the episode length T to obey an exponential
distribution as well T ∼ exponential1/Tmean.

4.2.3. Asynchronous Multi-Agent Joint Training Method

Training RL models using continuous sampling is difficult to converge due to the cor-
relation between empirical data. Using empirical replay, the correlation of the data can be
broken. However, there is another asynchronous multi-agent joint training method that can
break the correlation of empirical data by creating multiple Agents [29,30], starting multiple
training environments for sampling and using the collected empirical data for training,
accumulating the gradients obtained from training in multiple processes and updating the
shared parameters together after a certain number of steps. Compared to the experience
playback method that requires an experience pool to store historical samples and randomly
selects training samples, independent and identically distributed samples produced with
asynchronous training not only reduce storage space but also greatly accelerate the sam-
pling speed and consequently improve the training speed. Additionally, different strategies
used in distinct training environments create a more uniform distribution of empirical data,
facilitating the stable training of neural networks.
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5. Experiments

This section aims to verify the performance of our proposed MASA algorithm. Firstly,
we compare the performance of the proposed algorithm with that of current resource-
scheduling algorithms. Next, ablation experiments are conducted to verify the effectiveness
of the proposed training optimization method. To demonstrate the scalability of the
proposed algorithm for complex mission environments, the experiments simulate the task-
scheduling problem in streaming mode using six real-world RF applications in the field of
wireless communication and radar processing.

5.1. Experimental Environment Setting

During simulation execution, a job randomly arrives every clkinj clock signal in
the job queue to simulate the dynamic task environment. clkinj’s expectations are scale,
scale = E

(
clkinj

)
. The inter-arrival time of the clkinj follows the exponential distribution,

clkinj ∼ exponential
(

1
scale

)
.

Assuming the multifunction RF system has the ability to handle different RF appli-
cations, real-world application configurations are more complex than classic application
configurations. Table 1 shows the classic DAG comprising of 10 randomly generated tasks.
WiFi-TX, WiFi-RX, Single-carrier Tx (SCT), Single-carrier Rx (SCR), Range Detection, and
Temporal Mitigation are the six common RF applications. Their corresponding hardware
resource profiles are obtained from engineering data. Figure 5a displays the respective
DAGs for WiFi-TX [31]. Here, Inverse Fast Fourier Transform (FFT) tasks are computa-
tionally intensive, taking 10 times longer to process on a CPU than on a HW accelerator.
Figure 5b shows the computational execution time of each task on the corresponding PE
that we obtained from statistics in the actual project; in Figure 5a, the value inside the
circle represents the task ID, and the value beside the connecting line represents the data
volume between the WiFi-Tx tasks. The communication bandwidth between PEs in the
hardware configuration file is set as follows: the bandwidth value between HW Acc2 and
the other PEs (cpu A15, cpu A15 and HW Acc1) is set to 10, and the bandwidth value
be-tween all other PEs is set to 1000. The data volume between tasks and the communi-
cation bandwidth between PEs are known, and the communication delay can be derived
based on Equation (2). Based on the above profiles in the simulation platform, MASA
determines which PE to assign to the current highest priority task in the task-mapping
phase based on the constraints of equations such as EST and EFT. Network structure and
training parameters are listed in Table 2.

These applications show different workload characteristics due to differences in DAG
structure and computational requirements. For instance, WiFi-TX demonstrates a consider-
able level of parallelism compared to SCT and SCR, which contain sequential links among
nodes, thus consuming less energy during low bandwidth conditions.

Table 1. Benchmark of applications.

Application Type Application Number of Tasks Max Width, Depth

Real-world’
Communication

Application

WiFi-TX 27 5, 7
WiFi-RX 34 5, 10

Single-carrier Tx 10 1, 10
Single-carrier Rx 10 1, 10

Real-world’ Radar
Application

range detection 7 2, 6
Temporal Mitigation 10 2, 6

Classic DAG 10 random
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Figure 5. (a) WIFI-Tx’ DAG; (b) WIFI-Tx task execution time on different PEs profiles.

Table 2. Algorithm parameter setting.

Parameter Value Parameter Value

Job queue capacity 3 Optimizer Adam
Node input dimensions 6 Scale (job inject interval’ expectation) 20/40/60/80/100

Output dimensions 8 CLK (simulation length) 10,000
Maximum depth 3 Tmean (episode length’ expectation) 10,000

Hidden dimensions [16, 8] Mmax (number of Agent) 1/2/4/6/8/10
β (learning rate) 0.0001 η (entropy coefficient) 0.1
α (learning rate) 0.0003 y (discount factor) 0.98

For the purpose of comparison, two types of representative scheduling algorithms
have been considered: The heuristic algorithms MET [32] and HEFT [17], and the neural
scheduling algorithms SCARL [33], decima [23], and SoCRATES [22]. This paper incor-
porates the mainstream homogeneous resource-scheduling algorithm decima into the
comparative experiments to emphasize the necessity of designing heterogeneous schedul-
ing algorithms. Decima is dedicated to resource scheduling in homogeneous environments,
and SCARL only supports DAG for link structure, so its configuration must be modified in
simulation slightly, and each experiment is repeated five times.

5.2. Algorithm Performance Analysis

We present the performance results of the neural network algorithm and heuristic
algorithm for different application configurations in Figures 6–8. The scheduling algorithm
is employed to schedule and execute both classical and real-world applications’ DAGs. We
plot the trend of the average application execution time with the job DAG arrival rate. The
horizontal axis depicts different scale values, the smaller the scale, the faster the application
arrival rate; the vertical axis depicts the average application execution time.

5.2.1. MASA in Classic DAG Environment

In Figure 6, we show the performance results of different scheduling algorithms under
the classical DAG environment configuration. We also plot the algorithms’ performance re-
sults under different numbers of applications, respectively, as in Figure 6a–f. As the arrival
rate of applications increases, the average application execution time of each algorithm
gradually increases. However, the performance of the MASA algorithm proposed in this pa-
per consistently outperforms the other algorithms. The graph shown in Figure 6a represents
the execution results of a classical DAG with successive arrivals to the scheduler, under the
condition of following an exponential distribution. To comprehend the performance of the
scheduling algorithm, an analysis is conducted on the average application execution time at
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different scales. At a low arrival rate (scale = 100), the heuristic-based algorithm’s schedul-
ing performance is clearly weaker than the neural network-based algorithm’s scheduling
performance. When the arrival rate increases (scale = 20), the MASA algorithm proposed in
this paper also outperforms the other neural scheduling algorithms, with an improvement
of about 9% over the performance of SCRAL and about 18% over the performance of
decima and SoCRATES. Figure 6f illustrates an application pool of 10 classical DAGs, each
with the same arrival probability. As shown by the figure, the algorithm presented in this
paper offers superior performance compared to other algorithms in all application arrival
rates, while also improving with an increase in the number of applications.

Figure 6. (a) Results of scheduling algorithms in different numbers of classical DAGs: (a) the DAG
pool consists of one classical DAG; (b) the DAG pool consists of 2 random classical DAGs; (c) 4; (d) 6;
(e) 8; (f) 10.

Figure 7. Scheduling results of scheduling algorithms for different real RF applications (a) WiFi-TX;
(b) WiFi-RX; (c) Single-carrier Tx; (d) Single-carrier Rx; (e) Ranging detection; (f) Temporal mitigation.
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Figure 8. Algorithm performance results in mixed real-world environments (consisting of 6 real-
world applications with the same probability).

The data presented in Figure 6 show that the heuristic algorithm can yield results
comparable to other algorithms when the number of tasks is small and the state envi-
ronment is relatively uncomplicated. However, as the task injection rate increases, the
complexity of the state space faced by the scheduler based on the heuristic algorithm
increases dramatically, and the heuristic algorithm is unable to solve the situation very well.
Decima is based on a graph neural network for encoding the state space. Compared to the
heuristic algorithm, it can provide a more detailed explanation of the complex state space,
leading to significantly improved performance, especially when dealing with large task in-
jection rate, but it should be noted that Decima is mainly proposed to solve the isomorphic
resource-scheduling problem. Based on this foundation, SCARL and SoCRATES introduce
the fundamental concept of RL to improve the results when the model is trained on the
dynamically transformed heterogeneous resource platform through the interaction between
the environment and the Agent, and the experimental results also prove the effectiveness
of RL in the problem setting. To further encode the complex and dynamic state space of
the heterogeneous resource platform, our proposed MASA introduces the mechanism of
attention, which further improves its encoding ability. The final outcomes demonstrate that
the attention mechanism can significantly enhance the encoding capacity of the network
model as the task volume increases and the encoding environment becomes more complex.

5.2.2. MASA in Real-World Environment

To further illustrate the superiority of our proposed algorithms, we test the perfor-
mance of each algorithm in a job profile in a real mission scenario, and the experimental
results are shown in Figures 7a–f and 8. The configuration for WiFi-RX job is the most
complex, consisting of 34 tasks with complicated dependencies. However, its application
execution time is approximately three times longer than that of the latter.

The WiFi-TX job includes 27 tasks, which is more than a typical task configuration
environment. However, its execution time does not increase much compared to a classical
environment because the dependencies between its tasks are mostly linear, and it can be
observed that MASA outperforms the other compared algorithms in every application
arrival rate (scale). The configuration of WiFi-RX is the most complicated, which contains
the largest number of tasks and complex dependencies between tasks, so the execution time
of this task is much larger than all the other application configurations in this paper. It can
be seen that the algorithm proposed in this paper, MASA, has a significant improvement
over the other heuristics and neural scheduling algorithms, which is mainly due to the fact
that MASA adopts the attention mechanism, which can effectively analyze the topology
between complex tasks to improve the performance of the neural scheduling network.
The SCT task configuration includes only 8 tasks and straightforward dependencies, so its
execution time is relatively low, and when the task injection rate is low, there is not much
difference in the performance of the neural scheduling algorithms (better than the heuristic
algorithms), but when the task injection rate reaches the maximum, the performance of
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the neural scheduling algorithms is better than the heuristic algorithms. Nevertheless,
when the task injection rate is maximum, MASA’s algorithm surpasses the performance
of other comparable algorithms. The task environment configuration of SCR is similar
to that of SCR, except it demands a higher data volume between tasks. According to the
experimental results, both SoCRATES and MASA’s scheduling schemes yield the lowest
task execution time, and MASA slightly outperforms SoCRATES. The configurations of the
range detection and Temporal Mitigation environments show that MASA performs better
than the other algorithms at all task arrival rates. In conclusion, the study demonstrates
that the simulation environment is scalable by validating the proposed algorithm under
different real profiles.

This paper includes a simulation of six applications (WiFi-TX/RX, SCT, SCR, range
detection, and Temporal Mitigation) concurrently running in a real environment to analyze
algorithm performance under varying task arrival rates. Figure 8 shows that the heuristic
algorithm does not dominate the overall task scheduling due to the extended execution
time of the WiFi-TX. The complexity of the task environment results in higher demands on
the performance of the scheduling algorithms as the task injection rate increases, and the
MASA algorithm gradually demonstrates its dynamic scheduling capability in complex
task environments. The real-world job profiles are more complex, so the scheduler’s ability
to encode the state space puts forward higher requirements, and its final average task
execution time depends largely on each scheduler’s ability to interpret the state space.
MASA’s excellent dynamic scheduling ability is due to the fact that the introduced attention
mechanism, which eliminates the need to adjust the scale of the network model based on the
specific task environment and provides a better interpretation of the dynamic environment.

Figure 9a illustrates the convergence process of actor network during training. It can
be observed that the actor–critic strategy results in convergence around 100 episodes. The
fast convergence of LOSSActor in MASA proves its stronger learning ability in dynamic
environments.

Figure 9. (a) Analysis of Actor convergence results; (b) Entropy curves for the task environment.

Figure 9b presents the change of entropy H(πθ(·|st )) in Equation (18), describing
the task environment faced by the scheduler. As training progresses, the MASA network
effectively resolves the job DAGs, leading to a gradual reduction of uncertainty in the
environment. Lower values of H(πθ(·|st )) are indicative of the fact that MASA effectively
encodes the complex environment so that its complex state space can be mapped into a
relatively stable encoded vector space.

5.3. Ablation Experiment

This paper proposes several training optimization methods to stabilize neural net-
work training in dynamic environments and improve its convergence speed. This section
analyzes the utility of these methods. The effect of training optimization methods on
scheduling performance is observed in both large-scale and small-scale complex envi-
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ronments. The simulation parameter settings in this section are consistent with those in
Figure 6a.

5.3.1. Reward Dynamic Alignment Analysis

In Figure 10, we plot the convergence of the training results of the MASA algorithm
with and without the RDA optimization method during training at different application
arrival rates. The introduction of the RDA method makes it clear that the network con-
verges to a stable state earlier and the final training results in better performance. The
RDA optimization method maintains the average application execution time in a more
stable state, even with changes in the arrival rate of applications. RDA solves the reward
inaccuracy problem by buffering the rewards under clock signals, thus improving the
performance of network training. RDA is a lightweight optimization method that can be
directly applied to similar application scenarios, as it only memorizes the decision start
and end times of the task in comparison to the traditional RL method.

Figure 10. RDA validity analysis at different application scales: (a) scale = 20; (b) scale = 40;
(c) scale = 60; (d) scale = 80; (e) scale = 100.

5.3.2. Asynchronous Multi-Agent Joint Training Analysis

The direct training of neural networks using a single agent is unstable and has poor
performance, as the correlation of the empirical data is high. To improve the convergence
speed of network training, we consider the method of asynchronous multi-agent joint
training in this paper. Figure 11 shows the effect of different numbers of agents on network
training. When the number of agents is one, no multi-asynchronous action joint training is
used. The experimental results indicate that asynchronous multi-agent joint training can
effectively improve the convergence speed of network training. The greater the number of
agents, the shorter the time for the network to converge to a stable state. When the number
of agents is 10, the training curve of the network is the smoothest and can converge to a
stable value in a shorter period of time, resulting in optimal performance of the network.
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Figure 11. Analyzing the effectiveness of asynchronous multi-agent under different application
scales: (a) scale = 20; (b) scale = 40; (c) scale = 60; (d) scale = 80; (e) scale = 100.

6. Conclusions

This paper proposes a neural scheduling algorithm, called MASA, to address the
heterogeneous resource-scheduling problem in dynamic environments, and the attention
mechanism is adopted to represent complex relations between job DAGs. To train networks
fast and stable in a dynamic environment, this paper proposes the RDA, early termination of
initial episodes, and asynchronous multi-agent joint training methods. Experimental results
demonstrate that the MASA algorithm proposed in this paper outperforms both neural
scheduler algorithms and heuristic algorithms in task configurations under hypothetical
and real applications. Additionally, ablation experiments confirm the effectiveness of the
RDA algorithm and the asynchronous multi-agent training strategy proposed in this paper
in enhancing the ability of the network to be trained in dynamic environments. In the
current simulation environment, in order to enhance the high fidelity of the heterogeneous
scheduling algorithms, we have included the inter-PE communication overhead into the
application execution time overhead. However, considering that the communication
bandwidth resources between processing elements are relatively abundant compared to
the volume of intertask data transmission, we have not scrutinized the magnitude of the
communication transmission overhead on the total execution time in our current work, and
we will further explore this issue.

Future work will further explore the application of MASA algorithms in large-scale
task scheduling and test their reliability in more radio signal processing. It is also crucial to
verify whether the scheduling algorithms proposed in this paper have high fidelity and
high reliability.
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