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Abstract: This article examines the impact of a power factor on the behavior of partial DC link
voltages in three-phase three-level AC/DC (or DC/AC) converters operating without additional
balancing hardware. We consider the case in which the controller utilizes a bandwidth-restricted (DC
in steady state) zero-sequence component to achieve average partial DC link voltage equalization
since the injection of high-order zero-sequence components is impossible or forbidden. An assessment
of partial split DC-link capacitor voltage behavior (particularly that of ripple magnitudes and phases)
is necessary for, e.g., minimizing the values of DC link capacitances and selecting reference voltage
values. Previous studies assessed the abovementioned behavior analytically for operation under a
unity power factor based on third-harmonic-dominated split partial voltages’ ripple nature. However,
it is shown here that deviation from the unity power factor introduces additional (to the third
harmonic) non-negligible harmonic content, increasing partial voltage ripple magnitudes and shifting
their phase (relative to the mains voltages). As a result, the third-harmonic-only assumption is
no longer valid, and it is then nearly impossible to derive corresponding analytical expressions.
Consequently, a numerical approach is used in this work to derive a generalized expression of
normalized ripple energy as a function of the power factor, which can then easily be utilized for
assessments of split DC link voltage behaviors for certain DC link capacitances and reference voltages.
Simulations and experimental results validate the proposed methodology applied to a 10 kVA T-type
converter prototype.

Keywords: three-phase three-level converters; split DC link; capacitance; power factor

1. Introduction

With the increasing demand for high-power AC/DC and DC/AC converters in mod-
ern energy systems, the use of controlled multilevel converters is becoming more com-
mon [1]. Multilevel converters offer several advantages over traditional two-level convert-
ers, including improved efficiency, reduced dv/dt, and lower total harmonic distortion
of the output voltage [2]. Common topologies of multilevel converters include cascaded
H-bridge, flying capacitor and neutral point clamped [3].

Multilevel converters play a significant role in dual-stage power conversion systems
that use an intermediate DC voltage link [4–9]. In such systems, the DC link is usually
implemented using a single capacitor in the case of two-level conversion or multiple split
capacitors in the case of multi-level conversion [10,11]. This arrangement provides power
decoupling between phases, and allows for independent control of AC/DC and DC/AC
converters using different methods of pulse width modulation (PWM) [12–18]. The size,
weight and cost of the DC-link capacitor depend on the DC link voltage reference value
and power conversion system rating [19]. In addition, capacitors’ limited lifetime affects
the overall system reliability [20]. Hence, it is desirable to reduce both DC link voltage
reference and capacitance values [21–23].
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Among the various topologies, three-phase AC/DC and three-phase DC/AC convert-
ers have emerged as a viable choice for power ratings ranging from 10 kVA to 100 kVA
and have found widespread use in industrial applications [24]. The efficiency, reliability
and quality of output waveforms in three-level converters are significantly affected by
the PWM method employed [25]. In carrier-based PWM, the main distinction between
PWM methods lies in the injection of a zero-sequence voltage to balance the DC link
split capacitance voltages [26]. While other dedicated hardware solutions exist for split
capacitance balancing [27,28], they lead to increase in system cost and physical size. Alter-
natively, various methods of zero-sequence injection have been proposed over the years,
with the aim of balancing the average values or the instantaneous values of the split DC
link voltages [29–33]. This paper addresses the group of cases in which the harmonic
content of the zero-sequence component is limited to the DC constituent only (due to, e.g.,
four-wire converter implementation or strict leakage current restraint). Such a limitation
leads to a significant steady-state voltage ripple across split DC link capacitors, requir-
ing the careful selection of both capacitance values and corresponding voltage set points.
Previous studies evaluated these fluctuations using complex and non-analytical neutral
point expressions [34,35]. Another study proposed a methodology based on instantaneous
split DC coupling forces, which allows for an analytical and intuitive quantification of
corresponding voltage fluctuations [36]. However, these methodologies were developed
for the unity power factor only and do not account for arbitrary power factor operation.

While this paper mainly focuses on low-frequency oscillations and the influence of
the power factor, frequency-related components are omitted for brevity in the present
discussion and can be found in [35,37]. It is found that, under balanced operation on
the AC side with any power factor, total DC link voltage remains free of low-frequency
oscillations. However, split DC-link capacitors absorb power components at the triple
fundamental frequency of a magnitude equivalent to one-sixth the load power affected
by the power factor, resulting in out-of-phase voltage fluctuations. Reference [38] asserts
that the power factor does not impact the split link capacitor ripple voltages. However,
this article presents analytical expressions that contradict this claim, demonstrating that
the power factor does influence the harmonic content of the capacitor voltages. Particular
emphasis is placed on the third harmonic, which is the most dominant component in the
evaluation. The specialized expressions are validated through simulations and experiments,
providing comprehensive insights into the effect of the power factor on the behavior of
the capacitor voltages. Consequently, the selection of DC link capacitors and voltage set
points must consider the expected magnitudes of the AC-side phase voltages, the power
factor, as well as the voltage and current ratings of the split DC link capacitors. In [39], the
authors demonstrated a method to minimize the capacitance values of split DC capacitors
in three-phase three-level converters, but the analysis was restricted to a unity power
factor scenario. However, when the power factor deviates from unity, the above-presented
analysis becomes invalid, necessitating the results presented in this paper to extend the
findings in [39]. The present study is essential in providing insights and solutions for cases
where the power factor is different from unity, thereby complementing and broadening the
applicability of the results in [39].

The results of the proposed split DC link capacitor voltage evaluation can serve as
a baseline for the evaluation of advanced high-order zero-sequence injection algorithms
aiming to reduce low-frequency neutral voltage fluctuations and minimize the utilization
of split DC link capacitors. The validity of the presented findings is strongly supported by
simulations and experiments.

2. Steady-State Operation of a Generalized Three-Phase Three-Level
AC/DC Converter

Figure 1 presents a typical three-phase dual-stage AC-DC power conversion system,
comprising a three-level AC/DC (or DC/AC) converter, a DC link, and a DC/DC converter.
It is important to emphasize that the direction of energy flow can be either from the AC side
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(R, S, T terminals) to the DC side (W, Z terminals) or vice versa, i.e., the “Load” signifies a
power source when the energy flows from the DC side to AC side. In the case of three-level
conversion, the DC link is formed by three terminals (X, O, Y). During balanced operation,
AC-side steady-state quantities (all discussed signals are subsequently averaged over a
switching cycle) are given by

→
v RST(t) =

vRN(t)
vSN(t)
vTN(t)

 = VM

 sin(ωt)
sin(ωt− θ)
sin(ωt + θ)


→
i RST(t, ϕ) =

iR(t, ϕ)
iS(t, ϕ)
iT(t, ϕ)

 = IM

 sin(ωt− ϕ)
sin(ωt− θ − ϕ)
sin(ωt + θ − ϕ)

 (1)

with θ = 2π/3, VM and IM representing voltage and current magnitudes, respectively, ω
symbolizing base frequency, and ϕ denoting an arbitrary phase.
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AC-side voltage is attained by applying pulse-width modulation signals of the form [29]

→
mRST(t) =

mR(t)
mS(t)
mT(t)

 ≈ M(t)

 sin(ωt)
sin(ωt− θ)
sin(ωt + θ)

+ m0(t) (2)

created by the controller shown in Figure 1, with

→
v DC(t, ϕ) =

(
vXO(t, ϕ)
vYO(t, ϕ)

)
(3)

and M(t), m0(t) denoting modulation index and zero-sequence component, respectively. It is
considered in this paper that m0(t) contains the DC component only in steady state (allowing
for an average values equalization of split DC link voltages), while in other designs it may
contain both DC and high-order AC components (allowing for the equalization of split
DC link voltages’ instantaneous values). It should be emphasized that m0(t) may also be
supplied by additional hardware-based equalization circuits [27,28].

Considering (1), the instantaneous AC-side phase power vector is given by

→
p RST(t, ϕ) =

pR(t, ϕ)
pS(t, ϕ)
pT(t, ϕ)

 =

vRN(t)iR(t, ϕ)
vSN(t)iS(t, ϕ)
vTN(t)iT(t, ϕ)

 = S
3

 cos ϕ− cos 2
(
ωt− ϕ

2
)

cos ϕ− cos 2
(
ωt− ϕ

2 − θ
)

cos ϕ− cos 2
(
ωt− ϕ

2 + θ
)
, S = 3 VM IM

2 . (4)

Hence, total instantaneous AC-side power is ripple-free, given by

pRST(t, ϕ) = pR(t, ϕ) + pS(t, ϕ) + pS(t, ϕ) = S cos ϕ = PRST . (5)

On the other hand, assuming load-side voltage and current are governed by

vWZ(t) = VL, iL(t) = IL, (6)
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the corresponding steady-state instantaneous power is also constant, given by

pL(t) = vWZ(t)iL(t) = VL IL = PL. (7)

Consequently, instantaneous system power balance (neglecting the conversion losses
and energy stored in AC-side L, LC or LCL type filters [37,40] cf. Figure 2) is given by

PRST = S cos ϕ = VL IL = PL, (8)

indicating that the instantaneous low-frequency power flow into the DC link in Figure 1
is zero. Considering the AC/DC converter belonging to generalized three-level three-
phase topology shown in Figure 2, two split capacitors, CDC1 and CDC2, form the DC link.
According to the above, pDC = pDC1 + pDC2 = PRST + PL = 0; hence, vDC is low-frequency-
ripple-free without implying zero pDC1, pDC2 and low-frequency-ripple-free vDC1, vDC2, as
shown next. Note that the line connecting the middle point of DC link with that of the load
middle point in Figure 1 is virtual and may be non-existent in reality. It is only used to
demonstrate that the power element pL may be split into two halves [41].
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Figure 2. Three-level three-phase power conversion topology.

Since grid AC-side voltages
→
v RST and currents

→
i RST in Figure 2 cannot contain zero-

sequence components (even for nonzero m0), corresponding power vectors are given by (4).
On the other hand, converter-imposed AC-side voltages

→
v ABC =

(
vAN vBN vCN

)T

would contain DC components in case the corresponding modulation signals are DC-shifted,

→
v ABC(t) =

vAN(t)
vBN(t)
vCN(t)

 ≈ v0(t) + VM

 sin(ωt)
sin(ωt− θ)
sin(ωt + θ)

 (9)

with v0 denoting the shift imposed by m0. Consequently, (cf. Figure 2)

→
p A1B1C1(t, ϕ) =


vAN(t)iR(t, ϕ)

vBN(t)iS(t, ϕ)
vCN(t)iT(t, ϕ)

,
→
i ABC(t) > 0

0,
→
i ABC < 0

=

pA1(t, ϕ) + P0
3

pB1(t, ϕ) + P0
3

pC1(t, ϕ) + P0
3



→
p A2B2C2(t, ϕ) =


0,

→
i ABC(t) > 0vAN(t)iR(t, ϕ)

vBN(t)iS(t, ϕ)
vCN(t)iT(t, ϕ)

,
→
i ABC < 0

=

pA2(t, ϕ)− P0
3

pB2(t, ϕ)− P0
3

pC2(t, ϕ)− P0
3


(10)

with P0/3 denoting DC power component imposed by m0. Therefore, the low-frequency
partial power components exchanged between the AC side of the converter and the DC
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link of the converter (again, without considering conversion losses and energy stored in
AC-side filters) can be expressed as

pABC1(t, ϕ) = pA1(t, ϕ) + pB1(t, ϕ) + pC1(t, ϕ) ≈ PL
2 − ∆pL + P0 + pAC(t, ϕ)

pABC2(t, ϕ) = pA2(t, ϕ) + pB2(t, ϕ) + pC2(t, ϕ) ≈ PL
2 + ∆pL − P0 − pAC(t, ϕ)

(11)

with pAC denoting the zero-average pulsating power component and ∆pL representing load
power mismatch. Note that P0 may be either positive, negative or zero, compensating for
instantaneous energy shortages in one or both split DC link capacitors. Obviously, instanta-
neous system power balance (8) is sustained with P0 = ∆pL and partial low-frequency DC
link power components are given in steady state by

pDC1(t, ϕ) = vDC1(t, ϕ)CDC1
dvDC1(t,ϕ)

dt ≈ pAC(t, ϕ)

pDC2(t, ϕ) = vDC2(t, ϕ)CDC2
dvDC2(t,ϕ)

dt ≈ −pAC(t, ϕ)
. (12)

In the case where partial capacitor voltages vDC1 and vDC2 are regulated to set points
given by V∗DC1 and V∗DC2, respectively, the corresponding instantaneous low-frequency
energies eDC1 and eDC2 and steady-state voltages are

eDC1(t, ϕ) ≈ CDC1
2
(
V∗DC1

)2
+
∫

pAC(t, ϕ)dt︸ ︷︷ ︸
eAC(t,ϕ)

= CDC1
2 v2

DC1(t, ϕ)

eDC2(t, ϕ) ≈ CDC2
2
(
V∗DC2

)2 −
∫

pAC(t, ϕ)dt︸ ︷︷ ︸
eAC(t,ϕ)

= CDC2
2 v2

DC2(t, ϕ)

⇓
vDC1(t, ϕ) = V∗DC1

√
1 + 2

CDC1(V∗DC1)
2

∫
pAC(t, ϕ)dt = V∗DC1

√
1 + 2

CDC1(V∗DC1)
2 eAC(t, ϕ)

vDC2(t, ϕ) = V∗DC2

√
1− 2

CDC2(V∗DC2)
2

∫
pAC(t, ϕ)dt = V∗DC2

√
1− 2

CDC2(V∗DC2)
2 eAC(t, ϕ),

(13)

respectively. Typically,

V∗DC1 = V∗DC2 = 0.5V∗DC, CDC1 = CDC2 = CDC (14)

are employed, with V∗DC denoting overall DC link voltage reference value, so that

vDC1,2(t, ϕ) =

0.5V∗DC

√
1± 2

(0.5V∗DC)
2
CDC

eAC(t, ϕ) ≈ 0.5V∗DC ±
1

0.5V∗DCCDC
eAC(t, ϕ)︸ ︷︷ ︸

∆vDC(t)

,
2max

t,ϕ
|eAC(t,ϕ)|

(0.5V∗DC)
2
CDC

<< 1 (15)

i.e., split capacitor voltages contain DC components as well as the nonzero opposite-phase
AC voltage ripples. The approximation in (15) is valid in practical systems where the
AC ripple magnitude is much lower than the DC component [42]. As a result, each
instantaneous partial DC link capacitor’s voltage is bounded by

0.5V∗DC −
EAC(ϕ)

0.5V∗DCCDC
< vDC1,2(t, ϕ) < 0.5V∗DC +

EAC(ϕ)

0.5V∗DCCDC
, (16)

with
EAC(ϕ) = max

t
|eAC(t, ϕ)|. (17)



Electronics 2023, 12, 4063 6 of 16

3. Steady-State Generalization and Evaluation of Pulsating Components

In order to generalize the discussion, consider normalized quantities given by

→
v

pu
RST(t) =

 vpu
R (t)

vpu
S (t)

vpu
T (t)

 =
→
v RST(t)
0.5V∗DC

= VM
0.5V∗DC

 sin(ωt)
sin(ωt− θ)
sin(ωt + θ)

 ,

→
p

pu
RST(t, ϕ) =

 ppu
R (t)

ppu
S (t)

ppu
T (t)

 =
→
p RST(t,ϕ)

3S = 1
3

 cos ϕ− cos 2
(
ωt− ϕ

2
)

cos ϕ− cos 2
(
ωt− ϕ

2 − θ
)

cos ϕ− cos 2
(
ωt− ϕ

2 + θ
)
 (18)

so that

ppu
RST(t, ϕ) =

pRST(t, ϕ)

S
=

pL
S

= ppu
L = cos ϕ. (19)

Likewise, assuming P0 = ∆pL, there is

→
p

pu
A1B1C1(t, ϕ) =

 ppu
A1(t, ϕ)

ppu
B1(t, ϕ)

ppu
C1(t, ϕ)

 = 1
S



 vAN(t)iR(t, ϕ)

vBN(t)iS(t, ϕ)

vCN(t)iT(t, ϕ)

,
→
i ABC(t) > 0

0,
→
i ABC < 0

,

→
p

pu
A2B2C2(t, ϕ) =

 ppu
A2(t, ϕ)

ppu
B2(t, ϕ)

ppu
C2(t, ϕ)

 = 1
S


0,

→
i ABC(t) > 0 vAN(t)iR(t, ϕ)

vBN(t)iS(t, ϕ)

vCN(t)iT(t, ϕ)

,
→
i ABC < 0

(20)

so that
ppu

ABC1(t, ϕ) = pABC1(t,ϕ)
S = ppu

A1(t, ϕ) + ppu
B1(t, ϕ) + ppu

C1(t, ϕ)

≈ cos ϕ
2 + pAC(t,ϕ)

S =
ppu

L
2 + ppu

AC(t, ϕ)

ppu
ABC2(t, ϕ) = pABC2(t,ϕ)

S = ppu
A2(t, ϕ) + ppu

B2(t, ϕ) + ppu
C2(t, ϕ)

≈ cos ϕ
2 − pAC(t,ϕ)

S =
ppu

L
2 − ppu

AC(t, ϕ)

. (21)

Lastly, normalized pulsating energy swing magnitude is obtained as

Epu
AC(ϕ) =

EAC(ϕ)

S
=

1
S

max
t
|eAC(t, ϕ)| = max

t

∣∣∣epu
AC(t, ϕ)

∣∣∣ = max
t

∣∣∣∣∫ ppu
AC(t, ϕ)

∣∣∣∣. (22)

Figure 3 illustrates the resulting normalized waveforms, with Figure 3a–c correspond-
ing to individual phase voltages, currents and instantaneous power components as well as
total AC-side power (cf. 18), (19)). Figure 3d presents normalized partial DC-side power
components cf. (20) (upper ones only are shown for brevity), each possessing average
value of ppu

RST/6 = cosϕ/6. The corresponding total upper partial DC-side power cf. (21)
is depicted in Figure 3e, possessing an average value of ppu

RST/2 = cosϕ/2. Subtracting
the average value from the total upper partial DC-side power yields a normalized partial
pulsating power component ppu

AC, shown in Figure 3f. Lastly, the normalized pulsating en-
ergy component epu

AC obtained by integrating ppu
AC is depicted in Figure 3g with normalizing

pulsating energy swing magnitude shown in the same subplot.
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In order to demonstrate the operating power factor’s influence on partial power
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C1.

It is well-evident that operating power factor considerably influences the harmonic
content of normalized partial DC-side powers. It is interesting to note that, upon a decrease
in power factor, the first harmonic magnitude reduces while the rest of the harmonic
magnitudes inrease. As shown in [36,39] (and evident from Figure 4), normalized partial
upper DC-side power components ppu

A1, ppu
B1, ppu

C1 are given by

ppu
A1(t, ϕ) = cos ϕ

6 + Ppu
2 (ϕ) sin(2ωt + α2(ϕ)) +

∞
∑

n=1,...odd
Ppu

n (ϕ) sin(nωt + αn(ϕ))

ppu
B1(t, ϕ) = ppu

A1(t−
2π
3ω , ϕ)

ppu
C1(t, ϕ) = ppu

A1(t +
2π
3ω , ϕ)

(23)

Consequently, cf. (21),

ppu
AC(t) = 3

∞
∑

n=3k
Ppu

n (ϕ) sin(nωt + αn(ϕ)), k = odd (24)

with corresponding spectra depicted in Figure 5 for different values of ϕ.
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AC.

It is again evident that operating power factor significantly influences the harmonic
content of the normalized partial pulsating power component ppu

AC. Moreover, it is obvious
that the third harmonic dominates the spectra. Consequently, (24) may be approximated as

ppu
AC(t)

∼= 3Ppu
3 (ϕ) sin(3ωt + α3(ϕ)). (25)

Integrating (27) yields

epu
AC(t, ϕ) =

∫
ppu

AC(t, ϕ)dt = −
3Ppu

3 (ϕ)

3ω
cos(3ωt + α3(ϕ)) (26)

so that normalized pulsating energy swing magnitude is obtained as (cf. (22))

Epu
AC(ϕ) =

Ppu
3 (ϕ)

ω
. (27)

Combining this with (15), the partial DC link voltage ripple component is given by

∆vDC(t, ϕ) =
1

0.5V∗DCCDC
eAC(t, ϕ) = −∆V(ϕ) cos(3ωt + α3(ϕ)) (28)

with
∆V(ϕ) =

S
0.5V∗DCCDC

Epu
AC(ϕ). (29)
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Contrary to the statement in [38], it turns out that the power factor influences both
the amplitude ∆V and the phase α3 of the partial DC link voltage ripple component. It
is important to emphasize that the normalized pulsating energy swing magnitude (27)
and the phase α3 are generalized quantities that are valid for a given mains frequency ω,
irrespective of system rated power, partial DC link capacitance values and corresponding
voltage set points. Unfortunately, it is nearly impossible to obtain an analytical expression
for both quantities. Consequently, multiple numerical simulations are carried out for
different operating power factor values under 50 Hz mains frequency to evaluate the two
parameters. Subsequently, polynomial approximations were derived based on the results,
as shown in Figure 6. The following generalized expressions are obtained:

Epu
AC(ϕ) ≈

(
−84.46|cos ϕ|4 + 116.3|cos ϕ|3 − 124.1|cos ϕ|2 + 9.197|cos ϕ|+ 265.1

)
· 10−6

[
J

VA

]
α3(ϕ) ≈

(
−308.1|cos ϕ|4 + 410.7|cos ϕ|3 − 196.7|cos ϕ|2 + 9.883|cos ϕ|+ 86.87

)
· 2π

360◦ [rad]
(30)
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The obtained numerical expressions can be readily adapted to any system through a
straightforward calculation of the DC link voltage ripple amplitude cf. (29). The inherent
generality and adaptability of the expression makes it applicable across various systems,
facilitating efficient evaluations and comparisons in different practical scenarios. It is im-
portant to note that, in case of operation under 60 Hz mains frequency, the first polynomial
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in (30) (magnitude) should be multiplied by 5/6 due to the frequency dependence in (27)
while the second one (phase) should be left unchanged.

4. Validation

In order to validate the proposed methodology, a 10 kVA LCL-filter-based, three-
phase, three-level, T-type converter, as shown in Figure 7a is employed. A corresponding
experimental prototype, based on design guidelines given in [41], is shown in Figure 7b.
The converter was operated at 50 kHz switching frequency using the Texas Instruments
TMS320F28335 DSP [43]. The power stage was supplied from an 800 V DC power source
and connected to a three-phase balanced load. Partial DC link capacitances of 440 µF,
possessing equivalent series resistances (ESR) of 0.5 Ohm, were used [44]. Pulse-width
modulation signals (2) with M = 325/400 were applied to operate the power stage in a
semi-open-loop, feeding the load with a balanced three-phase 50 Hz, 400 V supply. The
value of m0(t) was generated in closed-loop fashion, as shown in Figure 8, where NF150
represents a 150 Hz-tuned notch filter aiming to remove the triple-mains-frequency ripple,
with K0 denoting a constant gain [38]. Three experiments were performed under the rated
loading, operating with different power factors, accompanied by matching PSIM software
simulations. Corresponding results are shown in Figures 9–11 (only one phase current
and voltage are shown experimentally, due to four-channel oscilloscope usage, along with
partial DC link voltage ripples).
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Figure 12 presents a comparison between the simulations, experimental results and
corresponding analytical predictions. A near-perfect match between simulation results and
analytical predictions is obvious, supporting the presented methodology. On the other hand,
some deviations are visible between experiments and simulations/analytical predictions.
These may be explained by voltage drops across capacitor ESRs, which were neglected in
simulations and during theoretical modeling. In order to support this assumption, the ESR
of electrolytic capacitors was included in simulations. Corresponding results are shown in
Figure 12 as “Simulation (ESR)”. It is evident that the modified simulation model outcomes
accurately coincide with the experimental results, supporting the above assumption.
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5. Conclusions

The article presents an evaluation of the impact of power factor on the ripple voltage
of split DC link capacitors in three-phase three-level converters. The results indicate that
deviations from the unity power factor leads to an increase in the amplitude of harmonic
content and a phase shift. Due to the fact that the non-unity power factor gives rise to
rich harmonic content, analytical expression derivations are non-feasible. As a result, a
numerical analysis was carried out to obtain generalized relations of normalized pulsating
energy magnitude and phase with the operating power factor. The obtained numerical
expressions can be readily adapted to any system through a straightforward calculation of
partial DC link voltages’ ripple amplitude and phase. Simulations and experiments carried
out by applying the proposed methodology to a 10 kVA T-type converter successfully
validated the revealed findings.
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