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Abstract: This paper redefines picture fuzzy soft matrices (pfs-matrices) because of some of their
inconsistencies resulting from Cuong’s definition of picture fuzzy sets. Then, it introduces several
distance measures of pfs-matrices. Afterward, this paper proposes a new kNN-based classifier,
namely the Picture Fuzzy Soft k-Nearest Neighbor (PFS-kNN) classifier. The proposed classifier
utilizes the Minkowski’s metric of pfs-matrices to find the k-nearest neighbor. Thereafter, it performs
an experimental study utilizing four UCI medical datasets and compares to the suggested approach
using the state-of-the-art kNN-based classifiers. To evaluate the performance of the classification, it
conducts ten iterations of five-fold cross-validation on all the classifiers. The findings indicate that
PFS-kNN surpasses the state-of-the-art kNN-based algorithms in 72 out of 128 performance results
based on accuracy, precision, recall, and F1-score. More specifically, the proposed method achieves
higher accuracy and F1-score results compared to the other classifiers. Simulation results show that
pfs-matrices and PFS-kNN are capable of modeling uncertainty and real-world problems. Finally, the
applications of pfs-matrices to supervised learning are discussed for further research.

Keywords: soft sets; picture fuzzy sets; picture fuzzy soft matrices; distance measures; machine
learning; k-nearest neighbor (kNN)
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1. Introduction

In daily life events, we frequently come across many intricate challenges that are
full of uncertainties. Such uncertainties may be impossible to model using traditional
mathematical approaches. As a result, state-of-the-art mathematical techniques are needed
to model such uncertainties. To avoid ambiguities, Zadeh created the idea of fuzzy sets
(f -sets) [1]. f -sets are common mathematical tools used in numerous domains, ranging from
computer science [2,3] to pure mathematics [4–9]. Figure 1 shows some hybrid extensions
of f -sets.

Fuzzy Sets
(Zadeh, 1965)

Soft Sets
(Molodtsov, 1999)

Intuitionistic Fuzzy Set
(Atanasov, 1986)

Soft Matrices
(Çağman and Enginoğlu, 2010)

Pythagorean Fuzzy Set
(Yager, 2013)

Picture Fuzzy Set
(Cuong, 2014; Memiş 2021)

Fuzzy Soft Sets
(Maji et al., 2001)

Intuitionistic Fuzzy Soft Sets
(Maji et al., 2001)

Pythagorean Fuzzy Soft Sets
(Peng et al., 2015)

Picture Fuzzy Soft Sets
(Cuong, 2014; Yang et al., 2015; Memiş 2022)

Fuzzy Soft Matrices
(Çağman and Enginoğlu, 2012)

Intuitionistic Fuzzy Soft Matrices
(Chetia et al., 2012)

Pythagorean Fuzzy Soft Matrices
(Guleria et al., 2018)

Picture Fuzzy Soft Matrices
(Arikrishnan and SriramIn, 2020; Redefined in this paper)

Figure 1. Some hybrid versions and extensions of fuzzy and soft sets [1,7,9–22].
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An f -set has entries indicated by µ(x), i.e., a membership degree for x. Because
µ(x) + ν(x) = 1, the non-membership degree ν(x) is calculated by subtracting the µ(x)
from 1. However, if µ(x) + ν(x) < 1, it is not as simple, and there is additional uncertainty.
As an extension of f -sets, intuitionistic fuzzy sets (if -sets) [10] have been proposed to
model this form of uncertainty. An if -set has entries indicated by µ(x) and ν(x), namely
membership and non-membership degrees, respectively, such that 0 ≤ µ(x) + ν(x) ≤ 1
(Figure 2). In contrast to fuzzy sets, the idea of intuitionistic fuzzy sets can depict problems
where 0 ≤ µ(x) + ν(x) < 1. In addition, the indeterminacy degree is determined as
1− (µ(x) + ν(x)).

Figure 2. Comparison of space of intuitionistic and Pythagorean fuzzy membership.

Although f -sets and if -sets may overcome many difficulties and uncertainties [23], far
more are encountered in practice. Consider the voting process for a presidential election.
During this procedure, the electorate’s decisions can be divided into three categories:
yes, no, and abstention. To represent such a process, Cuong proposed the notion of
picture fuzzy sets (pf -sets) [16]. A pf -set has elements with the degrees of membership,
non-membership, and neutral membership denoted by µ(x), ν(x), and η(x), respectively.
The refusal to vote or non-participation in voting leads to the indeterminacy described
above. Furthermore, 1− (µ(x) + η(x) + ν(x)) reflects the degree of indeterminacy in pf -
sets because µ(x) + η(x) + ν(x) ≤ 1 in Cuong’s definition. Even though pf -sets model the
aforementioned difficulties, the definitions and operations put forward by Cuong have
conceptual errors. Memiş [21] revised the idea of pf -sets and associated operations to
maintain consistency, where µ(x) + η(x) + ν(x) ≤ 2.

Conversely, pf -sets are unable to model the problems comprising parameters and alter-
natives (objects) with a picture fuzzy membership (pf -membership) degree. In other words,
pfs-sets [16,18,24] can represent problems with alternatives (objects) using pf -membership
(Figure 3), with the expert voting on whether to accept, reject, or abstain from the alternatives.

Recently, various studies have been conducted on pf -sets and pfs-sets. The idea of
a rough picture set has been introduced, and several of its topological features, includ-
ing the lower and upper rough picture fuzzy approximation operators, have also been
investigated [25]. The creation of clustering algorithms that can explore latent knowledge
from a large number of datasets is an emerging research field in pf -sets. The distance and
similarity measure is one of the most crucial tools in clustering that establishes the level of
association between two objects. Therefore, generalized picture distance measure has been
defined, and it has been applied to picture fuzzy clustering [26]. In addition to distance
measure, picture fuzzy similarity has also been studied [27,28]. A technique for solving
decision-making issues utilizing the generalized pfs-sets and an adjustable weighted soft
discernibility matrix has been presented, and threshold functions have been defined [29].
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A weighted soft discernibility matrix in the generalized pfs-sets has been employed to
offer an illustrative example to demonstrate the superiority of the suggested approach
therein. Matrix representations of mathematical concepts, such as pfs-sets are crucial in the
context of computerizing [30,31]. Thus, Arikrishnan and Sriram [20] define picture fuzzy
soft matrices and investigate their algebraic structures. Because the related study is based
on Cuong’s [16] study, there are some theoretical inconsistencies. Moreover, Arikrishnan
and Sriram have only focused on the algebraic structures. The study of Sahu et al. [32]
aims to analyze students’ characteristics, such as career, memory, interest, knowledge, envi-
ronment, and attitude, in order to predict the most suitable career path. This will enable
students to explore and excel in their chosen field comfortably. A hybridized distance
measure has been proposed, using picture fuzzy numbers to evaluate students, subjects,
and students’ characteristics for career selection. However, related studies only rely on
fictitious problem data. A research study that integrates pfs-sets with Quality Function
Deployment (QFD) to propose a Multiple Criteria Group Decision-Making (MCGDM)
method has been discussed [33]. In this approach, the preferences of the decision-makers
are collected in linguistic terms and transformed into Picture Fuzzy Numbers (PFNs). The
study applies the proposed MCGDM method to rank social networking sites, specifically
evaluating Facebook, Whatsapp, Instagram, and Twitter, providing valuable insights into
their comparative performance. The study of Lu et al. [34] has introduced the concept of
generalized pfs-sets by combining an image fuzzy soft set with a fuzzy parameter set. They
discuss five main operations for generalized pfs-sets: subset, equality, union, intersection,
and complement.

Figure 3. Space of picture fuzzy membership.

Suppose the problem has picture fuzzy uncertainty and a large number of data. In that
case, pfs-sets cannot operate efficiently with a large number of data. Therefore, processing
data through the computer is compulsory, and the matrix versions of the pfs-sets are needed.
The concept of picture fuzzy soft matrices (pfs-matrices) was propounded in 2020 [20];
however, in the aforementioned study, only the algebraic structures of the concept have
been investigated. To this end, this paper redefines the concept of pfs-matrices, defines the
distance measures of the pfs-matrices, and applies them to supervised learning to manifest
their modeling ability. The major contributions of this paper are as follows:

• pfs-matrices are redefined, and some of their basic properties are investigated.
• Distance measures of pfs-matrices are introduced.
• Picture fuzzy soft k-nearest neighbor (PFS-kNN) based on distance measure of pfs-

matrices is proposed.
• An application of PFS-kNN to medical diagnosis is provided.
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In Section 2 of the paper, definitions of pf -sets and pfs-sets are provided. In Section 3,
the motivations of the redefining of pfs-matrices are detailed. In Section 4, the idea of
pfs-matrices is redefined, and their properties are further examined. In Section 5, distance
measures of pfs-matrices are introduced, and their basic properties are researched. In
Section 6, a PFS-kNN classifier is proposed. In Section 7, the proposed classifier is applied
to medical diagnosis and compared with the well-known kNN-based classifiers. Finally,
we discuss pfs-matrices and PFS-kNN and provide conclusive remarks for further research.

2. Preliminaries

In this section, we present the concepts of pf -sets and pfs-sets by considering the
notations used across this study. Across this paper, let E and U denote the parameter and
alternative sets, respectively.

Definition 1 ([16,21]). Let f be a function such that f : E → [0, 1] × [0, 1] × [0, 1]. Then,
the graphic

{(x, f (x)) : x ∈ E} = {(x, µ(x), η(x), ν(x)) : x ∈ E}

is called a picture fuzzy set (pf-set) over E. Here, a pf-set is denoted by
{(〈

µ(x)
η(x)
ν(x)

〉
x
)

: x ∈ E
}

instead of {(x, µ(x), η(x), ν(x)) : x ∈ E}.

Moreover, for all x ∈ E, µ(x) + ν(x) ≤ 1 and µ(x) + η(x) + ν(x) ≤ 2. Further-
more, µ, η, and ν are the membership, neutral membership, and non-membership func-
tions, respectively, and the indeterminacy degree of the element x ∈ E is defined by
π(x) = 1− (µ(x) + ν(x)).

In the present paper, the set of all the pf -sets over E is symbolized by PF(E) and
f ∈ PF(E).

Remark 1. In PF(E), the notations graph( f ) and f are interchangeable since they have generated
each other uniquely. Thus, we prefer the notation f to graph( f ) for brevity, provided that it results
in no confusion.

Definition 2 ([16,22]). Let α be a function such that α : E→ PF(U). Then, the graphic

{(x, α((x, µ(x), η(x), ν(x)))) : x ∈ E}

is called a picture fuzzy soft set (pfs-set) parameterized via E over U (or briefly over U).

Throughout this paper, the set of all the pfs-sets over U is symbolized by PFSE(U).

Remark 2. In PFSE(U), the notations graph(α) and α are interchangeable since they have gener-
ated each other uniquely. Thus, we prefer the notation α to graph(α) for brevity, provided that it
results in no confusion.

Example 1. Let E = {x1, x2, x3, x4} and U = {u1, u2, u3, u4, u5}. Then,

α =

{(
x1,
{〈

0.8
0.1
0.1

〉
u1,
〈

0.1
0.2
0.7

〉
u3,
〈

1
0
0

〉
u5

})
,
(

x2,
{〈

0.6
0.4
0

〉
u2,
〈

0
0.5
0.5

〉
u4

})
,
(

x3,
{〈

0.7
0

0.2

〉
u3

})
,(

x4,
{〈

0.1
0.3
0.2

〉
u2,
〈

0.4
0.2
0.4

〉
u5

})}
is a pfs-set over U.
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3. Motivations of the Redefining of pfs-Matrices

This section discusses the definition, fundamental operations, and counter-examples
to Arikrishnan and Sriram’s definition [20], based on Cuong’s definition [16], considering
the notations employed throughout the rest of the study.

Definition 3 ([16]). Let κ : E→ [0, 1]× [0, 1]× [0, 1]. Then, the graphic

{(x, κ(x)) : x ∈ E} =
{(〈

µ(x)
η(x)
ν(x)

〉
x
)

: x ∈ E
}

is called a picture fuzzy set (pf-set) over E such that µ(x) + η(x) + ν(x) ≤ 1.

In this section, the set of all the pf -sets over E according to Cuong’s definition is
denoted by PFC(E) and κ ∈ PFC(E).

Definition 4 ([16]). Let κ1, κ2 ∈ PFC(E). For all x ∈ E, if µ1(x) ≤ µ2(x), η1(x) ≤ η2(x), and
ν1(x) ≥ ν2(x), then κ1 is called a subset of κ2 and is denoted by κ1⊆̃κ2.

Definition 5 ([16]). Let κ1, κ2 ∈ PFC(E). If κ1⊆̃κ2 and κ2⊆̃κ1, then κ1 and κ2 are called equal
pf-sets and are denoted by κ1 = κ2.

Definition 6 ([16]). Let κ1, κ2, κ3 ∈ PFC(E). For all x ∈ E, if µ3(x) = max{µ1(x), µ2(x)},
η3(x) = min{η1(x), η2(x)}, and ν3(x) = min{ν1(x), ν2(x)}, then κ3 is called union of κ1 and
κ2 and is denoted by κ3 = κ1∪̃κ2.

Definition 7 ([16]). Let κ1, κ2, κ3 ∈ PFC(E). For all x ∈ E, if µ3(x) = min{µ1(x), µ2(x)},
η3(x) = min{η1(x), η2(x)}, and ν3(x) = max{ν1(x), ν2(x)}, then κ3 is called intersection of κ1
and κ2 and is denoted by κ3 = κ1∩̃κ2.

Definition 8 ([16]). Let κ1, κ2 ∈ PFC(E). For all x ∈ E, if µ2(x) = ν1(x), η2(x) = η1(x), and
ν2(x) = µ1(x), then κ2 is called complement of κ1 and is denoted by κ2 = κ c̃

1.

To hold the conditions “Empty pf -set over E is a subset of all the pf -set over E” and
“All pf -sets over E are the subset of universal pf -set over E”, the definition and operations
of pf -sets in [16] must be as follows [21]:

Definition 9 ([21]). Let κ ∈ PFC(E). For all x ∈ E, if µ(x) = 0, η(x) = 0, and ν(x) = 1, then

κ is called empty pf-set and is denoted by
〈

0
0
1

〉
EC or 0EC .

Definition 10 ([21]). Let κ ∈ PFC(E). For all x ∈ E, if µ(x) = 1, η(x) = 1, and ν(x) = 0, then

κ is called universal pf-set and is denoted by
〈

1
1
0

〉
EC or 1EC .

Cuong’s definitions have led to the inconsistencies in Examples 2 and 3 [21]:

Example 2 ([21]). There is a contradiction in Definition 10 since 1 + 1 + 0 � 1, i.e., 1EC /∈
PFC(E). Moreover, even if 1EC ∈ PFC(E), (1EC )

c̃ 6= 0EC .

Example 3 ([21]). Let κ ∈ PFC(E) such that κ =

{〈
0.1
0.2
0.3

〉
x
}

. Then, κ∪̃0E 6= κ and κ∪̃1EC 6= 1EC .

Therefore, Memiş [21] has provided the definition and operations of pf -sets in [16] to
overcome the aforementioned inconsistencies.
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Definition 11 ([16,18]). A ⊆ E. The set{(
x, FA

((〈
µ(x)
η(x)
ν(x)

〉
x
)))

: x ∈ A ⊆ E
}

is called a pfs-set over U, where FA is a mapping given by F : A→ PFC(U).

In this section, the set of all the pfs-sets over U according to Cuong’s definition is
denoted by PFSC(U) and FA ∈ PFSC(U).

Cuong [16] defined pfs-sets based on his own definition and operations of pf -sets. As a
result, the inconsistencies mentioned earlier also apply to his concept of pfs-sets. Addition-
ally, Yang et al. [18] claimed to have introduced the concept of pf -sets, even though Cuong
had already defined it in [16]. Thus, the concept of pfs-sets has also similar inconsistencies
therein. Hence, pfs-sets were redefined to deal with inconsistencies mentioned above [22].

Furthermore, the concept of pfs-matrices has similar inconsistencies therein, since
Arikrishnan and Sriram [20] have introduced the pfs-matrices according to Cuong’s defini-
tion [16] and defined their union, intersection, and complement.

Definition 12 ([20]). Let FA ∈ PFSC(U). Then, [aij] is called pfs-matrix of FA and defined by

[aij] :=



a11 a12 a13 . . . a1n . . .

a21 a22 a23 . . . a2n . . .

...
...

...
. . .

...
...

am1 am2 am3 . . . amn . . .

...
...

...
. . .

...
. . .


such that for i ∈ {1, 2, · · · } and j ∈ {1, 2, · · · },

aij := FA

(〈
µ(xj)
η(xj)
ν(xj)

〉
xj

)
(ui)

Here, if |U| = m and |E| = n, then [aij] has order m× n.

In the present study, the membership, neutral membership, and non-membership
degrees of [aij], i.e., µij, ηij, and νij, will be denoted by µa

ij, ηa
ij, and νa

ij, respectively, as long as
they do not cause any confusion. Moreover, the set of all the pfs-matrices over U according
to Arikrishnan and Sriram’s definition is denoted by PFSAS[U] and FA ∈ PFSAS[U].

It must be noted that the following definitions from [20] expressed the notations
employed throughout the present paper. Definitions of inclusion and equality in the
pfs-matrices space is provided according to Arikrishnan and Sriram’s definitions.

Definition 13. Let [aij], [bij] ∈ PFSAS[U]. For all i and j, if µa
ij ≤ µb

ij, ηa
ij ≤ ηb

ij, and νa
ij ≥ νb

ij,
then [aij] is called a submatrix of [bij] and is denoted by [aij]⊆̃[bij].

Definition 14. Let [aij], [bij] ∈ PFSAS[U]. For all i and j, if µa
ij = µb

ij, ηa
ij = ηb

ij, and νa
ij = νb

ij,
then [aij] and [bij] are called equal pfs-matrices and denoted by [aij] = [bij].

Definition 15 ([20]). Let [aij], [bij], [cij] ∈ PFSAS[U]. For all i and j, if µc
ij = max{µa

ij, µb
ij},

ηc
ij = min{ηa

ij, ηb
ij}, and νc

ij = min{νa
ij, νb

ij}, then [cij] is called union of [aij] and [bij] and denoted
by [aij]∪̃[bij].
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Definition 16 ([20]). Let [aij], [bij], [cij] ∈ PFSAS[U]. For all i and j, if µc
ij = min{µa

ij, µb
ij},

ηc
ij = min{ηa

ij, ηb
ij}, and νc

ij = max{νa
ij, νb

ij}, then [cij] is called intersection of [aij] and [bij] and
denoted by [aij]∩̃[bij].

Definition 17 ([20]). Let [aij], [bij] ∈ PFSAS[U]. For all i and j, if µb
ij = νa

ij, ηb
ij = ηa

ij, and

νb
ij = µa

ij, then [bij] is complement of [aij] and denoted by [aij]
c̃.

According to Arikrishnan and Sriram’s definitions, the definitions of empty and
universal pfs-matrices must be defined as in Definitions 18 and 19, respectively, to hold the
conditions “Empty pfs-matrices over U is a submatrix of all the pfs-matrices over U” and
“All pfs-matrices over U are the submatix of universal pfs-matrix over U”.

Definition 18. Let [aij] ∈ PFSAS[U]. For all i and j, if µij = 0, ηij = 0, and νij = 1, then [aij] is

empty pfs-matrix and is denoted by
[〈

0
0
1

〉]
.

Definition 19. Let [aij] ∈ PFSAS[U]. For all i and j, if µij = 1, ηij = 1, and νij = 0, then [aij] is

universal pfs-matrix and is denoted by
[〈

1
1
0

〉]
.

Arikrishnan and Sriram’s definitions have resulted in the inconsistencies in
Examples 4 and 5:

Example 4. There is a contradiction in Definition 19 since 1 + 1 + 0 � 1, namely,
[〈

1
1
0

〉]
/∈

PFSAS[U]. Moreover, even if
[〈

1
1
0

〉]
∈ PFSAS[U],

[〈
1
1
0

〉]c̃

=

[〈
0
1
1

〉]
6=
[〈

0
0
1

〉]
.

Example 5. Let [aij] ∈ PFSAS[U] such that [aij] =


〈

0.4
0.3
0.1

〉 〈
0.2
0.4
0.3

〉
〈

0.7
0.1
0.1

〉 〈
0.1
0.5
0.2

〉
. Then,

[aij]∪̃
[〈

0
0
1

〉]
=


〈

0.4
0

0.1

〉 〈
0.2
0

0.3

〉
〈

0.7
0

0.1

〉 〈
0.1
0

0.2

〉
 6=


〈

0.4
0.3
0.1

〉 〈
0.2
0.4
0.3

〉
〈

0.7
0.1
0.1

〉 〈
0.1
0.5
0.2

〉
 = [aij]

and

[aij]∪̃
[〈

1
1
0

〉]
=


〈

1
0.3
0

〉 〈
1

0.4
0

〉
〈

1
0.1
0

〉 〈
1

0.5
0

〉
 6= [〈1

1
0

〉]
.

Consequently, since the aforesaid definitions and operations of pfs-matrices and how
they operate are inconsistent, this concept and its operations must be redefined.

4. Picture Fuzzy Soft Matrices (pfs-Matrices)

Cuong [16] and Yang et al. [18] have introduced the concept of pfs-sets to address
the need for more general mathematical modeling of specific issues involving additional
uncertainties. In addition, Yang et al. [18] have proposed an adjustable soft discernibility
approach based on pfs-sets and applied it to a decision-making problem. Memiş [22]
has redefined the concept of pfs-sets and applied it to a project selection problem. The
applications described in the aforementioned studies demonstrate the successful use of
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pfs-sets in addressing various issues with the uncertainties modeled by membership, non-
membership, and neutral degrees, namely picture fuzzy uncertainties. These results
suggest that researching the idea of pfs-sets is worthwhile. However, it is important to
note that these ideas have drawbacks, such as complexity and lengthy computation times.
Therefore, it is crucial to understand their matrix representations, i.e., pfs-matrices, and
ensure their theoretical consistency in the context of computerizing the aforementioned
problems. For instance, for utilizing pfs-sets in machine learning, pfs-matrices, which are
matrix representation of pfs-sets, and their consistent theoretical definition and operations
are needed.

Thus, in the present section, we make consistent the idea of pfs-matrices and present
some of its fundamental properties. Since some of the propositions in this section have
elementary proof, only the propositions with the complex proof are demonstrated.

Definition 20. Let α ∈ PFSE(U) (See Definition 2). Then, [aij] is called pfs-matrix of α and
defined by

[aij] :=



a11 a12 a13 . . . a1n . . .

a21 a22 a23 . . . a2n . . .

...
...

...
. . .

...
...

am1 am2 am3 . . . amn . . .

...
...

...
. . .

...
. . .


such that for i ∈ {1, 2, · · · } and j ∈ {1, 2, · · · },

aij := α

(〈
µ(xj)
η(xj)
ν(xj)

〉
xj

)
(ui)

Here, if |U| = m and |E| = n, then [aij] has order m× n.

In the present study, the membership, neutral membership, and non-membership
degrees of [aij], i.e., µij, ηij, and νij, will be denoted by µa

ij, ηa
ij, and νa

ij, respectively, as long
as they do not cause any confusion. Moreover, the set of all the pfs-matrices parameterized
via E over U (briefly over U) is denoted by PFSE[U] and [aij], [bij], [cij] ∈ PFSE[U].

Example 6. The pfs-matrix of α given in Example 1 is as follows:

[aij] =



〈
0.8
0.1
0.1

〉 〈
0
1
1

〉 〈
0
1
1

〉 〈
0
1
1

〉
〈

0
0
1

〉 〈
0.6
0.4
0

〉 〈
0
1
1

〉 〈
0.1
0.3
0.2

〉
〈

0.1
0.2
0.7

〉 〈
0
1
1

〉 〈
0.7
0

0.2

〉 〈
0
0
1

〉
〈

0
0
1

〉 〈
0
1
1

〉 〈
0
1
1

〉 〈
0
1
1

〉
〈

1
0
0

〉 〈
0

0.5
0.5

〉 〈
0
1
1

〉 〈
0.4
0.2
0.4

〉


Definition 21. Let [aij] ∈ PFSE[U]. For all i and j, if µij = λ, ηij = ε, and νij = ω, then [aij] is

(λ, ε, ω)-pfs-matrix and denoted by
[〈

λ
ε
ω

〉]
. Moreover,

[〈
0
1
1

〉]
is empty pfs-matrix and

[〈
1
0
0

〉]
is

universal pfs-matrix.
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Definition 22. Let [aij], [bij], [cij] ∈ PFSE[U], IE := {j : xj ∈ E}, and R ⊆ IE. For all i and j, if

µc
ij =

 µa
ij, j ∈ R

µb
ij, j ∈ IE \ R

, ηc
ij =

 ηa
ij, j ∈ R

ηb
ij, j ∈ IE \ R

, and νc
ij =

 νa
ij, j ∈ R

νb
ij, j ∈ IE \ R

then [cij] is called Rb-restriction of [aij] and is denoted by [(aRb)ij]. Briefly, if [bij] =

[〈
0
1
1

〉]
, then

[(aR)ij] can be used instead of [(aRb)ij]. It is clear that

(aR)ij =



〈
µa

ij
ηa

ij
νa

ij

〉
, j ∈ R

〈
0
1
1

〉
, j ∈ IE \ R

Definition 23. Let [aij], [bij] ∈ PFSE[U]. For all i and j, if µa
ij ≤ µb

ij, ηa
ij ≥ ηb

ij, and νa
ij ≥ νb

ij,
then [aij] is called a submatrix of [bij] and denoted by [aij]⊆̃[bij].

Definition 24. Let [aij], [bij] ∈ PFSE[U]. For all i and j, if µa
ij = µb

ij, ηa
ij = ηb

ij, and νa
ij = νb

ij,
then [aij] and [bij] are called equal pfs-matrices and denoted by [aij] = [bij].

Proposition 1. Let [aij], [bij], [cij] ∈ PFSE[U]. Then,

i. [aij]⊆̃
[〈

1
0
0

〉]
ii.
[〈

0
1
1

〉]
⊆̃[aij]

iii. [aij]⊆̃[aij]

iv.
(
[aij]⊆̃[bij] ∧ [bij]⊆̃[aij]

)
⇔ [aij] = [bij]

v.
(
[aij]⊆̃[bij] ∧ [bij]⊆̃[cij]

)
⇒ [aij]⊆̃[cij]

vi.
(
[aij] = [bij] ∧ [bij] = [cij]

)
⇒ [aij] = [cij]

Proof. The proofs of i-vi are straightforward.

Remark 3. From Proposition 1, it is straightforward that the inclusion relation herein is a partial
ordering relation in PFSE[U].

Definition 25. Let [aij], [bij] ∈ PFSE[U]. If [aij]⊆̃[bij] and [aij] 6= [bij], then [aij] is called a
proper submatrix of [bij] and denoted by [aij](̃[bij].

Definition 26. Let [aij], [bij], [cij] ∈ PFSE[U]. For all i and j, if µc
ij = max{µa

ij, µb
ij}, ηc

ij =

min{ηa
ij, ηb

ij}, and νc
ij = min{νa

ij, νb
ij}, then [cij] is called union of [aij] and [bij] and denoted by

[aij]∪̃[bij].

Definition 27. Let [aij], [bij], [cij] ∈ PFSE[U]. For all i and j, if µc
ij = min{µa

ij, µb
ij}, ηc

ij =

max{ηa
ij, ηb

ij}, and νc
ij = max{νa

ij, νb
ij}, then [cij] is called intersection of [aij] and [bij] and denoted

by [aij]∩̃[bij].
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Example 7. Assume that two pfs-matrices [aij] and [bij] are as follows:

[aij] =



〈
0.2
0.3
0.5

〉 〈
0
1
1

〉 〈
1
0
0

〉
〈

0.1
0.5
0.2

〉 〈
0.6
0.4
0

〉 〈
0.9
0

0.1

〉
〈

1
0
0

〉 〈
0.8
0
0

〉 〈
0.5
0.1
0.2

〉


and [bij] =



〈
0.6
0.2
0.1

〉 〈
0.7
0.2
0

〉 〈
0.5
0.4
0.1

〉
〈

0
1
1

〉 〈
1
0
0

〉 〈
0.1
0.8
0.1

〉
〈

0.4
0.3
0.3

〉 〈
0.1
0.3
0.2

〉 〈
1
0
0

〉



Then,

[aij]∪̃[bij] =



〈
0.6
0.2
0.1

〉 〈
0.7
0.2
0

〉 〈
1
0
0

〉
〈

0.1
0.5
0.2

〉 〈
1
0
0

〉 〈
0.9
0

0.1

〉
〈

1
0
0

〉 〈
0.6
0
0

〉 〈
1
0
0

〉


and [aij]∩̃[bij] =



〈
0.2
0.3
0.5

〉 〈
0
1
1

〉 〈
0.5
0.4
0.1

〉
〈

0
1
1

〉 〈
0.6
0.4
0

〉 〈
0.1
0.8
0.1

〉
〈

0.4
0.3
0.3

〉 〈
0.1
0.3
0.2

〉 〈
0.5
0.1
0.2

〉



Proposition 2. Let [aij], [bij], [cij] ∈ PFSE[U]. Then,

i. [aij]∪̃[aij] = [aij] and [aij]∩̃[aij] = [aij]

ii. [aij]∪̃
[〈

0
1
1

〉]
= [aij] and [aij]∩̃

[〈
0
1
1

〉]
=

[〈
0
1
1

〉]
iii. [aij]∪̃

[〈
1
0
0

〉]
=

[〈
1
0
0

〉]
and [aij]∩̃

[〈
1
0
0

〉]
= [aij]

iv. [aij]∪̃[bij] = [bij]∪̃[aij] and [aij]∩̃[bij] = [bij]∩̃[aij]

v.
(
[aij]∪̃[bij]

)
∪̃[cij] = [aij]∪̃

(
[bij]∪̃[cij]

)
and

(
[aij]∩̃[bij]

)
∩̃[cij] = [aij]∩̃

(
[bij]∩̃[cij]

)
vi. [aij]∪̃

(
[bij]∩̃[cij]

)
=
(
[aij]∪̃[bij]

)
∩̃
(
[aij]∪̃[cij]

)
and

[aij]∩̃
(
[bij]∪̃[cij]

)
=
(
[aij]∩̃[bij]

)
∪̃
(
[aij]∩̃[cij]

)
Proof. vi. Let [aij], [bij], [cij] ∈ PFSE[U]. Then,

[aij]∪̃
(
[bij]∩̃[cij]

)
= [aij]∪̃

〈min
{

µb
ij , µc

ij

}
max

{
ηb

ij , ηc
ij

}
max

{
νb

ij , νc
ij

}
〉

=

〈max
{

µa
ij , min

{
µb

ij , µc
ij

}}
min

{
ηa

ij , max
{

ηb
ij , ηc

ij

}}
min

{
νa

ij , max
{

νb
ij , νc

ij

}}
〉

=

〈min
{

max
{

µa
ij , µb

ij

}
, max

{
µa

ij , µc
ij

}}
max

{
min

{
ηa

ij , ηb
ij

}
, min

{
ηa

ij , ηc
ij

}}
max

{
min

{
νa

ij , νb
ij

}
, min

{
νa

ij , νc
ij

}}
〉

=

〈max
{

µa
ij , µb

ij

}
min

{
ηa

ij , ηb
ij

}
min

{
νa

ij , νb
ij

}
〉∩̃

〈max
{

µa
ij , µc

ij

}
min

{
ηa

ij , ηc
ij

}
min

{
νa

ij , νc
ij

}
〉

=
(
[aij]∪̃[bij]

)
∩̃
(
[aij]∪̃[cij]

)
The proof of [aij]∩̃

(
[bij]∪̃[cij]

)
=
(
[aij]∩̃[bij]

)
∪̃
(
[aij]∩̃[cij]

)
is similar to the aforemen-

tioned proof. In addition, the proofs of i-v are straightforward.
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Definition 28. Let [aij], [bij], [cij] ∈ PFSE[U]. For all i and j, if µc
ij = min{µa

ij, νb
ij}, ηc

ij =

max{ηa
ij, 1− ηb

ij}, and νc
ij = max{νa

ij, µb
ij}, then [cij] is called difference between [aij] and [bij] and

denoted by [aij]\̃[bij].

Proposition 3. Let [aij] ∈ PFSE[U]. Then,

i. [aij]\̃
[〈

0
1
1

〉]
= [aij]

ii. [aij]\̃
[〈

1
0
0

〉]
=

[〈
0
1
1

〉]
Proof. The proofs of i and ii are straightforward.

Remark 4. It must be emphasized that the difference operation herein is non-commutative and
non-associative.

Definition 29. Let [aij], [bij] ∈ PFSE[U]. For all i and j, if µb
ij = νa

ij, ηb
ij = 1− ηa

ij, and νb
ij = µa

ij,

then [bij] is complement of [aij] and denoted by [aij]
c̃ or [ac̃

ij]. It is clear that [aij]
c̃ =

[〈
1
0
0

〉]
\̃[aij].

Proposition 4. Let [aij], [bij] ∈ PFSE[U]. Then,

i.
(
[aij]

c̃)c̃
= [aij]

ii.
[〈

0
1
1

〉]c̃

=

[〈
1
0
0

〉]
iii. [aij]\̃[bij] = [aij]∩̃[bij]

c̃

iv. [aij]⊆̃[bij]⇒ [bij]
c̃⊆̃[aij]

c̃

Proof. The proofs of i-iv are straightforward.

Proposition 5. Let [aij], [bij] ∈ PFSE[U]. Then, the following De Morgan’s laws are valid.

i.
(
[aij]∪̃[bij]

)c̃
= [aij]

c̃∩̃[bij]
c̃

ii.
(
[aij]∩̃[bij]

)c̃
= [aij]

c̃∪̃[bij]
c̃

Proof. i. Let [aij], [bij] ∈ PFSE[U]. Then,

(
[aij]∪̃[bij]

)c̃
=

[〈
max{µa

ij , µb
ij}

min{ηa
ij , ηb

ij}
min{νa

ij , νb
ij}

〉]c̃

=

[〈
min{νa

ij , νb
ij}

1−min{ηa
ij , ηb

ij}
max{µa

ij , µb
ij}

〉]

=

[〈
min{νa

ij , νb
ij}

max{1− ηa
ij , 1− ηb

ij}
max{µa

ij , µb
ij}

〉]

=

[〈
νa

ij
1− ηa

ij
µa

ij

〉]
∩̃
[〈

νb
ij

1− ηb
ij

µb
ij

〉]

=
[
aij
]c̃∩̃
[
bij
]c̃

The proof of ii is similar to the aforementioned proof.
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Definition 30. Let [aij], [bij], [cij] ∈ PFSE[U]. For all i and j, if

µc
ij = max

{
min{µa

ij, νb
ij}, min{µb

ij, νa
ij}
}

ηc
ij = min

{
max{ηa

ij, 1− ηb
ij}, max{ηb

ij, 1− ηa
ij}
}

and
νc

ij = min
{

max{νa
ij, µb

ij}, max{νb
ij, µa

ij}
}

then [cij] is called symmetric difference between [aij] and [bij] and denoted [aij]4̃[bij].

Proposition 6. Let [aij], [bij] ∈ PFSE[U]. Then,

i. [aij]4̃
[〈

0
1
1

〉]
= [aij]

ii. [aij]4̃
[〈

1
0
0

〉]
= [aij]

c̃

iii. [aij]4̃[bij] = [bij]4̃[aij]

iv. [aij]4̃[bij] =
(
[aij]\̃[bij]

)
∪̃
(
[bij]\̃[aij]

)
Proof. iv. Let [aij], [bij] ∈ PFSE[U]. Then,

[aij]4̃[bij] =

〈 max
{

min
{

µa
ij , νb

ij

}
, min

{
µb

ij , νa
ij

}}
min

{
max

{
ηa

ij , 1− ηb
ij

}
, max

{
ηb

ij , 1− ηa
ij

}}
min

{
max

{
νa

ij , µb
ij

}
, max

{
νb

ij , µa
ij

}}
〉

=

〈 min
{

µa
ij , νb

ij

}
max

{
ηa

ij , 1− ηb
ij

}
max

{
νa

ij , µb
ij

}
〉∪̃

〈 min
{

µb
ij , νa

ij

}
max

{
ηb

ij , 1− ηa
ij

}
max

{
νa

ij , νc
ij

}
〉

=
(
[aij]\̃[bij]

)
∪̃
(
[bij]\̃[aij]

)
The proofs of i-iii are similar to the proof mentioned above.

Remark 5. It must be emphasized that the symmetric difference operation herein is non-associative.

5. Distance Measures of pfs-Matrices

This section, firstly, defines the concept of metrics over PFSE[U]. One of the significant
goals herein is to contribute to pf -sets and soft sets theoretically. The other goal is to improve
the modeling skill of pfs-matrices for classification problems in machine learning owing to
the aforementioned theoretical contribution. Throughout this study, let In = {1, 2, . . . , n}.

Definition 31. Let d : PFSE[U] × PFSE[U] → R be a function. Then, d is a metric over
PFSE[U] for all [aij], [bij], [cij] ∈ PFSE[U] if d satisfies the following properties,

i. d
(
[aij], [bij]

)
= 0⇔ [aij] = [bij]

ii. d
(
[aij], [bij]

)
= d

(
[bij], [aij]

)
iii. d

(
[aij], [bij]

)
≤ d

(
[aij], [cij]

)
+ d
(
[cij], [bij]

)
Secondly, Minkowski, Euclidean, and Hamming metrics over PFSE[U] are propounded.

Thereafter, their three properties are investigated.
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Proposition 7. The function dp
M : PFSE[U]× PFSE[U]→ R defined by

dp
M([aij], [bij]) :=

(
1
3

m

∑
i=1

n

∑
j=1

(∣∣∣µa
ij − µb

ij

∣∣∣p + ∣∣∣ηa
ij − ηb

ij

∣∣∣p + ∣∣∣νa
ij − νb

ij

∣∣∣p + ∣∣∣πa
ij − πb

ij

∣∣∣p)) 1
p

such that p ∈ N+ is Minkowski metric over PFSE[U]. Its normalized version, namely normalized
Minkowski metric, is defined as follows:

d̂p
M([aij], [bij]) :=

(
1

3mn

m

∑
i=1

n

∑
j=1

(∣∣∣µa
ij − µb

ij

∣∣∣p + ∣∣∣ηa
ij − ηb

ij

∣∣∣p + ∣∣∣νa
ij − νb

ij

∣∣∣p + ∣∣∣πa
ij − πb

ij

∣∣∣p)) 1
p

such that p ∈ N+.

Specifically, d1
M and d2

M are Hamming and Euclidean metrics and represented by
dH and dE, respectively. Moreover, d̂1

M and d̂2
M are normalized Hamming and Euclidean

metrics and are represented by d̂H and d̂E, respectively.

Proof. Let [aij], [bij], [cij] ∈ PFSE[U] and p ∈ N+. Satisfying of dp
M the conditions i and ii is

straightforward from Definition 31. Then,

iii. dp
M([aij], [bij]) =

(
1
3

m
∑

i=1

n
∑

j=1

(∣∣∣µa
ij − µb

ij

∣∣∣p + ∣∣∣ηa
ij − ηb

ij

∣∣∣p + ∣∣∣νa
ij − νb

ij

∣∣∣p + ∣∣∣πa
ij − πb

ij

∣∣∣p)) 1
p

=

(
1
3

m
∑

i=1

n
∑

j=1

(∣∣∣µa
ij − µc

ij + µc
ij − µb

ij

∣∣∣p + ∣∣∣ηa
ij − ηc

ij + ηc
ij − ηb

ij

∣∣∣p

+
∣∣∣νa

ij − νc
ij + νc

ij − νb
ij

∣∣∣p + ∣∣∣πa
ij − πc

ij + πc
ij − πb

ij

∣∣∣p))
1
p

≤
(

1
3

m
∑

i=1

n
∑

j=1

(∣∣∣µa
ij − µc

ij

∣∣∣p + ∣∣∣µc
ij − µb

ij

∣∣∣p + ∣∣∣ηa
ij − ηc

ij

∣∣∣p + ∣∣∣ηc
ij − ηb

ij

∣∣∣p

+
∣∣∣νa

ij − νc
ij

∣∣∣+ ∣∣∣νc
ij − νb

ij

∣∣∣p + ∣∣∣πa
ij − πc

ij

∣∣∣p + ∣∣∣πc
ij − πb

ij

∣∣∣p))
1
p

≤
(

1
3

m
∑

i=1

n
∑

j=1

(∣∣∣µa
ij − µc

ij

∣∣∣p + ∣∣∣ηa
ij − ηc

ij

∣∣∣p + ∣∣∣νa
ij − νc

ij

∣∣∣p + ∣∣∣πa
ij − πc

ij

∣∣∣p)) 1
p

+

(
1
3

m
∑

i=1

n
∑

j=1

(∣∣∣µc
ij − µb

ij

∣∣∣p + ∣∣∣ηc
ij − ηb

ij

∣∣∣p + ∣∣∣νc
ij − νb

ij

∣∣∣p + ∣∣∣πc
ij − πb

ij

∣∣∣p)) 1
p

= dp
M([aij], [cij]) + dp

M([cij], [bij])

Moreover, 0 ≤ |µa
ij − µb

ij| ≤ 1, 0 ≤ |ηa
ij − ηb

ij| ≤ 1, 0 ≤ |νa
ij − νb

ij| ≤ 1, and 0 ≤ |πa
ij − πb

ij| ≤ 1

because 0 ≤ µa
ij, µb

ij, ηa
ij, ηb

ij, νa
ij, νb

ij, πa
ij, πb

ij ≤ 1, for all i ∈ Im and j ∈ In. Hence,

0 ≤ |µa
ij − µb

ij|p + |ηa
ij − ηb

ij|p + |νa
ij − νb

ij|p + |πa
ij − πb

ij|p

≤ |µa
ij − µb

ij|+ |ηa
ij − ηb

ij|+ |νa
ij − νb

ij|+ |πa
ij − πb

ij|

≤ |µa
ij|+ |µb

ij|+ |ηa
ij − ηb

ij|+ |νa
ij|+ |νb

ij|+ |πa
ij|+ |πb

ij|
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= µa
ij + µb

ij + |ηa
ij − ηb

ij|+ νa
ij + νb

ij + πa
ij + πb

ij

= µa
ij + µb

ij + |ηa
ij − ηb

ij|+ νa
ij + νb

ij + (1− µa
ij − νa

ij) + (1− µb
ij − νb

ij)

= 2 + |ηa
ij − ηb

ij|
≤ 3

Then, (
1

3mn

m
∑

i=1

n
∑

j=1
0

) 1
p

≤ d̂p
M([aij], [bij]) ≤

(
1

3mn

m
∑

i=1

n
∑

j=1
3

) 1
p

0 ≤ d̂p
M([aij], [bij]) ≤

(
1

3mn 3mn
) 1

p

0 ≤ d̂p
M([aij], [bij]) ≤ 1

Proposition 8. Let
[〈

0
1
1

〉]
m×n

,
[〈

1
0
0

〉]
m×n
∈ PFSE[U] and p ∈ N+. Then,

dp
M

([〈
0
1
1

〉]
,
[〈

1
0
0

〉])
= p
√

mn and d̂p
M

([〈
0
1
1

〉]
,
[〈

1
0
0

〉])
= 1

Proof. The proof is straightforward.

Proposition 9. Let [aij]m×n, [bij]m×n ∈ PFSE[U] and p ∈ N+. Then, dp
M
(
[aij], [bij]

)
≤ p
√

mn.

Proof. The proof is straightforward.

Proposition 10. Let [aij]m×n, [bij]m×n, [cij]m×n ∈ PFSE[U] and p ∈ N+. Then,

i. [aij]⊆̃[bij]⊆̃[cij]⇒
(

dp
M
(
[aij], [bij]

)
≤ dp

M
(
[aij], [cij]

)
∧ dp

M
(
[bij], [cij]

)
≤ dp

M
(
[aij], [cij]

))
ii. [aij]⊆̃[bij]⊆̃[cij]⇒

(
d̂p

M
(
[aij], [bij]

)
≤ d̂p

M
(
[aij], [cij]

)
∧ d̂p

M
(
[bij], [cij]

)
≤ d̂p

M
(
[aij], [cij]

))
Proof. The proofs of i and ii are straightforward.

6. Picture Fuzzy Soft k-Nearest Neighbor Classifier: PFS-kNN

In this section, firstly, the basic expressions and notations to be required for the
suggested PFS-kNN based on pfs-matrices are provided. Throughout the paper, let D =
[dij]m×(n+1) represent a data matrix. The last column of D consists of class labels of the data.
Here, m and n are the numbers of samples and attributes in D, respectively. Moreover, let
(Dtrain)m1×n, Cm1×1, and (Dtest)m2×n derived from attained D denote a training matrix, class
matrix of the training matrix, and the testing matrix, respectively, such that m1 + m2 = m.
Moreover, let Uk×1 be a matrix comprising of unique class labels of Cm1×1. Further, let
Di−train and Di−test represent ith rows of Dtrain and Dtest, respectively. In a similar manner,
Dtrain−j and Dtest−j represent jth rows of Dtrain and Dtest, respectively. Furthermore, let
T
′
m2×1 stand for the predicted classes of the testing queries.
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Definition 32. Let u ∈ Rn. Then, the vector û ∈ Rn such that j ∈ In defined by

ûj :=


uj−min

k∈In
{uk}

max
k∈In
{uk}−min

k∈In
{uk}

, max
k∈In
{uk} 6= min

k∈In
{uk}

1, max
k∈In
{uk} = min

k∈In
{uk}

is called normalized u, i.e., normalizing vector of u.

Definition 33. Consider the training matrix (Dtrain)m1×n attained from D = [dij]m×(n+1),
i ∈ Im1 , and j ∈ In. Then, the matrix defined by

d̃ij−train :=


dij−train−min

k∈Im
{dkj}

max
k∈Im
{dkj}−min

k∈Im
{dkj}

, max
k∈Im
{dkj} 6= min

k∈Im
{dkj}

1, max
k∈Im
{dkj} = min

k∈Im
{dkj}

is called feature-fuzzification matrix of Dtrain, namely column normalized matrix of Dtrain, and it is
denoted by D̃train = [d̃ij−train]m1×n.

Definition 34. Consider the testing matrix (Dtest)m2×n attained from D = [dij]m×(n+1), i ∈ Im2 ,
and j ∈ In. Then, the matrix defined by

d̃ij−test :=


dij−test−min

k∈Im
{dkj}

max
k∈Im
{dkj}−min

k∈Im
{dkj}

, max
k∈Im
{dkj} 6= min

k∈Im
{dkj}

1, max
k∈Im
{dkj} = min

k∈Im
{dkj}

is called feature-fuzzification matrix of Dtest, namely column normalized matrix of Dtest, and it is
denoted by D̃test = [d̃ij−test]m1×n.

Definition 35. Let D̃train = [d̃ij−train]m1×n be a feature-fuzzification matrix of (Dtrain)m1×n.
Then, the matrix

˜̃Dλ
train = [ ˜̃dλ

train−ij] =

〈µ
˜̃Dλ

ij−train

η
˜̃Dλ

ij−train

ν
˜̃Dλ

ij−train

〉
m1×n

is called feature picture fuzzification of D̃train and is defined by

µ
˜̃Dλ

ij−train := 1− (1− d̃ij−train)
λ, η

˜̃Dλ

ij−train :=
d̃ij−train

λ
, and ν

˜̃Dλ

ij−train := (1− d̃ij−train)
λ(λ+1)

such that i ∈ Im1 , j ∈ In, and λ ∈ [0, ∞).

Definition 36. Let D̃test = [d̃ij−test]m2×n be a feature-fuzzification matrix of (Dtest)m2×n. Then,
the matrix

˜̃Dλ
test = [ ˜̃dλ

test−ij] =

〈µ
˜̃Dλ

ij−test

η
˜̃Dλ

ij−test

ν
˜̃Dλ

ij−test

〉
m2×n

is called feature picture fuzzification of D̃test and is defined by

µ
˜̃Dλ

ij−test := 1− (1− d̃ij−test)
λ, η

˜̃Dλ

ij−test :=
d̃ij−test

λ
, and ν

˜̃Dλ

ij−test := (1− d̃ij−test)
λ(λ+1)

such that i ∈ Im2 , j ∈ In, and λ ∈ [0, ∞).
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Definition 37. Let (D̃train)m1×n be a feature-fuzzification matrix of (Dtrain)m1×n and ˜̃Dλ
train =

[ ˜̃dλ
train−ij] =

〈µ
˜̃Dλ

ij−train

η
˜̃Dλ

ij−train

ν
˜̃Dλ

ij−train

〉
m1×n

be the picture fuzzification of D̃train. Then, the pfs-matrix

[
b

˜̃Dλ
k−train

ij

]
1×n

is the training pfs-matrix attained by kth row of ˜̃Dλ
train and is defined by b

˜̃Dλ
k−train

1j :=〈
µ

˜̃Dλ

kj−train

η
˜̃Dλ

kj−train

ν
˜̃Dλ

kj−train

〉
such that k ∈ Im1 and j ∈ In.

Definition 38. Let (D̃test)m2×n be a a feature-fuzzification matrix of (Dtest)m2×n and ˜̃Dλ
test =

[ ˜̃dλ
test−ij] =

〈µ
˜̃Dλ

ij−test

η
˜̃Dλ

ij−test

ν
˜̃Dλ

ij−test

〉
m2×n

be the picture fuzzification of D̃test. Then, the pfs-matrix
[

a
˜̃Dλ

k−test
ij

]
1×n

is called the testing pfs-matrix attained by kth row of ˜̃Dλ
test and is defined by a

˜̃Dλ
k−test

1j :=

〈
µ

˜̃Dλ

kj−test

η
˜̃Dλ

kj−test

ν
˜̃Dλ

kj−test

〉
such

that k ∈ Im1 and j ∈ In.

Secondly, a new classifier named PFS-kNN employing the Minkowski metric of pfs-
matrices is suggested (Algorithm 1). Pseudocode of the proposed PFS-kNN is presented
in Algorithm 1. In Line 1, it obtains feature fuzzification of testing and training matrices
required for feature picture fuzzification. In Line 2, the feature picture fuzzification of
testing and training matrices utilizing their feature fuzzification versions. The aim herein is
to make the data ready in a way that can be used in the distance calculation of pfs-matrices.
In Lines 3–4, the ith testing pfs-matrix is constructed by extracting ith sample from the
feature picture fuzzification of the testing matrix. Similarly, in Lines 5–6, the jth training
pfs-matrix is constructed by extracting jth sample from the feature picture fuzzification of
the training matrix. In Line 7, the distance between the ith test sample and the jth training
sample is calculated utilizing the Minkowski metric over the pfs-matrices in accordance
with Proposition 7, and Dmj1 is attained. In Line 9, k-nearest neighbor according to the
matrix of picture fuzzy soft distances, namely Dmj1, is determined. In Line 10, the most
repetitive class label (predicted class label) of the determined k-nearest neighbor is obtained.
In Line 11, the predicted class label, particularly diagnosis label in medical diagnosis, is
assigned to the test sample. In Line 12–13, finally, the predicted label (class) matrix is
created for the test queries.

Algorithm 1 PFS-kNN’s pseudocode
Input: (Dtrain)m1×n, Cm1×1, (Dtest)m2×n, k, λ, and p
Output: T

′
m2×1

PFS-kNN(Dtrain, C, Dtest, k, λ, p)
1: Calculate feature fuzzification of Dtest and Dtrain, i.e., D̃test and D̃train . See Definition 33 and 34
2: Calculate feature picture fuzzification of D̃test and D̃train, i.e., ˜̃Dλ

test and ˜̃Dλ
train . See Definition 35 and 36

3: for i from 1 to m2 do

4: Calculate the testing pfs-matrix
[

a
˜̃Dλ

i−test
ij

]
1×n

employing ˜̃Dλ
i−test

5: for j from 1 to m1 do

6: Calculate the training pfs-matrix

[
b

˜̃D
λ2
j−train

ij

]
1×n

employing ˜̃Dλ
j−train

7: Dmj1 ← dp
M

([
a

˜̃D
λ2
k−test

ij

]
,

[
b

˜̃D
λ2
k−train

ij

])
. See Proposition 7

8: end for
9: Find k-nearest neighbor using [Dmj1]

10: Find the most repetitive class label in the considered k-nearest neighbor
11: t

′
k1 ←most repetitive class label (predicted class label)

12: end for
13: return T

′
m2×1
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7. Application of PFS-kNN to Medical Diagnosis

In this section, firstly, details of the datasets used in simulation and the setting of the
compared classifiers are provided according to the methodology presented in Figure 4.
Afterward, the performance metrics for classification problems are introduced. Finally,
simulation results for several medical datasets in UC Irvine Machine Learning Repository
(UCI-MLR) [35] are presented, and the discussion of the results are provided.

Medical Dataset

Partition 1

Accuracy Results

5-fold Cross Validation (CV)

Partition 2 Partition 3 Partition 4 Partition 5

Traning Phase of the Algorithms

Test Train

kNN
(Cover and
Hart, 1967)

Fuzzy kNN
(Keller et al.,

1985)

WkNN
(Dubey and
Pudi, 2013)

IFROWANN
(Ramentol et

al., 2015)

LCkNN
(Gou et al.,

2019a)

GMkNN
(Gou et al.,

2019b)

LMRkNN
(Gou et al.,

2019c)

BM-Fuzzy kNN
(Kumbure et al.,

2020)

Test

Precision Results Recall Results F1-Score Results

Classify the testing samples

Record the results and determine the next Partition as testing

NoHave all Partitions been
determined as testing?

Repeat this process 10 times

Yes

PFS-kNN
(Proposed,

2023)

Figure 4. Simulation methodology of the present study via kNN-based classifiers [36–43].
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7.1. Medical Datasets

One of the major motivations of this paper is the applicability of PFS-kNN in medical
diagnosis. Therefore, the well-known and commonly used four medical diagnosis datasets
in UCI-MLR [35] were chosen. This subsection offers descriptions of the following medical
datasets employed in the simulation, provided in Table 1: “Breast Tissue”, “Parkinsons[sic]”,
“Breast Cancer Wisconsin”, and “Indian Liver”.

Breast Tissue [35]: This dataset measured impedance frequencies: 15.625, 31.25, 62.5,
125, 250, 500, and 1000 KHz. The aforesaid frequencies were used to test the impedance of
freshly removed breast tissue. The impedance spectrum is formed by these data plotted in
the (actual, imaginary) plane, from which the features of the breast tissue are calculated.
The dataset can be used to predict the categorization of either the original six classes or
four classes by combining the mastopathy, fibro-adenoma, and glandular types whose
distinction is unnecessary (they cannot be differentiated accurately).

Parkinsons[sic] [35]: The dataset consists of a range of biological voice measurements
from 31 patients, 23 of whom have Parkinson’s disease. Each column in the dataset stands
for a separate vocal measure, and each row corresponds to one of these people’s 195 voice
recordings (“name” column). The major purpose of the data is to differentiate between
healthy and Parkinson’s disease patients by utilizing the “status” column, which is set to 0
for healthy and 1 for Parkinson’s disease patients.

Breast Cancer Wisconsin (Diagnostic) [35]: This dataset uses a digitized picture of a
fine needle aspirate (FNA) of a breast mass to construct characteristics. They describe the
characteristics of the cell nuclei shown in the photograph. The separation plane mentioned
above was created using the Multisurface approach-Tree (MSM-T), a classification approach
that constructs a decision tree using linear programming [44]. To locate relevant features,
an exhaustive search in the space of 1–4 features and 1–3 separation planes was utilized.
The exact linear program used to obtain the separation plane in 3-dimensional space is
described in [45].

Indian Liver Patient (ILPD) [35]: This data collection contains 416 records for liver
patients and 167 for non-liver patients. The dataset was gathered in the northeastern state
of Andhra Pradesh, India. The selector is a class label categorizing people (liver sick or not).
This data collection has 441 male and 142 female patients records. Any patient over the age
of 89 is labeled as “90”.

Table 1. Properties of several medical datasets in UCI.

No. Name Instance Number Attribute Number Class Number Imbalance

1 Breast Tissue 106 9 6 X
2 Parkinsons[sic] 195 22 2 X
3 Breast Cancer Wisconsin 569 30 2 X
4 Indian Liver 583 10 2 X

7.2. Quality Metrics for Classification Performance

In this subsection, the mathematical expressions of the quality metrics for binary
and multi classification [46], i.e., Accuracy, Precision, Sensitivity (or Recall), and F1-
Score, are presented to make a comparison of the considered classifiers. Assume that
Dtest = {y1, y2, . . . , yn} is n queries to be classified, T = {t1, t2, . . . , tn} is their ground truth
class sets, T

′
= {t′1, t

′
2, . . . , t

′
n} is their prediction class sets, and l is their number of the class.

The quality metrics for binary classification are as follows:

Accuracy(T, T
′
) :=

TP + TN
TP + TN + FP + FN

Precision(T, T
′
) :=

TP
TP + FP
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Recall(T, T
′
) :=

TP
TP + FN

F1-Score(T, T
′
) :=

2TP
2TP + FP + FN

where true positive (TP), true negative (TN), false positive (FP), and false negative (FN)
are defined as follows:

TP :=
∣∣∣∣{yj|1 ∈ Tj ∧ 1 ∈ T

′
j , 1 ≤ j ≤ l

}∣∣∣∣
TN :=

∣∣∣∣{yj|0 /∈ Tj ∧ 0 /∈ T
′
j , 1 ≤ j ≤ l

}∣∣∣∣
FP :=

∣∣∣∣{yj|0 /∈ Tj ∧ 1 ∈ T
′
j , 1 ≤ j ≤ l

}∣∣∣∣
FN :=

∣∣∣∣{yj|1 ∈ Tj ∧ 0 /∈ T
′
j , 1 ≤ j ≤ l

}∣∣∣∣
such that |.| stands for the cardinality of a set.

The performance metrics for multi classification are as follows:

Accuracy(T, T
′
) :=

1
l

l

∑
i=1

TPi + TNi
TPi + TNi + FPi + FNi

Precision(T, T
′
) :=

1
l

l

∑
i=1

TPi
TPi + FPi

Recall(T, T
′
) :=

1
l

l

∑
i=1

TPi
TPi + FNi

F1-Score(T, T
′
) :=

1
l

l

∑
i=1

2TPi
2TPi + FPi + FNi

where ith true positive (TPi), ith true negative (TNi), ith false positive (FPi), and ith false
negative (FNi) for the class i are defined as follows:

TPi :=
∣∣∣∣{xj|i ∈ Tj ∧ i ∈ T

′
j , 1 ≤ k ≤ l

}∣∣∣∣
TNi :=

∣∣∣∣{xj|i /∈ Tj ∧ i /∈ T
′
j , 1 ≤ k ≤ l

}∣∣∣∣
FPi :=

∣∣∣∣{xj|i /∈ Tj ∧ i ∈ T
′
j , 1 ≤ k ≤ l

}∣∣∣∣
FNi :=

∣∣∣∣{xj|i ∈ Tj ∧ i /∈ T
′
j , 1 ≤ k ≤ l

}∣∣∣∣
such that |.| stands for the cardinality of a set.

7.3. Diagnosis Results for Medical Diagnosis

In this subsection, the comparison of PFS-kNN with the well-known and state-of-the-art
kNN-based classifiers (Table 2), i.e., kNN [36], Fuzzy kNN [37], WkNN [38], IFROWANN [39],
LCkNN [40], GMkNN [41], LMRkNN [42], and BM-Fuzzy kNN [43], is performed by em-
ploying a computer with I(R)Core(TM) I5-4200H CPU@2.80GHz and 8 GB RAM and MAT-
LAB R2021b software. Random 10 runs rely on the five-fold cross-validation (CV) [47,48],
generating the classifiers’ performance results in which each CV, of which four parts are
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selected for training and the other for testing (for more details about CV, see [47]), randomly
split the considered dataset into five parts. Table 3 presents the average Accuracy, Precision,
Recall, and F1-Score results of PFS-kNN, kNN, Fuzzy kNN, WkNN, IFROWANN, LCkNN,
GMkNN, LMRkNN, and BM-Fuzzy kNN for the datasets.

Table 2. Details of the kNN-based classifier.

Ref. Year Classifier Number of Nearest Neigbors Employed-Concept Distance Inverse
Distance

Class Distribution
Impact

Class Imbalance
ImpactFixed Adaptive Crisp Fuzzy Set fr-Set pfs-Matrix

[36] 1967 kNN X X X
[37] 1985 Fuzzy kNN X X X
[38] 2013 WkNN X X X X
[39] 2015 IFROWANN X X X X
[40] 2019 LCkNN X X X
[41] 2019 GMkNN X X X
[42] 2019 LMRkNN X X X
[43] 2020 BM-Fuzzy kNN X X X

Proposed 2023 PFS-kNN X X X

Table 3. Diagnosis performance results of the kNN-based classifiers.

Medical Datasets Classifiers Accuracy Precision Recall F1-Score

Breast Tissue

kNN 86.59 61.12 57.98 62.94
Fuzzy kNN 85.34 59.32 54.39 59.18
WkNN 86.72 61.24 58.59 62.87
IFROWANN 85.65 64.38 56.02 67.18
LCkNN 75.37 20.07 23.89 40.15
GMkNN 88.45 66.72 63.55 66.45
LMRkNN 84.09 54.66 51.62 58.62
BM-Fuzzy kNN 85.57 60.82 57.79 62.09
PFS-kNN 88.51 65.34 60.84 67.95

Parkinsons[sic]

kNN 85.03 74.57 62.16 66.53
Fuzzy kNN 84.92 73.14 64.49 67.23
WkNN 84.92 73.14 64.49 67.23
IFROWANN 68.26 44.18 100 61.08
LCkNN 68.05 42.07 68.80 51.38
GMkNN 83.85 68.53 68.96 67.31
LMRkNN 68.97 42.33 70.82 52.64
BM-Fuzzy kNN 78.10 55.91 63.20 58.42
PFS-kNN 91.18 89.38 73.51 79.80

Breast Cancer

kNN 92.90 92.92 87.79 90.18
Fuzzy kNN 92.46 92.29 87.18 89.57
WkNN 92.46 92.29 87.18 89.57
IFROWANN 78.07 63.25 99.53 77.27
LCkNN 79.03 67.13 87.98 75.98
GMkNN 93.09 91.60 89.91 90.64
LMRkNN 86.82 81.50 83.85 82.54
BM-Fuzzy kNN 91.95 91.00 87.27 88.97
PFS-kNN 93.59 90.18 93.17 91.56

Indian Liver

kNN 66.55 75.08 79.55 77.22
Fuzzy kNN 65.97 76.15 76.20 76.12
WkNN 65.97 76.15 76.20 76.12
IFROWANN 30.21 100 2.19 4.24
LCkNN 67.07 75.40 79.96 77.58
GMkNN 67.36 77.72 76.16 76.87
LMRkNN 60.93 77.33 64.04 69.97
BM-Fuzzy kNN 65.73 75.88 76.28 76.01
PFS-kNN 67.46 75.57 77.98 77.69

Accuracy, Precision, Recall, and F1-Score results are offered in percentage. The best results are shown in bold.
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Based on the results obtained from Accuracy, it is evident that PFS-kNN surpasses
all other kNN-based classifiers that were compared. This is similarly observed when it
comes to F1-Score results. However, it should be noted that the proposed approach has
lower Precision and Recall results when compared to the other classifiers. Nevertheless,
the results are still close to the highest score in general.

These simulation results manifest that pfs-matrices and PFS-kNN can model uncer-
tainty and real-world problems, such as medical diagnosis and machine learning. It is
important to note that applying these models can significantly impact the accuracy of such
issues, leading to more reliable and effective solutions. Therefore, using PFS-kNN and
pfs-matrices is recommended when dealing with similar problems.

In this study, we evaluated the Accuracy performance values of various algorithms
on four medical datasets. To obtain a comprehensive understanding of the algorithms’
performance, we ran each algorithm 50 times (10 times five-fold cross-validation) and
plotted the results as box plots in Figure 5.
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Figure 5. Box plot of Accuracy results of 50 runs for the classifiers: (a) Breast Tissue, (b) Parkinson’s,
(c) Breast Cancer, (d) Indian Liver.
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From the visual results in Figure 5a–d, we can observe that PFS-kNN outperforms the
other algorithms, with the highest performance value and a performance value distribution
that is close to normal distribution. This indicates that PFS-kNN is a reliable algorithm for
these medical datasets.

Similarly, in Figure 5b, we see that PFS-kNN produces the highest performance re-
sults, with the 50 performance values almost following a normal distribution. Moreover,
the distance between quartiles is relatively low, suggesting that PFS-kNN is consistent
in performance.

Overall, the box plots in Figure 5 demonstrate that PFS-kNN is a superior algorithm
compared to the others evaluated in this study, and it is a promising option for medical
data analysis.

8. Discussion on PFS-kNN in Medical Diagnosis and Supervised Learning

This section discusses the significance of the proposed PFS-kNN classifier’s perfor-
mance on medical diagnosis datasets herein.

Accuracy and F1-Score Dominance:The achievement of PFS-kNN outperforming all
other kNN-based classifiers in terms of Accuracy and F1-Score is remarkable. Accuracy
measures the overall correctness of the classifier’s predictions, while the F1-Score considers
both precision and recall. These metrics are crucial in medical diagnosis, where accurately
identifying and classifying medical conditions can be a life-or-death matter. The supe-
rior performance of PFS-kNN in these areas indicates its potential as a valuable tool for
enhancing the accuracy and effectiveness of medical diagnoses.

Precision and Recall Trade-Off: While PFS-kNN performs well in terms of Accuracy
and F1-Score, it is observed to have slightly lower Precision and Recall compared to other
classifiers. Precision measures the ratio of correctly predicted positive cases to all predicted
positive cases, while Recall measures the ratio of correctly predicted positive cases to all
actual positive cases. In medical diagnosis, Precision is vital for minimizing false positive
errors, and Recall is crucial for reducing false negatives. The slightly lower Precision
and Recall values suggest that PFS-kNN might be more cautious when making positive
predictions, possibly to reduce false positive errors. However, the results are still close to
the highest scores overall, indicating a reasonable balance between these metrics.

Modeling Uncertainty and Real-World Problems: Addressing the concept of pfs-
matrices and their role in modeling uncertainty in practical scenarios, such as medical
diagnosis, is significant. Medical diagnosis frequently deals with intricate and uncertain
data, and the capability of PFS-kNN to model uncertainty is a valuable advantage. This
indicates that the classifier is flexible and resilient in handling various demanding datasets,
making it suitable for real-world applications where data are inherently uncertain and noisy.

Impact on Accuracy and Reliability: The practical importance of using PFS-kNN and
pfs-matrices in areas, such as medical diagnosis mentioned in the previous section indicates
that they can notably affect accuracy. By enhancing accuracy in medical diagnosis, they
can provide more dependable and efficient solutions, decrease misdiagnosis rates, and
improve patient outcomes. This emphasizes the potential of PFS-kNN to make a valuable
contribution to the healthcare industry, where precision and accuracy are crucial.

Recommendation for Similar Problems: The suggestion to utilize PFS-kNN and pfs-
matrices as a conclusion highlights the belief in the effectiveness of this approach. This
indicates that the advantages demonstrated in the research are not restricted to the dataset
employed for assessment but can also apply to other medical diagnosis scenarios or re-
lated fields.

In brief, the performance of the proposed PFS-kNN classifier on medical diagnosis
datasets, assessed using Minkowski metrics over pfs-matrices, demonstrates its potential to
enhance the accuracy and dependability of medical diagnoses. While there are some trade-
offs in Precision and Recall, the overall superiority in Accuracy and F1-Score, coupled with
its capability to model uncertainty, positions PFS-kNN as a promising tool for improving
healthcare and addressing real-world challenges in supervised learning.
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9. Conclusions

This paper redefined the idea of pfs-matrices, and their fundamental properties were
examined extensively. Afterward, distance measures of pfs-matrices were introduced.
Then, PFS-kNN, via the aforementioned distance measures, was suggested and applied
to medical diagnosis. The results manifested that the concept of pfs-matrices and the
proposed PFS-kNN approach can model uncertainty and real-world problems such as
medical diagnosis.

The current study, which focuses on soft sets, has significantly contributed to the
literature in both theoretical and practical aspects. This study has introduced three crucial
additions that redefine the mathematics underlying pfs-matrices and proposed new dis-
tance measures between pfs-matrices and PFS-kNN. By doing so, this paper has expanded
the understanding of this field and enhanced its applicability in real-world problems. In
addition, this research has gained prominence in the literature due to its innovative con-
tributions, which have opened up new avenues for further exploration and research in
the field.

In future works, there is potential for further investigation into the algebraic and
topological structures of pfs-matrices and the exploration of new distance and similarity
measures. While pfs-matrices have proven effective in addressing specific problems, it is
essential to acknowledge their limitations when dealing with picture fuzzy parameters.
To overcome this issue, research can be conducted on several related concepts, such as
intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices (ifpifs-matrices) [49,50],
aggregation operators of pfs-matrices [51,52], picture fuzzy parameterized picture fuzzy
soft sets (pfppfs-sets) [53], and picture fuzzy parameterized picture fuzzy soft matrices
(pfppfs-matrices). Additionally, interval-valued intuitionistic fuzzy parameterized interval-
valued intuitionistic fuzzy soft sets (d-sets) [4] and interval-valued intuitionistic fuzzy
parameterized interval-valued intuitionistic fuzzy soft matrices (d-matrices) [5] are other
related concepts that may be worth exploring. We can better understand their potential
applications and limitations by studying and applying these concepts to different real-
world problems. For instance, different real-world problems, such as trend prediction of
component stock [54], remote sensing image fusion [55], and Landsat image fusion [56] can
be investigated, and the applications of pfs-matrices to them can be focused.
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