Power Injection and Free Resonance Decoupled Wireless Power Transfer System with Double-Switch
Abstract
:1. Introduction
2. Mode Analysis and Operation Point Calculating Method
2.1. Mode Analysis
2.2. Calculating Method of the Operation Point
3. System Characteristics
3.1. The Wide Soft-Switching Margin Characteristic
3.2. Self-Determining Soft-Switching Operation Point under Dynamic Coupling Coefficient
3.3. The Monotonicity of Power about Cycle
4. Experimental Verification
4.1. Experimental Devices
4.2. Self-Determining Soft-Switching Operation Point
4.3. The Monotonicity of Output Power about Cycle
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhong, W.; Lee, C.K.; Hui, S.Y. General Analysis on the Use of Tesla’s Resonators in Domino Forms for Wireless Power Transfer. IEEE Trans. Ind. Electron. 2013, 60, 261–270. [Google Scholar] [CrossRef]
- Wu, H.H.; Gilchrist, A.; Sealy, K.D.; Bronson, D. A High Efficiency 5 kW Inductive Charger for EVs Using Dual Side Control. IEEE Trans. Ind. Inform. 2012, 8, 585–595. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, Y.; Liao, C.; Guo, Y.; Wang, L.; Li, F. Experimental Study on Asymmetric Wireless Power Transfer System for Electric Vehicle Considering Ferrous Chassis. IEEE Trans. Transp. Electrific. 2017, 3, 427–433. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, B. Omnidirectional and Efficient Wireless Power Transfer System for Logistic Robots. IEEE Access 2020, 8, 13683–13693. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, D.B. Wireless Power Transfer System Architectures for Portable or Implantable Applications. Energies 2016, 9, 1087. [Google Scholar] [CrossRef]
- Feezor, M.D.; Sorrell, F.Y.; Blankinship, P.R. An interface system for autonomous undersea vehicles. IEEE J. Ocean. Eng. 2001, 26, 522–525. [Google Scholar] [CrossRef]
- Kim, S.; Park, H.; Kim, J.; Kim, J.; Ahn, S. Design and Analysis of a Resonant Reactive Shield for a Wireless Power Electric Vehicle. IEEE Trans. Microw. Theory Tech. 2014, 62, 1057–1066. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, Y.; Liu, X.; Lin, F.; Xu, D. A Novel Parameter Tuning Method for a Double-Sided LCL Compensated WPT System with Better Comprehensive Performance. IEEE Trans. Power Electron. 2018, 33, 8525–8536. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, L.; Guo, Y.; Liao, C.; Li, F. Applying LCC Compensation Network to Dynamic Wireless EV Charging System. IEEE Trans. Ind. Electron. 2016, 63, 6557–6567. [Google Scholar] [CrossRef]
- Sohn, Y.H.; Choi, B.H.; Lee, E.S.; Lim, G.C.; Cho, G.H.; Rim, C.T. General Unified Analyses of Two-Capacitor Inductive Power Transfer Systems: Equivalence of Current-Source SS and SP Compensations. IEEE Trans. Power Electron. 2015, 30, 6030–6045. [Google Scholar] [CrossRef]
- Zhou, W.; Ma, H.; He, X. Investigation on Different Compensation Topologies in Inductively Coupled Power Transfer System. Trans. China Electron. Soc. 2009, 24, 133–139. [Google Scholar]
- Han, G.; Liu, Y.; Li, Q.; Xing, Z.; Zhang, Z. A 6.78-MHz distance-insensitive wireless power transfer system with a dual-coupled L-type matching network. Rev. Sci. Instrum. 2021, 92, 054705. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.; Tang, H.; Lim, S.; Park, J. An Adaptive Impedance-Matching Network Based on a Novel Capacitor Matrix for Wireless Power Transfer. IEEE Trans. Power Electron. 2014, 29, 4403–4413. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, B.; Qiu, D.; Zhang, Y. Frequency Splitting Phenomena of Magnetic Resonant Coupling Wireless Power Transfer. IEEE Trans. Magn. 2014, 50, 8600204. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, B. Frequency, Impedance Characteristics and HF Converters of Two-Coil and Four-Coil Wireless Power Transfer. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 177–183. [Google Scholar] [CrossRef]
- Liao, Z.J.; Ma, S.; Feng, Q.K.; Xia, C.; Yu, D. Frequency Splitting Elimination and Utilization in Magnetic Coupling Wireless Power Transfer Systems. IEEE Trans. Circuits Syst. I Reg. Pap. 2021, 68, 929–939. [Google Scholar] [CrossRef]
- Chen, L.; Hong, J.; Guan, M.; Wu, W.; Chen, W. A Power Converter Decoupled from the Resonant Network for Wireless Inductive Coupling Power Transfer. Energies 2019, 12, 1192. [Google Scholar] [CrossRef]
- Chen, L.; Hong, J.; Lin, Z.; Luo, D.; Guan, M.; Chen, W. A Converter with Automatic Stage Transition Control for Inductive Power Transfer. Energies 2020, 13, 5268. [Google Scholar] [CrossRef]
- Chen, L.; Hong, J.; Guan, M.; Lin, Z.; Chen, W. A Converter Based on Independently Inductive Energy Injection and Free Resonance for Wireless Energy Transfer. Energies 2019, 12, 3467. [Google Scholar] [CrossRef]
- Tang, C.S.; Sun, Y.; Su, Y.G.; Nguang, S.K.; Hu, A.P. Determining Multiple Steady-State ZCS Operating Points of a Switch-Mode Contactless Power Transfer System. IEEE Trans. Power Electron. 2009, 24, 416–425. [Google Scholar] [CrossRef]
- He, L.; Guo, D. A Clamped and Harmonic Injected Class-E Converter with ZVS and Reduced Voltage Stress Over Wide Range of Distance in WPT System. IEEE Trans. Power Electron. 2021, 36, 6339–6350. [Google Scholar] [CrossRef]
Reference | Number of Switches | Operation Mode | Maximum Efficiency (%) | Number of Control Modes |
---|---|---|---|---|
[17] | 6 | DCM | 93.6 | 10 |
[18] | 6 | CCM | 89.6 | 10 |
[19] | 2 | DCM | 88.4 | 6 |
the proposed system | 2 | CCM | 91.6 | 4 |
Parameter | Edc (V) | Lp (μH) | Cp (μF) | Rp (Ω) | Ls (μH) |
Value | 100 | 660 | 0.4 | 0.2 | 585 |
Parameter | Cs (μF) | Rs (Ω) | k | RL (Ω) | |
Value | 0.4 | 0.2 | 0.5 | 10 |
ξ1 (μs) | Fixed Point x* | |||
---|---|---|---|---|
up (V) | ip (A) | is (A) | uo (V) | |
13.09 | 100.0 | 5.774 | 3.289 | 28.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Luo, D.; Tang, Z.; Hong, J.; Yang, J. Power Injection and Free Resonance Decoupled Wireless Power Transfer System with Double-Switch. Electronics 2023, 12, 4061. https://doi.org/10.3390/electronics12194061
Wu W, Luo D, Tang Z, Hong J, Yang J. Power Injection and Free Resonance Decoupled Wireless Power Transfer System with Double-Switch. Electronics. 2023; 12(19):4061. https://doi.org/10.3390/electronics12194061
Chicago/Turabian StyleWu, Wei, Daqing Luo, Zhe Tang, Jianfeng Hong, and Junjie Yang. 2023. "Power Injection and Free Resonance Decoupled Wireless Power Transfer System with Double-Switch" Electronics 12, no. 19: 4061. https://doi.org/10.3390/electronics12194061
APA StyleWu, W., Luo, D., Tang, Z., Hong, J., & Yang, J. (2023). Power Injection and Free Resonance Decoupled Wireless Power Transfer System with Double-Switch. Electronics, 12(19), 4061. https://doi.org/10.3390/electronics12194061