Neuro-Robotic Synergy: Crafting the Secure Future of Industries in the Post Pandemic Era
Abstract
:1. Introduction
2. Methodology
2.1. Proposed Method
2.2. Online System Architecture
2.3. Offline System Architecture
2.4. Dataset
2.5. Exploratory Data Analysis (EDA)
Data Pre-Processing and Filtering
2.6. Architect Design
2.7. Neural Networks Proactive in their Detection of Zero-Day or Unidentified Risks in ICS
3. Results and Discussion
3.1. Performance Metrics
- Sensitivity or recall: The probability of obtaining valid findings is quantified by this metric. The model’s accuracy in identifying unwanted traffic is evaluated through this evaluation process.
- 2.
- Specificity: The likelihood of observing null results is thus calculated. That is why it is important to analyze how well models can tell good traffic from bad.
- 3.
- Balanced accuracy: The average of the true positive and true negative detection rates provides insight into a model’s accuracy. Since accurately categorizing traffic that is not malicious is crucial to the IoRT network’s health, we consider this a key metric in our evaluation. Rebuilding instructional messages to get past the recommended smart security system causes delays during manufacturing when innocuous traffic is incorrectly categorized [46].
- 4.
- Precision: Vulnerability metric is analogous to this one. However, it does not evaluate the accuracy of the framework, but rather the number of false positives it produces. For traffic that is not harmfully categorized, a lower score for this metric indicates a less effective model [4].
- 5.
- F1-score: To evaluate how well a model distinguishes the category of positives, this measure provides a common denominator. The harmonic mean describes the midpoint between accuracy and sensitivity, as seen in Equation (5).
- 6.
- Training cycle plan: This represents the total time required to train a machine learning algorithm to solve the required challenge of classification. This value is fetched on the fly using Python’s Time framework.
3.2. Result in Tables
Deep MLP + D-Trees Bagging Ensemble
3.3. Discussions
3.4. Comparative Analysis
4. Conclusions and Recommendations
4.1. Conclusions
4.2. Prospects and Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hatzivasilis, G.; Askoxylakis, I.; Alexandris, G.; Anicic, D.; Broring, A.; Kulkarni, V.; Fysarakis, K.; Spanoudakis, G. The Interoperability of Things: Interoperable Solutions as an Enabler for IoT and Web 3.0. In Proceedings of the IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, CAMAD, Barcelona, Spain, 17–19 September 2018; Volume 2018. [Google Scholar]
- Villamil, S.; Hernández, C.; Tarazona, G. An Overview of Internet of Things. Telkomnika 2020, 18, 2320–2327. [Google Scholar] [CrossRef]
- Abomhara, M.; Køien, G.M. Cyber Security and the Internet of Things: Vulnerabilities, Threats, Intruders and Attacks. J. Cyber Secur. Mobil. 2015, 4, 65–88. [Google Scholar] [CrossRef]
- Miettinen, M.; Marchal, S.; Hafeez, I.; Asokan, N.; Sadeghi, A.R.; Tarkoma, S. IoT SENTINEL: Automated Device-Type Identification for Security Enforcement in IoT. In Proceedings of the International Conference on Distributed Computing Systems, Atlanta, GA, USA, 13 July 2017; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017; pp. 2177–2184. [Google Scholar]
- Zeng, Z.; Chen, P.J.; Lew, A.A. From High-Touch to High-Tech: COVID-19 Drives Robotics Adoption. Tour. Geogr. 2020, 22, 724–734. [Google Scholar] [CrossRef]
- Singh, R.P.; Javaid, M.; Haleem, A.; Suman, R. Internet of Things (IoT) Applications to Fight against COVID-19 Pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 521–524. [Google Scholar] [CrossRef]
- Li, D.; Ge, S.S.; Lee, T.H. Fixed-Time-Synchronized Consensus Control of Multiagent Systems. IEEE Trans. Control Netw. Syst. 2020, 8, 89–98. [Google Scholar] [CrossRef]
- Wang, B.; Shen, Y.; Li, N.; Zhang, Y.; Gao, Z. An Adaptive Sliding Mode Fault-tolerant Control of a Quadrotor Unmanned Aerial Vehicle with Actuator Faults and Model Uncertainties. Int. J. Robust. Nonlinear Control 2023. [Google Scholar] [CrossRef]
- Xia, Y.; Ding, L.; Tang, Z. Interaction Effects of Multiple Input Parameters on the Integrity of Safety Instrumented Systems with the K-out-of-n Redundancy Arrangement under Uncertainties. Qual. Reliab. Eng. Int. 2023. [Google Scholar] [CrossRef]
- Kamilaris, A.; Botteghi, N. The Penetration of Internet of Things in Robotics: Towards a Web of Robotic Things. J. Ambient. Intell. Smart Environ. 2020, 12, 491–512. [Google Scholar] [CrossRef]
- Mosenia, A.; Jha, N.K. A Comprehensive Study of Security of Internet-of-Things. IEEE Trans. Emerg. Top. Comput. 2017, 5, 586–602. [Google Scholar] [CrossRef]
- Hameed, A.; Ordys, A.; Możaryn, J.; Sibilska-Mroziewicz, A. Control System Design and Methods for Collaborative Robots. Appl. Sci. 2023, 13, 675. [Google Scholar] [CrossRef]
- Subbash, P.; Chong, K.T. Adaptive Network Fuzzy Inference System Based Navigation Controller for Mobile Robot. Front. Inf. Technol. Electron. Eng. 2019, 20, 141–151. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Yuan, X.; Shen, Y.; Lu, Z.; Wang, Z. Adaptive Dynamic Surface Control with Disturbance Observers for Battery/Supercapacitor-Based Hybrid Energy Sources in Electric Vehicles. IEEE Trans. Transp. Electrif. 2022. [Google Scholar] [CrossRef]
- Cao, B.; Zhao, J.; Gu, Y.; Fan, S.; Yang, P. Security-Aware Industrial Wireless Sensor Network Deployment Optimization. IEEE Trans. Ind. Inf. 2019, 16, 5309–5316. [Google Scholar] [CrossRef]
- Dai, X.; Xiao, Z.; Jiang, H.; Alazab, M.; Lui, J.C.S.; Dustdar, S.; Liu, J. Task Co-Offloading for D2d-Assisted Mobile Edge Computing in Industrial Internet of Things. IEEE Trans. Ind. Inf. 2022, 19, 480–490. [Google Scholar] [CrossRef]
- Bilancia, P.; Schmidt, J.; Raffaeli, R.; Peruzzini, M.; Pellicciari, M. An Overview of Industrial Robots Control and Programming Approaches. Appl. Sci. 2023, 13, 2582. [Google Scholar] [CrossRef]
- Soori, M.; Arezoo, B.; Dastres, R. Artificial Intelligence, Machine Learning and Deep Learning in Advanced Robotics, A Review. Cogn. Robot. 2023, 3, 54–70. [Google Scholar] [CrossRef]
- Eze, N.; Ozioko, E.; Nwigwe, J. Deep Neural Networks for Unsupervised Robotics in Building Constructions: A Priority Area of the 4th Industrial Revolution (4IR). In Avantgarde Reliability Implications in Civil Engineering; IntechOpen: London, UK, 2023; ISBN 1803551038. [Google Scholar]
- Hu, J. Research on Robot Fuzzy Neural Network Motion System Based on Artificial Intelligence. Comput. Intell. Neurosci. 2022, 2022, 4347772. [Google Scholar] [CrossRef]
- He, W.; Dong, Y. Adaptive Fuzzy Neural Network Control for a Constrained Robot Using Impedance Learning. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 1174–1186. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, J.; Wu, Y.; Zhao, Y. Output Synchronization of Wide-Area Heterogeneous Multi-Agent Systems over Intermittent Clustered Networks. Inf. Sci. 2023, 619, 263–275. [Google Scholar] [CrossRef]
- Wang, J.; Liang, F.; Zhou, H.; Yang, M.; Wang, Q. Analysis of Position, Pose and Force Decoupling Characteristics of a 4-UPS/1-RPS Parallel Grinding Robot. Symmetry 2022, 14, 825. [Google Scholar] [CrossRef]
- Lu, S.; Liu, S.; Hou, P.; Yang, B.; Liu, M.; Yin, L.; Zheng, W. Soft Tissue Feature Tracking Based on DeepMatching Network. CMES-Comput. Model. Eng. Sci. 2023, 136, 363–379. [Google Scholar]
- Yang, Y.; Wang, H.; Jiang, R.; Guo, X.; Cheng, J.; Chen, Y. A review of IoT-enabled mobile healthcare: Technologies, challenges, and future trends. IEEE Internet Things J. 2022, 9, 9478–9502. [Google Scholar] [CrossRef]
- Elsayed, N.; ElSayed, Z.; Bayoumi, M. IoT Botnet Detection Using an Economic Deep Learning Model. In Proceedings of the 2023 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 7–10 June 2023; pp. 0134–0142. [Google Scholar] [CrossRef]
- Strauss, D.T.; Poluianov, S.; van der Merwe, C.; Krüger, H.; Diedericks, C.; Krüger, H.; Usoskin, I.; Heber, B.; Nndanganeni, R.; Blanco-Ávalos, J.; et al. The mini-neutron monitor: A new approach in neutron monitor design. J. Space Weather. Space Clim. 2020, 10, 39. [Google Scholar] [CrossRef]
- Wukkadada, B.; Wankhede, K.; Nambiar, R.; Nair, A. Comparison with HTTP and MQTT in Internet of Things (IoT). In Proceedings of the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July 2018; pp. 249–253. [Google Scholar]
- Steigies, C.T.; Thomann, M.; Rother, O.; Wimmer-Schweingruber, R.; Heber, B. Real-time database for high resolution neutron monitor measurements. In Proceedings of the 30th International IRCR Conference, Geneva, Switzerland, 26–30 November 2007; Volume 1, pp. 303–306. [Google Scholar]
- Dhanekar, S.; Rangra, K. Wearable dosimeters for medical and defence applications: A state of the art review. Adv. Mater. Technol. 2021, 6, 2000895. [Google Scholar] [CrossRef]
- Magalotti, D.; Placidi, P.; Dionigi, M.; Scorzoni, A.; Servoli, L. Experimental characterization of a personal wireless sensor network for the medical X-ray dosimetry. IEEE Trans. Instrum. Meas. 2016, 65, 2002–2011. [Google Scholar] [CrossRef]
- Tran-Quang, V.; Dao-Viet, H. An internet of radiation sensor system (IoRSS) to detect radioactive sources out of regulatory control. Sci. Rep. 2022, 12, 7195. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, S.; Gao, Y.; Zhang, Z.; Hong, Q. APMSA: Adversarial Perturbation against Model Stealing Attacks. IEEE Trans. Inf. Forensics Secur. 2023, 18, 1667–1679. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, D.; Lou, R.; Song, H. Industrial Security Solution for Virtual Reality. IEEE Internet Things J. 2020, 8, 6273–6281. [Google Scholar] [CrossRef]
- Bahrin, M.A.K.; Othman, M.F.; Azli, N.H.N.; Talib, M.F. Industry 4.0: A Review on Industrial Automation and Robotic. J. Teknol. 2016, 78, 137–143. [Google Scholar] [CrossRef]
- Hernández-Gutiérrez, C.A.; Delgado-del-Carpio, M.; Zebadúa-Chavarría, L.A.; Hernández-de-León, H.R.; Escobar-Gómez, E.N.; Quevedo-López, M. IoT-Enabled System for Detection, Monitoring, and Tracking of Nuclear Materials. Electronics 2023, 12, 3042. [Google Scholar] [CrossRef]
- Romeo, L.; Petitti, A.; Marani, R.; Milella, A. Internet of Robotic Things in Smart Domains: Applications and Challenges. Sensors 2020, 20, 3355. [Google Scholar] [CrossRef]
- Zhao, K.; Jia, Z.; Jia, F.; Shao, H. Multi-Scale Integrated Deep Self-Attention Network for Predicting Remaining Useful Life of Aero-Engine. Eng. Appl. Artif. Intell. 2023, 120, 105860. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, B. System Dynamics Approach for Evaluating the Interconnection Performance of Cross-Border Transport Infrastructure. J. Manag. Eng. 2022, 38, 4022008. [Google Scholar] [CrossRef]
- Ray, P.P. Internet of Robotic Things: Concept, Technologies, and Challenges. IEEE Access 2016, 4, 9489–9500. [Google Scholar] [CrossRef]
- Mao, Y.; Zhu, Y.; Tang, Z.; Chen, Z. A Novel Airspace Planning Algorithm for Cooperative Target Localization. Electronics 2022, 11, 2950. [Google Scholar] [CrossRef]
- Lv, Z.; Qiao, L. Deep Belief Network and Linear Perceptron Based Cognitive Computing for Collaborative Robots. Appl. Soft Comput. 2020, 92, 106300. [Google Scholar] [CrossRef]
- Lu, S.; Yang, J.; Yang, B.; Yin, Z.; Liu, M.; Yin, L.; Zheng, W. Analysis and Design of Surgical Instrument Localization Algorithm. CMES-Comput. Model. Eng. Sci. 2023, 137, 669–685. [Google Scholar] [CrossRef]
- Xu, X.; Sun, Y.; Tian, X.; Zhou, L.; Li, Y. A Novel Orientation Determination Approach of Mobile Robot Using Inertial and Magnetic Sensors. IEEE Trans. Ind. Electron. 2022, 70, 4267–4277. [Google Scholar] [CrossRef]
- Gupta, N.; Naik, V.; Sengupta, S. A Firewall for Internet of Things. In Proceedings of the 2017 9th International Conference on Communication Systems and Networks, COMSNETS 2017, Bengaluru, India, 4–8 January 2017. [Google Scholar]
- Li, Q.-K.; Lin, H.; Tan, X.; Du, S.H. Consensus for Multiagent-Based Supply Chain Systems under Switching Topology and Uncertain Demands. IEEE Trans. Syst. Man. Cybern. Syst. 2018, 50, 4905–4918. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, S.; Deng, Y.; Zhang, Y.; Yin, L.; Zheng, W. An Improved Method for Soft Tissue Modeling. Biomed. Signal Process Control 2021, 65, 102367. [Google Scholar] [CrossRef]
- Shi, Y.; Hu, J.; Wu, Y.; Ghosh, B.K. Intermittent Output Tracking Control of Heterogeneous Multi-Agent Systems over Wide-Area Clustered Communication Networks. Nonlinear Anal. Hybrid. Syst. 2023, 50, 101387. [Google Scholar] [CrossRef]
- Hu, F.; Qiu, L.; Xi, X.; Zhou, H.; Hu, T.; Su, N.; Zhou, H.; Li, X.; Yang, S.; Duan, Z. Has COVID-19 Changed China’s Digital Trade?—Implications for Health Economics. Front. Public. Health 2022, 10, 831549. [Google Scholar] [CrossRef]
- Arel, I.; Rose, D.; Karnowski, T. Deep Machine Learning-A New Frontier in Artificial Intelligence Research. IEEE Comput. Intell. Mag. 2010, 5, 13–18. [Google Scholar] [CrossRef]
- Azlah, M.A.F.; Chua, L.S.; Rahmad, F.R.; Abdullah, F.I.; Alwi, S.R.W. Review on Techniques for Plant Leaf Classification and Recognition. Computers 2019, 8, 77. [Google Scholar] [CrossRef]
- Bhamare, D.; Suryawanshi, P. Review on Reliable Pattern Recognition with Machine Learning Techniques. Fuzzy Inf. Eng. 2018, 10, 362–377. [Google Scholar] [CrossRef]
- Wozniak, M.; Silka, J.; Wieczorek, M.; Alrashoud, M. Recurrent Neural Network Model for IoT and Networking Malware Threat Detection. IEEE Trans. Ind. Inf. 2021, 17, 5583–5594. [Google Scholar] [CrossRef]
- She, Q.; Hu, R.; Xu, J.; Liu, M.; Xu, K.; Huang, H. Learning High-DOF Reaching-and-Grasping via Dynamic Representation of Gripper-Object Interaction. arXiv 2022, arXiv:2204.13998. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, F.; Jia, W.; Yuan, W.; Jin, W. Integrated Sensing and Communications for UAV Communications with Jittering Effect. IEEE Wirel. Commun. Lett. 2023, 12, 758–762. [Google Scholar] [CrossRef]
- Gueye, T.; Wang, Y.; Mushtaq, R.T. Concrete Deterioration Detection in Sewers Using Machine Learning Algorithms: An Experiment-Based Study. Int. J. Inf. Technol. 2023, 15, 1949–1959. [Google Scholar] [CrossRef]
- Gueye, T.; Wang, Y.; Rehman, M.; Mushtaq, R.T.; Zahoor, S. A Novel Method to Detect Cyber-Attacks in IoT/IIoT Devices on the Modbus Protocol Using Deep Learning. Clust. Comput. 2023, 26, 2947–2973. [Google Scholar] [CrossRef]
- Liang, Y.; Vankayalapati, N. Machine Learning and Deep Learning Methods for Better Anomaly Detection in IoT-23 Dataset Cybersecurity; pp. 1–6. Available online: https://github.com/yliang725/Anomaly-Detection-IoT23 (accessed on 20 August 2023).
- Al Shahrani, A.M.; Alomar, M.A.; Alqahtani, K.N.; Basingab, M.S.; Sharma, B.; Rizwan, A. Machine Learning-Enabled Smart Industrial Automation Systems Using Internet of Things. Sensors 2023, 23, 324. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Zhuansun, Y.; Liu, C.; Li, J.; Zhang, C. Design of Intrusion Detection System for Internet of Things Based on Improved BP Neural Network. IEEE Access 2019, 7, 106043–106052. [Google Scholar] [CrossRef]
Label | Feature |
---|---|
ts | Flow start time |
uid | Session ID |
id.orig_h | Source IP |
id.orig_p | Source port |
id.resp_h | Destination IP |
id.resp_p | Destination port |
proto | Connection protocol |
service | Protocol ID |
duration | Session duration |
orig_bytes | Data from source to destination |
resp_bytes | Data from destination to source |
conn_state | Session status |
local_orig | Source IP |
local_resp | Destination IP |
missed_bytes | Lost data during session |
history | Source packet history |
orig_packts | Source packets |
orig_ip_bytes | Source packet flow |
resp_packts | Destination packets |
resp_ip_bytes | Destination packet flow |
label | Transaction type (e.g., benign, malicious) |
Accuracy | Sensitivity | Specificity | Balanced Accuracy | Precision | F1-Score | Training Time (seconds) | Prediction Time (seconds) | |
---|---|---|---|---|---|---|---|---|
Deep MLP | 93.4 | 99.5 | 55.9 | 0.78 | 93.3 | 0.96 | 870.31 | 1.20 |
Log-R | 86.1 | 100 | 0 | 0.5 | 86.1 | 0.93 | 19.44 | 0.08 |
N-Bayes | 89.9 | 99.4 | 31.2 | 0.65 | 90 | 0.94 | 0.57 | 0.2 |
K-NN | 93.2 | 99.5 | 53.7 | 0.77 | 93.0 | 0.96 | 0.10 | 5280.08 |
R-Forest | 85.5 | 99.1 | 0.8 | 0.5 | 86.1 | 0.92 | 122.14 | 5.82 |
D-Trees (DDT) | 85.1 | 98.6 | 1.4 | 0.5 | 86.1 | 0.92 | 7.15 | 0.19 |
Bagged-DT | 93.5 | 99.6 | 55.9 | 0.78 | 93.3 | 0.96 | 15.64 | 1.11 |
Deep MLP | Log-R (Logistic Regression) | N-Bayes (Naive Bayes) | K-NN (K-Nearest Neighbors) | R-Forest (Random Forest) | D-Trees (Decision Trees) | Bagged-DT (Bagged Decision Trees) |
---|---|---|---|---|---|---|
Accuracy: 93.4% | Accuracy: 86.1% | Accuracy: 89.9% | Accuracy: 93.2% | Accuracy: 85.5% | Accuracy: 85.1% | Accuracy: 93.5% |
Sensitivity: 99.5% | Sensitivity: 100% | Sensitivity: 99.4% | Sensitivity: 99.5% | Sensitivity: 99.1% | Sensitivity: 98.6% | Sensitivity: 99.6% |
Specificity: 55.9% | Specificity: 0% | Specificity: 31.2% | Specificity: 53.7% | Specificity: 0.8% | Specificity: 1.4% | Specificity: 55.9% |
Balanced Accuracy: 0.78 | Balanced Accuracy: 0.5 | Balanced Accuracy: 0.65 | Balanced Accuracy: 0.77 | Balanced Accuracy: 0.5 | Balanced Accuracy: 0.5 | Balanced Accuracy: 0.78 |
Precision: 93.3% | Precision: 86.1% | Precision: 90% | Precision: 93% | Precision: 86.1% | Precision: 86.1% | Precision: 93.3% |
F1-Score: 0.96 | F1-Score: 0.93 | F1-Score: 0.94 | F1-Score: 0.96 | F1-Score: 0.92 | F1-Score: 0.92 | F1-Score: 0.96 |
Training Time: 870.31 s | Training Time: 19.44 s | Training Time: 0.57 s | Training Time: 0.10 s | Training Time: 122.14 s | Training Time: 7.15 s | Training Time: 15.64 s |
Prediction Time: 1.20 s | Prediction Time: 0.08 s | Prediction Time: 0.2 s | Prediction Time: 5280.08 s | Prediction Time: 5.82 s | Prediction Time: 0.19 s | Prediction Time: 1.11 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gueye, T.; Iqbal, A.; Wang, Y.; Mushtaq, R.T.; Bakar, M.S.A. Neuro-Robotic Synergy: Crafting the Secure Future of Industries in the Post Pandemic Era. Electronics 2023, 12, 4137. https://doi.org/10.3390/electronics12194137
Gueye T, Iqbal A, Wang Y, Mushtaq RT, Bakar MSA. Neuro-Robotic Synergy: Crafting the Secure Future of Industries in the Post Pandemic Era. Electronics. 2023; 12(19):4137. https://doi.org/10.3390/electronics12194137
Chicago/Turabian StyleGueye, Thierno, Asif Iqbal, Yanen Wang, Ray Tahir Mushtaq, and Muhammad S. Abu Bakar. 2023. "Neuro-Robotic Synergy: Crafting the Secure Future of Industries in the Post Pandemic Era" Electronics 12, no. 19: 4137. https://doi.org/10.3390/electronics12194137
APA StyleGueye, T., Iqbal, A., Wang, Y., Mushtaq, R. T., & Bakar, M. S. A. (2023). Neuro-Robotic Synergy: Crafting the Secure Future of Industries in the Post Pandemic Era. Electronics, 12(19), 4137. https://doi.org/10.3390/electronics12194137