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Abstract: (1) Background: In the future Internet era, clarity and structural rationality are important
factors in image inpainting. Currently, image inpainting techniques based on generative adversarial
networks have made great progress; however, in practical applications, there are still problems of
unreasonable or blurred inpainting results for high-resolution images and images with complex
structures. (2) Methods: In this work, we designed a lightweight multi-level feature aggregation
network that extracts features from convolutions with different dilation rates, enabling the network
to obtain more feature information and recover more reasonable missing image content. Fast Fourier
convolution was designed and used in the generative network, enabling the generator to consider
the global context at a shallow level, making it easier to perform high-resolution image inpainting
tasks. (3) Results: The experiment shows that the method designed in this paper performs well in
geometrically complex and high-resolution image inpainting tasks, providing a more reasonable and
clearer inpainting image. Compared with the most advanced image inpainting methods, our method
outperforms them in both subjective and objective evaluations. (4) Conclusions: The experimental
results indicate that the method proposed in this paper has better clarity and more reasonable
structural features.

Keywords: future Internet architecture; artificial intelligence; image inpainting; multi-level feature ag-
gregation network; fast Fourier convolution; high sense field perception loss; self-guided regres-
sion loss

1. Introduction

Digital image processing is the processing of image information to meet people’s
visual and practical application needs [1,2]. In the Internet era, the equipment update
speed is becoming increasingly fast, and people’s demand for information is more urgent.
Digital images can express rich information, and digital image processing is thus a valuable
research topic. High-quality images can convey rich content and information [3], but in
real life, due to the passage of time, the loss generated by image transmission and other
factors lead to the lack of image information and quality degradation, so image inpainting
has become a popular research direction in the field of digital image processing [4,5].

The purpose of image inpainting is to recover the missing information based on the
known information of the image and fill in the missing pixels of the image in order to
achieve the overall semantic structure consistency and visual realism [6,7]. This task has
attracted considerable of attention over the years, and restorers tend to use the most appro-
priate way to restore images to their original state while ensuring the most desirable artistic
effect [8,9]. High-quality image inpainting has a wide range of application areas, such as
target removal, scratch removal, watermark removal, and inpainting of old photos [10–13].
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Traditional image inpainting algorithms are mainly divided into two kinds. Structure-
based image inpainting algorithms are based on the structural principle of image infor-
mation, using the gradual diffusion of information to restore the image, mainly for the
implementation of the PDE process of partial differential equations [14]. The texture-based
method has good repair effect when dealing with small areas of simple structure loss, but
it lacks the constraints of high-level semantic information of the image, so the problem
of inconsistent content texture occurs when dealing with large areas of broken images.
Texture-based image inpainting algorithms select reasonable feature blocks from the known
region of the damaged image to sample, synthesize, or copy and paste into the region to
be restored [15], and the core idea of the method is to search for the most similar image
feature blocks in the known part of the image or dataset, so that the structure and texture
information of the image can be retained better, but these kinds of algorithms usually
requires a large amount of time, with low versatility and efficiency.

In recent years, deep learning has been highly valued for its powerful learning abil-
ity and rich application scenarios and has achieved outstanding success in the field of
computer vision. Image inpainting techniques based on deep learning have been well
developed [16–18], thus promoting the significant improvement of the image inpainting
effect. Pathak et al. [19] proposed the first GAN-based inpainting algorithm, the Context
Encoder (CE). The CE as a whole is a simple encoder–decoder structure that uses the fully
connected layer channel to propagate information, acts as an intermediate connection be-
tween the encoder and decoder, and learns the relationships between all feature locations of
the network to deepen the overall semantic understanding of the image. In order to ensure
the results generated by image inpainting have reasonably clear texture and structure, Yu
et al. [20] proposed a two-stage network architecture with a coarse-to-fine structure. The
first stage consists of null convolution to obtain a rough restored image, and the second
stage uses a contextual attention layer to accomplish fine inpainting. The authors further
developed the idea of copy and paste by proposing a contextual attention layer that is
microscopically and fully convolutional. Partial convolution proposed by Liu et al. [21] and
gated convolution proposed by Yu et al. [22] have provided new ideas for the use of partial
convolution or gated convolution that can ignore invalid pixels, thus solving the problem
whereby ordinary convolution treats all input pixels the same way, which produces the
problem of many artificial and unnatural effects and high computation. Improvement
based on convolution has become a major breakthrough in the field of image inpainting.

In 2019, Wang et al. [23] proposed a generative multi-column convolutional neural net-
work (GMCNN) for image inpainting using a multi-branch convolutional neural network
that consists of three parallel encoder–decoder branches, with each branch using three
different filter sizes to extend the importance of a sufficiently large receptive field for image
inpainting to solve the boundary consistency problem. However, the use of large convolu-
tional kernels in branch structures can lead to an increase in model parameters and still
result in unreasonable or blurry repair results for high-resolution and complex background
images. To overcome this problem, we designed a lightweight multi-level feature aggre-
gation network that extracts features from convolutions with different expansion rates to
obtain more feature information, thereby restoring more reasonable missing image content
and ensuring that the model does not add additional parameters. Fourier convolution
was designed and used to consider the global context in the shallow layer of the generator,
improving the effectiveness of high-resolution image inpainting. In addition, self-guided
regression loss was designed and used to enhance semantic details of missing regions, and
a global local discriminator with two branches was used to promote consistency in global
structure and morphology.

The remaining sections of this paper are organized as follows. Section 2 describes the
related inpainting work. Section 3 describes the method proposed in this paper in detail.
Section 4 outlines the details of the experiment and compares it with other state-of-the-art
methods. Section 5 presents our conclusions.
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2. Related Work
2.1. Generative Adversarial Networks

A generative adversarial network reaches the Nash equilibrium state through con-
frontation training and then obtains a generator and inputs the damaged picture into the
generator to obtain the repair result of the damaged picture [24]. The generative adversarial
network consists of a generator and a discriminator. The generator is designed to transform
an input incomplete image into a fully repaired image. And the purpose of the discrimina-
tor is to identify and distinguish the fake repair image generated by the generator from
the real complete image, set the output of the synthetic image produced by the generator
to 0, and set the output of the real complete image to 1. Generative adversarial networks
are widely used in the field of computer vision due to their capacity for producing more
realistic images. A GAN is shown in Figure 1.

Figure 1. Generative adversarial network.

The generator and discriminator of the GAN rely on different loss methods for training.
The formula for the loss function of the discriminator network is as follows.

max
D

V(D, G) = Ex∼pdata(x)[ln(D(x)) + Ez∼pinput(z)[ln(1− D(G(z))] (1)

The loss function formula of the generator network is as follows.

min
G

V(D, G) = Ez∼pinput(z)[ln(1− D(G(z)) (2)

The model’s adversarial loss formula is as follows.

min
G

max
D

V(D, G) = Ex∼pdata(x)[ln(D(x)) + Ez∼pinput(z)[ln(1− D(G(z))] (3)

where E represents the expectation, pdata(x) represents the real sample, G represents the
generator network, D represents the discriminator network, and pinput(z) represents the
input of the generator network.

We first trained the discriminator, and in the process of training the discriminator, the
closer the value of D(x) to 1 and the closer the value of D(G(z)) to 0, the better. After the
parameters of the discriminator were updated, we set the parameters of the discriminator
as fixed and proceeded to train the generator. In the training process of the generator, our
objective is to bring the value of D(G(z)) closer to 1, which indicates better performance.

2.2. Local Discriminator

The local discriminator is used to assist in network training to determine whether the
generated image has complete consistency, with the main aim of maintaining local semantic
consistency of the inpainting results. The local discriminator focuses on the restored region
of the image and only focuses on small feature blocks to determine more details. During
each training process of the GAN, the discriminator needs to be updated first to ensure that
the discriminator can correctly distinguish the real samples from the training samples in
the beginning period of training. The local discriminator network is shown in Figure 2.
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Figure 2. Local discriminator.

The local discriminator network is based on a convolutional neural network (CNN),
which consists of five convolutional layers and one fully connected layer, and the input
is a 128 × 128 image. The input to the network is an image centered on the repair region
with five convolutional layers with a convolutional kernel size of 5 × 5 and a step size of
2 × 2. The final output is a 1024-dimensional vector representing the local context around
the repair region.

2.3. Global Discriminator

Iizuka et al. [25] proposed the inclusion of a global discriminator in the image inpaint-
ing model with the main purpose of maintaining the global semantic consistency of the
inpainting results. The input to the global discriminator is the whole image, and the global
consistency is judged by recognizing the input image. The global discriminator network
has the same goal as the local discriminator network, which is to judge whether the input
image is real or not. The global discriminator network is shown in Figure 3.

Figure 3. Global discriminator.

The global discriminator network is composed of the same pattern, also based on a
CNN, consisting of six convolutional layers and one fully connected layer, and the input
is a 256 × 256 image. The network compresses the generated image with an overall pixel
scaling of 256 × 256, where all six convolutional layers use a 5 × 5 convolutional kernel
with a step size of 2 × 2 to achieve a lower image resolution while increasing the number of
output filters. The output of the final network is fused together through a fully connected
layer.

2.4. Perceptual Loss

Perceptual loss is a loss function proposed by Justin Johnson et al. [26] in the style
diversion task, which is mainly used in image super-resolution, image inpainting, etc. It first
calculates the low-level feature loss, and then abstracts potential features via convolutional
layers to perceive images that are closer to the feature space of human thinking. The
features obtained from the convolution of the real image (generally extracted by the VGG
network) are compared with the features obtained by the convolution of the generated
image, the content and the high-level information of the global structure become closer,
and the loss is calculated.
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The feature reconstruction function calculation formula of perceptual loss is as follows.

Lp = ‖Ψ(ŷ)−Ψ(y)‖2 (4)

where Ψ represents the pre-trained network model, ŷ represents the original damaged
image, and y represents the generated repaired image. The pre-trained network extracts
the semantic message of the initial graph and the generated graph and calculates the L2
norm of the relevant location between the two to gain the perceptual loss. It can effectively
raise the training result of the model by decreasing the perceptual loss.

3. Our Method
3.1. Network Structure

With the rapid development of the Internet, people’s requirements for image quality
are increasing. Aiming at the problem of unreasonable or blurred inpainting results for
images with complex geometric structure and high clarity, a multi-level feature aggregation
network was designed in this study, as shown in Figure 4. The network framework is based
on a generative adversarial network, which consists of a generator and a discriminator
with two branches. The input of the network is an image with a mask; firstly, the mask
image is downsampled, the input image is shrunk, and after down-sampling the image to
be repaired is repaired using a multi-level feature aggregation network. After the repair is
completed, it is restored to the original size after the upper adoption, and then the repair
result is input into the discriminator to determine whether it is true or false.

Figure 4. Network framework.

In the generation network, we input a mask image, first processing the mask image,
and then using a lightweight multi-level feature aggregation network to extract suitable
feature blocks for filling. At present, image inpainting tasks based on generative adversarial
networks have achieved good results, but the restoration effect is still unsatisfactory for
images with complex structures and high-definition pixels. For complex structured images,
previous methods have not taken into account the semantic structure consistency of the
results and expected targets, which can lead to a lack of clear semantic details in the
restoration results. Therefore, we designed a multi-level feature aggregation module in
the generation network to extract features from multiple levels, obtain multiple features,
and recover more detailed information. For high-resolution images, we hope to retain
very realistic and perfect details after processing, achieving high-quality repair results.
Therefore, in the generation network, we designed and used a fast Fourier convolution
(FFC) module to effectively solve the problem of poor generalization performance of the
network model for high-resolution images.

In order to train the network model in this article and achieve better consistency,
our discriminator uses global and local discriminators with two branches. Global and
local discriminators are trained to distinguish between generated and real images, and
the use of both global and local discriminators is crucial for obtaining realistic image
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restoration results. The global discriminator recognizes the region as the entire image,
evaluates its coherence, and ensures the global consistency of the generated results. The
local discriminator recognizes a small area of the image centered around the repaired
part, evaluates its local coherence, and ensures local consistency of the generated results.
Finally, a connection layer is used to combine the outputs of the global discriminator and
the local discriminator, and the combined results are input into a fully connected layer for
processing, outputting a continuous value that represents the probability that the image
is true.

3.2. Multi-Level Feature Aggregation Network

A large and effective receptive field is crucial for understanding the global structure of
the image and thus solving the inpainting problem. Previous algorithms have proposed
a null convolution in order to obtain a larger receptive field, which introduces a dilation
rate to the convolutional layer, a parameter that defines the spacing between the values
of the convolutional kernel as it processes the data. This method expands the receptive
field while maintaining the original number of parameters, but the cavity convolution is
sparse and ignores many relevant pixels. Literature [23] proposes the use of a GMCNN,
which uses a network with large convolution kernels for multi-column results; however,
this method introduces a large number of model parameters. To address this problem, the
multi-level feature aggregation module in the generative network was designed in this
study, which well balances the contradiction between expanding the receptive field and
guaranteeing the convolutional density, and a multi-level feature extraction method was
adopted to obtain a sufficiently large receptive field, which helps to recover more detailed
information in the inpainting results. The multi-level feature aggregation module is shown
in Figure 5.

Figure 5. Multi-level feature aggregation module.

In the multi-level feature aggregation module designed in this study, conv-3 indicates
that the convolution kernel is a 3 × 3 convolution, the first convolution layer is used
to reduce the number of feature channels, and then features are extracted through four
different branches using convolutions with different expansion rates: padding = 1 indicates
that the expansion rate is 1, padding = 2 indicates that the expansion rate is 2, padding = 4
indicates that the expansion rate is 4, and padding = 8 indicates an expansion rate of 8.
Each cavity convolution is followed by connecting the ReLU activation layer and the
instance normalization layer (IN), ⊕ summing the elements. Finally, the features of the
four branches are aggregated together, and the number of feature channels is expanded
to 256 by fusing the aggregated features through a single 1 × 1 convolution, with the last
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convolution followed by connecting only the instance normalization layer without using
the activation function.

3.3. Fast Fourier Convolution

We designed and used a new convolution module, fast Fourier convolution (FFC), in
the generative network, which not only has a non-local receptive field but also achieves
the fusion of cross-scale information inside the convolution, making the model consider
the global contextual information in the early layers, which is suitable for high-resolution
images. The structure of FFC is shown in Figure 6.

Figure 6. Fast Fourier convolution.

FFC is a convolution operator which uses Fourier spectral theory to achieve non-
local sensory fields in depth models. The proposed operator is also designed to achieve
cross-scale fusion. FFC is based on Fast Fourier Transform (FFT) at the channel level. FFC
is designed to be divided into two branches at the channel level. The local branch uses
conventional convolution, and the global branch uses FFT to obtain the global contextual
information. FFC can start to consider the global contextual information at the shallow
level of the network, and it has a suitable fitting effect for high-resolution images. At the
same time, FFC is also very suitable for the depth model effect and for capturing periodic
structures.

3.4. Overall Loss

In deep-learning-based repair algorithms, the choice of loss function is crucial to
optimize the network model by comparing predicted and true values to quantitative
analysis.

Self-guided regression loss guides the feature mapping similarity metric of the pre-
trained VGG19 network by calculating the difference between predicted and true values.
The self-guided regression loss is not performed in the pixel space but in the shallow
semantic space, which utilizes the difference maps of the true and false images as the
bootstrap maps, increasing the penalty for the missing regions, which is used to enhance
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the repaired regions semantic details in and to improve the detail fidelity of the generated
images. The self-guided regression loss function is shown below.

Lsg =
2

∑
l=1

φl

∥∥∥Ml
guidance �

(
ϕl

Igt
− ϕl

Ioutput

)∥∥∥
1

Nϕl
Igt

(5)

where φl = 1e3
C

ϕl
Igt

, C is the number of channels of the feature mapping φl
Igt

, φl
Igt

is the

activation mapping of the given input Igt in the rule1 layer, φl
Ioutput

is the activation mapping
of the given input Ioutput in the rule1 layer, � is the elemental product operator, and
Ml

guidance takes values in the range of 0–1.
For image generation network training, we used VGG feature matching loss to com-

pare the activation maps of the middle layer of the trained VGG19 network. In this study,
the discriminator is global and local double branching, so we added local branching to the
discriminator feature matching loss to ensure the consistency between the generated image
and the real image in any dimensional space. The formula is shown below.

Ldl =
5

∑
l=1

φl

∥∥∥Dl
local

(
Igt
)
− Dl

local
(

Ioutput
)∥∥∥

1
NDl

local(Igt)
(6)

where local denotes a local branch and D denotes a discriminator. Dl
local

(
Igt
)

denotes the
activation mapping of the discriminator given input Igt at the rule1 layer, and Dl

local
(

Ioutput
)

denotes the activation mapping of the discriminator given input Ioutput at the rule1 layer.
High receptive field perceptual loss (HRFPL) is suitable for network models with

fast-growing receptive fields, it is compatible with the characteristics of perceptual loss
by pre-training the network to extract and compare the differences between the generated
image feature maps and the real image, and, at the same time, it helps the network to
understand the global structure. The high sensory field perceptual loss function formula is
as follows.

Lhr f pl(x, x̂) = M
(
[φHRF(x)− φHRF(x̂)]2

)
(7)

where φHRF(·) is the high sensory field base model, [φHRF(x)− φHRF(x̂)]2 is the element-
by-element operation, and M is the sequential two-stage mean operation.

For the generator in this paper, the formula for the adversarial loss is shown below.

Ladv = −Exr

[
log
(

1− DRa

(
xr, x f

))]
− Ex f

[
log
(

DRa

(
x f , xr

))]
(8)

where DRa

(
xr, x f

)
= sigmoid

(
C(xr)− Ex f

[
C
(

x f

)])
, xr denotes the real image, C() de-

notes the discriminator network without the last sigmoid function, x f denotes the generated
image.

In summary, our total loss function formula is shown below.

Ltotal = δL1 + γ
(

Ls f + Lvgg

)
+ εLdl + λLhr f pl + χLadv (9)

where δ, γ, χ, ε, and λ are the parameters given to adjust the weight of each loss in the
overall loss.

4. Experiment and Analysis
4.1. Experimental Environment and Dataset
4.1.1. Experimental Environment

All the experiments in this study were performed in the same experimental environ-
ment on the same computer with a hardware device configuration of 64-bit Windows 10
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operating system with an Intel(R) Core (TM) i9-10900X CPU @ 3.70GHz processor and
an NIVIDIA GeForce RTX 2080Ti graphics card. For the software, the third-party Python
library PyTorch v1.0.0, configuration cuda v10.0, Python version 3.7.3, and the compiler
PyCharm were used.

For the experiments in this study, our training dataset and test dataset were randomly
divided with a 10:1 ratio, and the Adam optimizer was used for optimization during the
training of the network, with the parameters set to β1 = 0.5 and β2 = 0.999. The learning
rate of was used to train the model, and the Batch_Size was set to 6. For equation 9, the loss
function weights were set to δ = 1.2, γ = 25, χ = 0.01, ε = 5, λ = 1.4.

4.1.2. Datasets

To validate the inpainting effect of this paper’s method for high-resolution and images
with complex geometric scenes, the experiment used four public datasets, CelebA_HQ [27],
Places2 [28], Dunhuang Mogao Cave murals [29], and a masked dataset [21] for the model
training of the image inpainting task and the inpainting effect test.

CelebA_HQ: This dataset is a large-scale facial attribute dataset in which images cover
large pose variations and background clutter. It contains 300,000 celebrity images, each
with a resolution of 1024 × 1024.

Places2: This dataset contains a total of more than 10 million images with more than
400 unique scene categories. Each category has between 5000 and 30,000 training images,
consistent with real-world scene frequencies.

Dunhuang Mogao Cave murals: This dataset depicts the production and labor scenes
of various ethnic groups and classes in ancient times, scenes of social life, architectural
shapes, as well as images of music and dance, covering a wide range of artistic themes,
colorful contents, and comprehensive colors.

4.2. Qualitative Evaluation

In the same experimental setting, we compared the method of this paper with several
classical, state-of-the-art methods to demonstrate the superiority of the method of this paper.
These models were trained using the same experimental setup until convergence. These
models include CRA [10], RFR [30], CCA [31], and PGAN [32]. Comparison experiments
of this study were performed on CelebA_HQ [27] and mural datasets, and qualitative and
quantitative results were measured to compare our model with previous methods. The
inpainting results for rectangular masks are shown in Figure 7, and the inpainting results
for irregular masks are shown in Figure 8.

Figure 7. Results of comparison experiments using CelebA_HQ dataset on rectangular mask images.
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Figure 8. Results of comparison experiments using mural dataset on irregularly masked images.

We selected images with different levels of complexity for our experiments. Figure 7
demonstrates the results of this paper’s method for the CelebA_HQ dataset targeting
rectangular masks in comparison with other state-of-the-art methods. Figure 8 demon-
strates the results of this paper’s method in comparison with other state-of-the-art methods
for the mural dataset targeting irregular masks. In most cases, the model in this paper
produces results that are more semantically sound and generate clearer details, and the
overall result is more visually realistic compared to other methods. For images with simple
geometrical structures and low clarity, the various methods produce satisfactory inpainting
results, but as the geometrical structures become more complex and the clarity increases the
performance of the other methods is progressively poorer. As can be seen from the figure,
some of the inpainting results perform poorly on high-resolution images and complex
background images, and the FRF method does not have a sufficiently large receptive field,
so its inpainting results suffer from edge artifacts. The CRA method is suitable for the
task of inpainting of high-resolution images, but it is difficult to obtain the fine texture
structure. The CCA method and the PGAN method have good performance as a whole
and take into account the global semantic and structural consistency of edge consistency,
but the inpainting results are still not as good as the CCA method or the PGAN method.
Structural consistency is demonstrated, but the inpainting results still have some gaps with
real images. Due to the multi-level feature aggregation network as well as the loss function
designed in this study, which performs well on high-definition images with complex ge-
ometrical structures, our model has more realistic inpainting results and a clearer visual
experience.

4.3. Quantitative Evaluation

In order to verify the inpainting effect of the model in this paper more objectively and
fairly, we used the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM)
evaluation metrics to evaluate the results quantitatively. The PSNR is commonly used to
measure the reproduction quality of noisy image compression codes, which is an estimate
of the reproduction quality of human-perceived compression codes in dB, with larger
values indicating less distortion. The PSNR values of the different methods for the four
datasets are shown in Table 1, where the black font indicates the optimal value. Analyzing
the data in the table, it can be concluded that for the CelebA_HQ dataset, the model in this
paper improves by 3.56 dB compared to the CRA method and 2.89 dB compared to the CCA
method. For the mural dataset, the model in this paper improves by 2.64 dB compared to
the RFR method and 1.70 dB compared to the PGAN method. Our method produces the
highest PSNR values and yields images with minimum distortion and higher quality.
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Table 1. PSNR (dB) values of different methods on both datasets.

Method CelebA_HQ Frescos

GConv N/A N/A
CRA 27.68 N/A
RFR N/A 24.23
CCA 28.35 N/A

PGAN N/A 25.17
Ours 31.24 26.87

Bold font is the best value for each column.

The SSIM is used to measure the structural similarity between two images and estimate
the perceived quality of an image by calculating the similarity between the original and
reconstructed images in the three dimensions of brightness, contrast, and structure. The
SSIM takes a value in the range of [0, 1], where a larger value indicates a smaller gap
between the output image and the real image. The SSIM values of different methods for
the four datasets are shown in Table 2, where the black font indicates the optimal value.
Analyzing the data in the table, it can be concluded that for the CelebA_HQ dataset, the
model in this paper improves by 0.064 compared to the CRA method and 0.033 compared
to the CCA method. For the mural dataset, the model in this paper improves by 0.067
compared to the RFR method and 0.045 compared to the PGAN method. Our method
produces the highest SSIM on both datasets values and generates inpainting results with
higher result similarity, which fully demonstrates that the use of perceptual loss and self-
guided regression loss with high sensory field can enhance the overall perceptual ability of
the model and make the gap between the generated results and the real image smaller.

Table 2. SSIM values of different methods on both datasets.

Method CelebA_HQ Frescos

GConv N/A N/A
CRA 0.903 N/A
RFR N/A 0.785
CCA 0.934 N/A

PGAN N/A 0.807
Ours 0.967 0.852

Bold font is the best value for each column.

4.4. Ablation Experiments

In order to verify the performance effect of this paper’s multi-level feature aggregation
module in the image inpainting task, we carried out experiments using the multi-level
feature aggregation module and a single level of ordinary convolution. The experimental
results are shown in Figure 9, and the results of the evaluation indexes are shown in Table 3.
When the multi-level feature aggregation module is not used, the restored results have
more obvious artifacts and unreasonable structures, and the multi-level feature aggregation
module can extract features from convolutions with different expansion rates, which makes
the network obtain more feature information and thus helps to restore a more reasonable
structure for the missing part. For the CelebA_HQ dataset, after using the multi-level
feature aggregation module, the PSNR and SSIM are improved by 1.92 dB and 0.144,
respectively, and for the Places2 dataset, after using the multi-level feature aggregation
module, the PSNR and SSIM are improved by 1.19 dB and 0.061, respectively.



Electronics 2023, 12, 4065 12 of 15

Figure 9. Validation of multi-level feature aggregation module on CelebA_HQ dataset and Places2
dataset.

Table 3. PSNR (dB) and SSIM of different models on CelebA-HQ dataset and Places2 dataset.

Model/Dataset
CelebA_HQ Places2

PSNR SSIM PSNR SSIM

w/o multi-level network 29.32 0.823 27.76 0.863
Full model 31.24 0.967 28.95 0.924

Bold font is the best value for each column.

In order to verify the performance effect of using FFC in the image inpainting task in
this paper, we conducted experiments with and without FFC. The experimental results are
shown in Figure 10, and the results of evaluation indexes are shown in Table 4. When FFC
is not used, the contour edges of the face inpainting are not smooth enough, and the natural
landscape leaves are partially missing. FFC takes the global context into account and not
only has a non-local receptive field but also achieves the fusion of cross-scale information
inside the convolution, which makes the model consider the global context information in
the early layers and can help the model to show excellent results for high-resolution images.
For the CelebA_HQ dataset, the PSNR and SSIM were improved by 0.62 dB and 0.050,
respectively, after using FFC. For the Places2 dataset, the PSNR and SSIM were improved
by 1.94 dB and 0.025, respectively, after using FFC.

Figure 10. Validation of FFC on CelebA_HQ dataset and Places2 dataset.
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Table 4. PSNR (dB) and SSIM of different models on CelebA-HQ dataset and Places2 dataset.

Model/Dataset
CelebA_HQ Places2

PSNR SSIM PSNR SSIM

w/o FFC 30.62 0.907 27.01 0.899
Full model 31.24 0.967 28.95 0.924

Bold font is the best value for each column.

5. Conclusions

With the rapid development of the Internet, image inpainting will face higher require-
ments and challenges. Image inpainting is an important research branch in the field of
digital image processing, which aims at automatically recovering lost information based on
the existing information in the image. In this paper, an image inpainting algorithm based
on a multi-level feature aggregation network is proposed, which takes advantage of the
disparity in the range of sensory fields of different expansion rate convolutions to construct
a network with a larger sensory field so as to capture more feature information and recover
the missing parts with clear semantics and reasonable structural content. In addition, FFC
is used in the generative network, which takes global contextual information into full
consideration, and cross-scale information fusion is carried out within the convolution to
ensure the clarity and reasonableness of the generated results. The discriminator uses global
and local discriminators with two branches, which are trained to distinguish between the
generated image and the real image, which is crucial for obtaining realistic image inpaint-
ing results. In the experimental part of the study, extensive quantitative and qualitative
comparative and ablation studies were conducted to demonstrate the advantages of our
designed network in terms of performance and effectiveness.
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