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Abstract: In recent days, the IoT along with wireless sensor networks (WSNs), have been widely
deployed for various healthcare applications. Nowadays, healthcare industries use electronic sensors
to reduce human errors while analysing illness more accurately and effectively. This paper proposes
an IoT-based health monitoring system to investigate body weight, temperature, blood pressure,
respiration and heart rate, room temperature, humidity, and ambient light along with the synchro-
nised clock model. The system is divided into two phases. In the first phase, the system compares
the observed parameters. It generates advisory to parents or guardians through SMS or e-mails.
This cost-effective and easy-to-deploy system provides timely intimation to the associated medical
practitioner about the patient’s health and reduces the effort of the medical practitioner. The data
collected using the proposed system were accurate. In the second phase, the proposed system was
also synchronised using a linear quadratic regression clock synchronisation technique to maintain
a high synchronisation between sensors and an alarm system. The observation made in this paper
is that the synchronised technology improved the performance of the proposed health monitoring
system by reducing the root mean square error to 0.379% and the R-square error by 0.71%.

Keywords: healthcare; Internet of things (IoT); network layered architecture; synchronisation; sensors

1. Introduction

The Internet of things (IoT) is a crucial technological innovation in networking. IoT
has brought limitless prospects and influenced daily life [1–4]. It will bring a revolution
in healthcare and biomedical infrastructure. A reliable and accurate IoT-based healthcare
monitoring system is a challenging goal in modern-day society [5]. The need to provide
good-quality healthcare to the people by reducing cost, improving accuracy, and fulfilling
the insufficiency of the medical staff are important reasons to worry.

The UNICEF report [6] in the year 2016 stated that India is among the riskiest countries
for neonates. According to a study by UNICEF, a government with a low-income level has
a higher health mortality rate. Providing quality care to patients by reducing the cost and
shortages of nursing supervisors is the primary concern. Recent global population aging
and the pervasiveness of chronic illnesses are also becoming major issues [7]. Premature
birth also results in a high chance of prolonged run diseases influencing the child and
caretaker [8–10].

The health monitoring system provides nursing and crucial care for infants. The
Internet of things (IoT) is considered a revolution for information and communication
technology as it happened at the beginning of the 21st century [11]. It provides a platform
to connect sensors, databases, and other devices to the Internet. It enables a global infras-
tructure for physical networked architecture working on the web [12]. The architecture

Electronics 2023, 12, 309. https://doi.org/10.3390/electronics12020309 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12020309
https://doi.org/10.3390/electronics12020309
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3664-7415
https://orcid.org/0000-0002-4635-546X
https://orcid.org/0000-0002-3233-6487
https://orcid.org/0000-0001-6859-670X
https://orcid.org/0000-0003-3949-0302
https://doi.org/10.3390/electronics12020309
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12020309?type=check_update&version=2


Electronics 2023, 12, 309 2 of 16

should be highly synchronised and accurate to deploy the IoT for critical applications, such
as health monitoring systems.

The proposed system’s main aim is to provide a simple, economic, multifunctional,
and convenient health monitoring system that can constantly take readings of various pa-
rameters and provide information about patients’ health conditions. The health monitoring
system comprises parameters such as body temperature, heartbeat, room temperature,
humidity, etc. The sensors calculating the above-stated parameters are connected to a
central processing unit (CPU). The CPU processes the acquired data and displays them on
a monitor using a graphical user interface. It also stores the data in the health report, which
plots the data to show the variations of various parameters and the number of times the
value occurred (frequency). Thus, the main contribution of this paper can be summarised
as follows.

1. This paper aims to design an efficient IoT-aware health monitoring system that lever-
ages the characteristics of various body and room sensors at the physical layer. It
helps provide efficient nursing care while sustaining the quality of services at the
application layer.

2. Deployment of a network-layered architecture includes generating data at the physical
layer to access, process, and transmit data at the network layer for analysis and
decision-making at the decision-support layer, and application support for health care
practitioners and patient caretakers.

3. Analytical proof that the proposed system results in increased healthcare facilities and
reduces the effort of the medical consultants. The data collected during the process
are also accurate and will be analysed.

4. The proposed system is also reviewed through simulations discussing the collected
and actual data during the monitoring process. The results observed the proposed
solution’s gain and ease of use.

Further, the paper is arranged in various sections. Section 2 presents the motivation
and literature survey behind the research. Section 3 gives an overview of the IoT-based
health monitoring system architecture. Section 4 analyses the sensors deployed during
the experimental setup for the proposed approach. The sensors were analysed based
on their performance and accuracy in patient data collection. It also discusses the clock
synchronisation issues and an adaptive non-linear clock synchronisation technique. The
research is concluded in Section 5.

2. Literature Review

Recent technological advancements have opened gates for deploying devices to make
intelligent environments. Specifically, in medical sciences, various sensors are developed to
measure vital signs such as body temperature, pressure, movement, ECG, heart rate, etc.
This development motivates the design of innovative facilities capable of improving the
patient’s healthcare. Among the various research activities presented in the literature, those
related to using sensors for health care and told to synchronise time between the sensors
of WSNs are mainly focused. In [13], an intelligent WSN is presented for nursing patients’
monitoring, tracking, and localisation facilities within health care and nursing institutions.
In [14], architecture for automatic tracking and monitoring of patients is presented based
on the RFID, 6LoWPAN, WSN, and constrained application protocol.

Additionally, established literature related to the sensors and WSNs are implemented
to meet the definite requirements for ongoing health care. In [15], an automatic health
monitoring system is presented based on WSN sensors and mobile cloud computing
(SMCC). It can detect hyperthermia, hypothermia, cardiac issues, and irregular body
movements. It also provides information on Android-based applications and stores the
data in the cloud. In [16], a WSN-based reliable jaundice detection system is presented.
The system was implemented for healthcare industries and intensive care units (NICU).
An integrated monitoring system [17] for women is introduced using mobile cognitive
radio and body sensors. These are connected to a WSN. Wireless sensor networks are also
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deployed to analyse bioelectric signals produced by the human body. This deployment’s
significant problems are energy consumption and radioelectric interference since these
networks consist of small and limited nodes. In [18], two different priority schemes were
proposed to improve the performance of these networks. They consist of reducing the
number of transmissions from low-energy nodes and prioritising data toward the sink
node for fast and efficient processing.

A survey on the state-of-the-art of radio frequency identification (RFID) is discussed
by Sara A. [19]. It is applied to body-centric systems for collecting data related to the living
environment of user-based on temperature, various gases, and humidity.

A physical layer data-specific transceiver design for healthcare IoT applications is
proposed by [20] that inherits generated information characteristics and reduces data
transmitted with overheads. It also maintains the quality-of-service requirements of the
application. Various data compression techniques were also analysed to improve e-health
applications. A codebook-based online single-data compression technique is applied to
monitor patients’ health using wearable devices [21]. It will help in representing data
patterns efficiently. Another lossy compression algorithm for biometric signals is analysed
in ECG [22] data using auto-encoders. A mental disorder monitoring system using EEG [23]
data are examined for lightweight 1.5-D multi-channel compression. A remote patient
monitoring system for lossy compression techniques using multidimensional bio-medical
signals is anticipated [24] using linear prediction based on the codebook approach.

Publication No.US20160015277 [25] relates the method of video evaluation of a patient
for the heart rate and respiration rate under dim light or at night. This device comprises
a video camera along with a source of infrared light. It evaluates the patient’s heart rate
and respiratory rate using plethysmograph analysis. Patil and Mhetre [26] discuss the
patient monitoring system based on the GSM network, working only in the emergency case
or when the parameter value is out of the described range. It does not store the benefits
of health parameters as it is designed over a microcontroller PIC18F4520 which does not
provide space to store the health parameter values. De et al. [15] present a sensor–mobile
cloud computing system for automatic neonatal health monitoring.

The article [27] discussed essential parameters for monitoring a newborn’s health,
such as sleeping activity, oxygen level, respiration patterns, etc., necessary for ensuring
salubriousness for their health. This approach lets parents observe the patient and ensure
their good health. Another article [28] presents critical parameters such as body tempera-
ture, pulse rate, and moisture for monitoring patient health. It also presents the storage
for measured values on the cloud with suitable security. In [29], a low-cost incubator for
monitoring premature baby health is proposed. It majors the critical health parameters
in real-time. It automatically sends the alerts and immediately takes necessary actions
to safeguard babies. IoT-based flexible, pervasive, intelligent healthcare platforms for
various healthcare, physiological, and environmental parameters monitoring are discussed
in [30–32]. Sun et al. defined a privacy-aware and lightweight fine-grained access control
mechanism for IoT-oriented smart health [33].

As all the above, the discussed research focuses on designing a smart and intelligent
healthcare system for monitoring and analysing patients. There is still much scope for im-
provement in the techniques used for data exchange between the monitoring and analysing
devices. A strong, synchronised patient healthcare system is a requirement in high demand.

3. Architecture Overview

This paper aims to design a reliable, accurate, and IoT-based health monitoring system.
The system visualises a real-time environment by collecting the patient’s body parameters
and providing them to the control centre. The data collected are analysed at the decision
support layer. Accordingly, alert or warning messages are sent in case of emergency.
Figures 1 and 2 illustrate the sensor deployment and network architecture for the IoT-based
health monitoring system. It comprises sensors to monitor body temperature, respiration,
heart rate, blood pressure, room temperature, humidity, and ambient light. The data



Electronics 2023, 12, 309 4 of 16

collected in real-time are transmitted to the IoT cloud for storage and further action.
Hospitals, nursing institutes, and emergency centres are connected to the cloud. In case
of any emergency, it generates alerts and warning messages which are communicated via
mobile applications.
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The network layer is connected to the processing unit for processing collected data
and storage devices. After processing the data, the network layer transmits the data to
the decision support layer. In this layer, the decision regarding the health of the patient
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is simulated. The choice is based on body activity, heart/respiratory activities, and room
environment. An alert or a warning message will be generated based on data collected
within 30 s. The messages are then transmitted to the application layer for further process-
ing. The application layer then sends information to a local or remote user based on its
knowledge base.

Figure 3 presents the working schema that depicts the network component and a
communication protocol to connect the components. Figure 4 shows the GUI for the mobile
application of the proposed health monitoring system. Figure 5 presents the proposed
WSN-based IoT setup along with sensors for collecting the data. The structure was arranged
using Raspberry Pi and various body and room sensors. The system presented here is the
functional layout of the physical layer. As shown in Figure 2, this layer is responsible for
collecting data and gathering information. These data are then transmitted to the network
layer. At the network layer, the reading obtained is stored in a database and processed
accordingly. A wireless ZigBee XBP24-ZB architecture is used to transmit readings through
the gateway to the cloud database. Table 1 presents the specification of the proposed
WSN architecture.
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Table 1. Specification of proposed architecture of WSNs.

Parameters Value

ZigBee module XBP24-ZB
GPRS module MTSMC-G2-SP
Architecture Single-tier heterogeneous

Transmission range ≤25 m
Heartrate sensor PC-3147

Body temperature sensor MAX30205
Room temperature sensor DHT11

Humidity sensor DHT11
Visual monitoring Pi camera

Data upload interval 10 min

The application layer is classified based on various factors such as the health monitor-
ing business model, the network used, availability, coverage, heterogeneity, and real-time
data requirements. Table 2 presents the characteristics of the smart health monitoring
application domain. Significant factors are network connectivity, network size, and band-
width requirements.

Table 2. Smart health monitoring application domain.

Characteristics Smart Health Monitoring Application

Network size 20 nodes
Network connectivity WPAN (Zigbee), WLAN, 3G, 4G, and Internet

Bandwidth requirements 2 kbps to 8 kbps based on 2 bytes per sample

The decision support layer provides management services to the above layer. It
provides an operational support system service analytical platform, including statistical
analysis, data mining, etc. It also performs periodic IoT data filtering and triggers periodic
events based on sensor data, which may require immediate response and delivery. The
network layer focuses on communication technologies. Routers, switches, and hubs are
required to transmit a massive volume of IoT data to the storage or cloud. For the proposed
system, a LAN relates to a microcontroller for transmission.

Finally, the physical layer comprises sensors and intelligent devices for
collecting information.

Section 5 discusses the deployment of sensors and their analysis at the physical layer.
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4. Results and Analysis of the Health Monitoring System

The proposed system is deployed in two phases: the health monitoring system and
synchronising the clock skew of the system.

4.1. Phase 1: Health Monitoring System Analysis

The proposed system was deployed for collecting real-time patient body data and
was analyzed in terms of accuracy. The sensors’ performance was observed to be highly
accurate and operated at low voltage. It was also observed that these sensors are designed
to reduce errors and save power. This section analyses the data collected and the accuracy
calculated of temperature, heart rate, and humidity sensors. MAX30205 was used to gather
the body temperature. The data are collected daily at regular intervals. Figure 6 presents
a small range of data collected for body temperature on 20 November between 1:35 PM
and 1:45 PM. The sensor converts the measured temperature into a digital form using a
sigma–delta analogue to a digital converter. The sensor was observed as highly accurate,
with an accuracy of 0.1 ◦C between 37 ◦C and 39 ◦C. It has a temperature resolution of
16 bits and operates at a supply voltage ranging from 2.7 V to 3.3 V. Figure 6 presents the
graphs between the operating characteristics between accuracy and temperature for the
deployed human body temperature sensor.
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Figure 6. Data were collected on 20 Nov from 1:35 PM to 1:45 PM using body temperature
sensor MAX30205.

The accuracy is calculated using the sensor’s value and the actual value of the body
temperature. The accuracy is defined as the amount of measurement of uncertainty con-
cerning the absolute value. Here, accuracy conditions consist of the effect of errors due to
balancing and gaining parameters. The accuracy of the system is evaluated using (1):

Accuracy =
Actual Value − (Actual − Observed)Value

Actual Value
(1)

In Figure 7a–c, the sigma error presents a value to quantify the variation in the dataset
representing the relationship between accuracy and temperature and 3-sigma defines upper
and lower control limits within three deviations from the mean. The PC-3147 heart rate
sensor is deployed for collecting the data. It measures the pulse rate ranging from 0 to
200 bpm with a resolution of 1 bpm. This sensor transmits the light level through the
vascular tissues in the ear lobe or fingertips. It measures the variation in the intensity of
light absorbed in the blood due to changes in tissues. Figure 8 presents the sensor’s real-
time data on ten days ranging from 12 December to 21 December at around 1:35 PM daily.
The data collected are vast. Figure 9 presents the light-absorbing property of hemoglobin
for measuring the heart rate.
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Another sensor used for measuring room temperature and humidity is DHT11. It
includes a resistive-type component for humidity measurement and an element based on
NTC for temperature measurement.

It relates to a high-performance 8-bit microcontroller to provide fast response, excellent
quality, and anti-interference ability, and it is cheap. DHT11 is highly accurate in calibrating
humidity. Table 3 presents the operational characteristics analysed during the deployment
of DHT11 for humidity and temperature. Figure 10 shows the graphs between the data
collected for room humidity and temperature. Equation (1) is used to calculate the accuracy
of DHT11.

Table 3. Operational characteristics of DGT11 humidity and temperature sensor.

DHT11 Measurement Range Accuracy Resolution

Humidity 20–90% R.H. ±5 R.H. 1
Temperature 0–50 ◦C ±2 ◦C
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Data were collected using a PC-3147 heart rate sensor based on light absorption level.

4.2. Phase 2: Synchronising the Clock Skew of the Monitoring System

The Internet of things (IoT) is likely to impact the day-to-day life of its users by
empowering the exchange of data among pervasive stuff over the Internet. Such a broad
objective puts limitations on health monitoring applications demanding clock-synchronised
sensor networks for sequential data ordering and synchronous execution of medical-
related operations. The existing clock synchronisation solution, such as the network time
protocol, is to resource constraint devices. Therefore, for resource constraint devices,
various clock synchronisation methods are derived, as illustrated in [22,24,27]. These clock
synchronisation solutions will help improve the performance and accuracy of IoT-based
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health monitoring systems. The data set collected on various patients at different times
using the proposed health monitoring system was used for analysis.

This paper emphasises the clock synchronisation problem for WSNs. Important clock
parameters resulting in synchronisation errors are offset, skewed and network delayed.
Clock skew is the difference in the tick duration of two or more clocks. It can also be
measured as the offset’s differential coefficient [35], the skew is denoted as αA, and B(t)
between node A and node B at time t. It can be represented as given in and shown in (2):

αA,B(t)=
dθA,B(t)

dt
(2)

where θA and θB(t) represent the clock offset value, defined as the time difference between
two nodes, A and B. Hence, clock skew can also be calculated as given by (3):

αA,B(t) =
θA,B(t+T(t)) − θA,B(t)

T(t)
(3)

where T(t) is the sampling interval.
The value of the clock offset is calculated by implementing a two-way message-

passing scheme.
By applying (2), the value of the clock skew is calculated.
As stated in [35], clock skew is dependent and sensitive to various factors such as

battery power, sensor heat, etc. Therefore, it cannot be treated as a fixed random variable.
Hence, it cannot be predicted using a random algorithm, such as MLE. Therefore, the linear
quadratic regression-based model is applied to estimate the best possible clock skew value.

4.3. The Linear Quadratic Regression Model

The main idea behind the linear quadratic regression model is that if the sample values
have a temporal correlation, then the past sample can be used to predict the present and
future value of the sample. The sample value of the clock skew to be estimated can be
closely approximated as a linear combination of the past sample value. The quadratic
model works on a linear term, an intercept, square terms, and an interaction. The estimation
coefficient can be determined by minimising the certain function of differences between
the sample skew value and the estimated skew value. A scatterplot was used to define the
strength of the relationship between variables. It was found that the dataset for clock skew
is in a linear relationship.

The basic idea of linear estimation is that ∆αA,B(t) is approximated using its historical

values (∆αA,B(t−1), ∆αA,B(t−2), . . . , ∆αA,B(t−k)). Two symbols are defined (i) ∆̂αA,B(t), which
is the estimated value of clock skew ∆αA,B(t) and (ii) et, as the estimated error between

the estimated skew value ∆̂αA,B(t) and real skew value ∆αA,B(t). ∆̂αA,B(t) and et can be
expressed as (4) and (5):

∆̂αA,B(t) = a1∆αA,B(t−1) + . . . + ak∆αA,B(t−k) =
k

∑
i=1

ai∆αA,B(t−i) (4)

et = ∆αA,B(t) − ∆̂αA,B(t) = ∆αA,B(t) −
k

∑
i=1

ai∆αA,B(t−i) (5)

where ai is the skew estimation coefficient, and k is the skew estimation order. Table 3
represents the simulation parameters for the proposed linear prediction algorithm.

The proposed algorithm’s main objective is to design an IoT-based system with high
reliability and accuracy by synchronising the sensors and other devices used to implement
the system. The flowchart for the proposed model is represented in Figure 11.
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4.4. The Linear Quadratic Regression Model for Estimating Clock Skew

Linear quadratic regression helps in modelling the relationship between a response or
dependent variable and one or more estimator or independent variables x (x1 . . . xn) and z
(z1 . . . zn) using (6):

y = y = β0 + β1x + β2z + e (6)

where β0 is the y-axis intercept, β1 and β2 are the regression coefficients, and e is an error.
For “n” observed values, the linear relation can be observed, as shown in (7):

y1
y2
...

yn

 =


1 x1
1 x2
...
1

...
xn




1 z1
1 z2
...
1

...
zn


[

β0
β1

]
(7)

Y =


y1
y2
...

yn

, X =


1 x1
1 x2
...
1

...
xn

,


1 z1
1 z2
...
1

...
zn

 z = and B =

[
β0
β1

]
(8)

4.4.1. Input Selection

From the given set of available input and output pairs, the linear vector and linear
matrix are constructed as given in (7) and (8), respectively. The relationship can be stated as:

Y = X.Z. B (9)

4.4.2. Algorithm for Calculating ∆̂αA,(t)

i. Calculate ∆αA,(t), i.e., the clock skews between two sensor nodes, A and B.
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ii. Apply ∆αA,(t), . . . , ∆αA,B(t−2) ∆αA,B(t−p−1) and t1, t2, . . . , tn as input to a linear
quadratic regression processor.

iii. Apply linear regression with quadratic type to calculate ∆̂αA,(t). The quadratic
model works on a linear term, an intercept, square terms, and an interaction.

iv. Output ∆̂αA,(t) is obtained, as shown in Figure 12. In Figure 13, the plot between
the actual and the estimated value is presented.
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4.5. Model Validation

Model validation is an essential part as it evaluates the goodness of fit for any model.
A residual plot is a fundamental statistical tool to measure the goodness of a fitted model.
Model validation is important for linear regression modelling, as the estimator requires to
define regression function and identical, and the independent distribution of errors should be
consistent. Figure 14 represents the residual plot for the proposed linear regression estimator.
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4.6. Performance Evaluation

Table 4 presents the linear quadratic regression model’s performance in the proposed
work for estimating clock skew. The root means square error (RMSE) and R-square help
calculate the goodness of fit for any function. The table also presents the value of mean
squared error (MSE) and mean absolute error (MAE).

Table 4. Development parameters for estimating clock skew.

Parameters Value

Model Type Linear Regression
Preset Linear
Term Quadratic

It was observed that the model gives reasonable results by reducing RMSE to 0.379.
The value of the R-square should be between 0 and 1. For the proposed model, its value is
0.71. Table 5 presents the estimation speed and training time taken by the proposed model
for estimating the value of ∆̂αA,(t), i.e., clock skew.

Table 5. The proposed model’s goodness of fit is based on RMSE, R-Square, MSE, and MAE.

RMSE R-Square MSE MAE

0.379 0.71 0.144 0.244

The proposed model is also compared with the existing model, and the results ob-
served favour the linear quadratic regression (LQR). The LQR was compared with the
linear regression (LR) [36], Gaussian process regression (GPR) [37] and non-linear Gaussian
regression (NGR) [34] models for the same dataset for step one were used to estimate skew
using a timestamp. It was observed that the proposed model gives better results. Table 6
presents the estimation of speed & training time for the proposed model. Table 7 shows
the comparative analysis. The exact process was repeated with other sensors used in the
IoT-based neonatal monitoring system. The average value of the RMSE value observed is
0.35. This outcome for the cock skew estimation indicates that the approach discussed in
this paper provides high performance regarding accuracy.
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Table 6. Estimation speed and training time for the proposed model.

Prediction Speed Training Time

~1800 obs/s 1.725 s

Table 7. The goodness of fit of the linear quadratic regression (LQR), linear regression (LR), gaussian
process regression (GPR), and non-linear gaussian regression (NGR).

Goodness of Fit

Type RMSE R-Square Ref.

LQR 0.379 0.71
LR 0.518 0.47 [36]

GPR 7.80 0.25 [37]
NGR 5.099 0.694 [34]

5. Conclusions

The IoT has developed much popularity in various applications. Therefore, providing
an accurate and reliable model for IoT-based applications is challenging nowadays. The
synchronising clock of the sensors and WSNs deployed for execution of the IoT-based
system can help improve the system’s performance. Hence, this paper proposed a frame-
work for an IoT-based neonatal monitoring system and an estimator for estimating the
clock skew for synchronising time and duration of resynchronisation. The estimator is
based on the linear quadratic regression model. The proposed estimator was compared
with existing models such as linear regression [36], Gaussian process regression [35], and
non-linear Gaussian regression [34]. It was observed that the proposed work gives better
results when compared. This model can provide a reliable and accurate estimate for clock
skew by reducing the error rate to 0.35%. It will also help reduce the sensor overhead and
save sensor energy. In the future, analyzing the model for some more parameters such as
scalability, fault tolerance, and complexity will be a good way to extend the work.
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