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Abstract: Recently, prognostics and health management (PHM) has garnered a lot of attention in the
industrial sector for its cost-effective maintenance and safe operation of the system. In this regard,
vibration-based predictive maintenance using sensors plays a significant role in the diagnosis and
prognosis of various faults. The need of the hour is to know when and which part must be replaced
in advance for efficient and reliable operation. Unbalance is one major fault acting on any rotary
system leading to excessive vibration and causing various other faults developing early failure in
components directly or indirectly. In this paper, we show how a prognostic model can be built for
the identification of future unbalance trend of a rotor-bearing system with the aid of a mathematical
model of the system and statistical/machine learning methods. The prognostic model developed
is used to forecast the unbalance time-series data of an industrial turbine rotor in real-time which
forecasts the month ahead unbalance values. The proposed model is verified for prognostic analysis
using datasets from a local plastic company. After careful examination of the results, it is concluded
that the proposed model can aid in precisely detecting future system unbalance.

Keywords: unbalance prognostics and health management; prognostics and health management;
rotor-bearing unbalance; time series forecasting

1. Introduction

Rotating machines are the crucial framework for any industry. However, numerous
factors, such as varying loads or fatigue, high speeds, etc., can lead to sudden failure
that may further result in shutdowns or downtime of several weeks in an industry. For
economic and safety reasons, it is always necessary to ensure the safe working condition
of rotary systems. Prognostics and health management (PHM) is an emerging field in
this regard that deals with predictive maintenance to reduce the probability of a sudden
or extreme system failure and thereby improving safety standards of any industry. Lee
et al. [1] analyzed a detailed review of a systematic approach for establishing PHM based
maintenance strategy for Rotating systems. Tahan et al. [2] also gave a reviewed analysis of
PHM based diagnostics and prognostics for gas turbines with the help of condition-based
monitoring. Generally, vibration plays a vital role in determining various types of faults
such as unbalances, misalignments, cracks, etc., in a rotary system, that eventually causes a
component to fail. Thus, studying vibration measurements can aid us in diagnosing the
faults in the system much earlier than it takes place. Lv et al. [3] reviewed signal processing
methods based on vibration for early fault diagnosis and prognosis in rotating machinery.
Out of the different faults that occur in a rotary system [4], unbalance contributes the
most to its failure. There is always some inherent unbalance present in a rotary system
during operation due to reasons such as manufacturing defects, installation faults, etc.,
which ends up causing undesirable effects on the safe working of the system. Unbalance
is one of the primary faults which eventually cascades into many other secondary faults.
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Thus, it becomes essential to continuously monitor the unbalance faults present in rotating
machinery and take maintenance actions at regular intervals. In this regard, condition
based monitoring (CBM) refers to continuously monitoring the condition of the system
while it is in operation and formulating preventive strategies based on that [5]. However,
prognostics applied to a fault like unbalance has been exceedingly difficult due to less
availability of failure data and thus very little research has been done so far in this area.
Therefore, it becomes essential to continuously monitor the unbalance of the system and if
it gets sufficiently high, then the system needs to be balanced.

Diagnosis generally deals with the identification and localization of faults in the sys-
tem [6–9] whereas prognosis refers to the development of the fault trend with time to
understand its developing nature and making predictive analysis based on that. Arun-
thavananthan et al. [10] supplied a roadmap study of fault diagnostic methodology and
process safety research for Industry 4.0. Wei et al. [11] provided a guide on the fault diagno-
sis approach for rotary machinery systems. Nath et al. [12], Lei et al. [13], and Liu et al. [14]
contributed a detailed review of the artificial intelligence (AI) based rotor fault diagnosis
(RFD) framework and described its future research direction. The focus of this analysis was
to bridge the gap between real-world industrial solutions and Laboratory based solutions
using machine learning and deep learning methodologies. In the past, researchers have
developed different methodologies for unbalance estimation and diagnosis.

The main aim of prognostics is to predict the failure or remaining useful life (RUL) of
a component which would enable more reliable operation, reduced downtime, shortened
maintenance cost, and hence would provide more effective maintenance of the overall sys-
tem. Rezaeianjouybari and Shang [15] discussed several ongoing research on deep learning
for the development of prognostics framework. Kan et al. [16] described a detailed review
of prognostics techniques on rotating machinery under non-linear and non-stationary
conditions. Sikorska et al. [17] did an elaborate analysis of steps for the determination
of RUL-based prognostic approach by various existing methods such as physical model,
data-driven, or knowledge-based architecture and the present difficulties in its application
to a real-world system. A lot of prognostics study right now generally involves diagnosing
crack propagation and failure due to fatigue [18]. However, there is need of developing
prognostic solutions for various faults acting in a system.

The prognostic modeling approach can be categorized into physics-based, data-driven,
or hybrid i.e., combined methodologies. CBM generally involves identifying the fault
indicators using data-driven methodologies and predicting the remaining useful life of
components from fault trend analysis. However, there also exists a model-based prognostic
strategy, in which a mathematical model is built to determine the fault’s gradual develop-
ment with time. The hybrid prognostic approach is a combination of both data-driven and
model-based strategies to utilize the benefits of the two. Heng et al. [19] provided a detailed
discussion of prognostic models based on condition data of rotating machinery systems.
An et al. [20] and Sikorska et al. [17] presented an overview of physics and the data-driven
models for prognostics. In these studies, various data-driven health monitoring systems
for establishing diagnostic and prognostic systems have been described for predictive
maintenance. Zhong et al. [21] described an overview of data-driven methodologies for
fault prognosis in Industrial systems.

Several data-driven prognostic models have been previously utilized which use time
series data for data-driven prognosis [19], however they mostly evaluated on single step
ahead predictions to estimate the variations of vibration-based characteristics of fault
feature. Accuracy indeed decreases with the increase of prediction horizon, but it is of a
more significant nature to have a more reliable long-term prediction for any important
maintenance-based decision. Multi-step ahead prognosis is still a big challenge when it
comes to prognosis since the accuracy of predicted values deviates increasingly from the
original values as the time step increases, as this has also been stated as an important
research direction in several review papers [12]. Xiao et al. [22] utilized a back propagation
neural network (BPNN) over a rolling time window for multi-step ahead prediction to
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determine the RUL using bearing run-to-failure simulation data and PHM-2012 competi-
tion data.

Trend analysis gets easier when historical failure data is given, but in a lot of scenarios it
is not viable or reliable for the system to fail and necessary pre-conditioning or maintenance
is done. This results in less availability of relevant historical data for any meaningful
evaluation. It is important to predict the trend of how a fault feature develops over time.
Guo et al. [23] proposed a method that combines errors from multiple sparse auto-encoders
with Long Short-Term Memory (LSTM) method and produces a trend curve that will
predict future mechanical fault variation curves.

Various sensors and measurements made at different bearing locations can enable us
to predict the overall unbalance acting in a system. We can further analyze our measured
data with the help of forecasting to predict future unbalance values which in return can
save a lot of time and money for the effective running of the machinery.

Forecasting techniques prove to be extremely useful while predicting the future pa-
rameters of a system based on past data trends. In this, time series forecasting (TSF) refers
to the process of making future data predictions based on the analysis of past and present
data trends. There are several classical or statistical TSF methods such as Exponential
Smoothing (ES), and Auto Regressive Integrated Moving Average (ARIMA) which are
successfully being used for effective forecasting in many different sectors. These classical
methods are generally simple and can give a good prediction with an acceptable error
range. But as the complexity of the system increases the simplistic classical algorithms do
not keep up with the sudden variations of the system parameters due to several unknown
factors and can give significantly large errors. Hence, there is a need to explore emerging
technologies such as machine learning techniques which can prove better in learning the
complexities of a system and making more accurate long-term predictions.

Recently, several machine learning techniques have been employed to develop forecast-
ing models for fault time trend analysis and prognostic study of the system. Pham et al. [24]
used ARMA/GARCH for the forecasting of machine health to predict future failure states.
They verified their model by applying it to a real compressor in a petrochemical plant.
Yuan et al. [25] developed a support vector machine model optimized with an artificial im-
munization algorithm (SVM-AIA) for fault diagnosis of a turbo-pump rotor system. Wilson
Wang [26] introduced an adaptive neuro-fuzzy approach-based forecasting model to predict
real-time dynamic system behaviour in Industry. He applied his adaptive predictor to gear
system condition monitoring and material fatigue testing and found his model to perform
significantly better for a real-time system than classical forecasting methods. Li et al. [27]
used an enhanced metabolism grey forecasting method (MGFM) using a particle filter
(PF) for evaluating the remaining service life. They used the case study of a centrifugal
pump and compressor to validate their results Djeddi et al. [28] used the LSTM model for
prognostic analysis of Gas Turbine data. Zhang et. al. [29] employed a multi-layer LSTM
model with an attention mechanism for the prediction of the RUL of a rotary machine.
Xiao et al. [30] proposed a stacked long short-term memory with a multi-layer perceptron
(SLSTM-MLP) method for multivariate time series forecasting of wind turbine bearing
systems utilizing supervisory control and data acquisition (SCADA) data. Ma et al. [31]
proposed a data fusion approach based on LSTM and ARIMA methodologies to forecast
long-term fuel cell degradation. Arunthavanathan et al. [32] used a convolutional neural
network and long short-term memory (CNN-LSTM) approach to develop a prognostic
approach to forecast future system parameters to diagnose the faults within the system.
Xia et al. [33] proposed a data-driven prognosis approach by using a hybrid deep LSTM
network structure. In the model, they used the dropout technique to overcome the over-
fitting issue. They utilized the National Aeronautics and Space Administration (NASA)
commercial C-MAPSS dataset with turbofan engine degradation data to evaluate the model
performance and RUL prediction.

This study aims to develop a prognostic approach to determine the unbalance acting
in the turbine rotor-bearing system to aid in maintenance-based decision-making. A
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mathematical model along with historical sensor data is used to generate fault data and
statistical/machine learning methods like ES, ARIMA, SVR, LSTM, etc., are evaluated for
developing a prognostic model of unbalance over a rolling or expanding window for a
dataset from a local factory. The main idea driving the development of this approach is to
set up an online monitoring and predictive maintenance strategy for unbalance faults in a
rotary system. So, we formulate a real-time unbalance forecasting model which updates
itself over time and gives satisfactory one-month-ahead forecasting with an acceptable
error range. To validate our forecasting model, we use different traditional or classical as
well as non-classical or machine learning based forecasting models to find out the most
suitable model for our system and calculate its error in prediction with actual trend. The
major contributions of this paper are as follows,

1. A prognostic model approach is proposed with the help of moving and expanding
window methodologies to help in predicting unbalance estimation in the future.

2. The different forecasting models such as ES, ARIMA, SVR, LSTM are compared and
evaluated for least root mean square error.

3. Most of the research work for forecasting based models is developed on standard
datasets available online, but less work on real datasets has been done which can
provide more insight into the real time operating situation. Regarding this, our
proposed model is evaluated on a real dataset from a local factory, so that it can be
used in industry.

The remaining paper structure can be described as follows. Section 2 describes the
mathematical derivation of the system model and unbalance estimation. Section 3 describes
different forecasting models utilized to study the unbalance trend analysis. Section 4
describes the methodology for the prognostic approach developed in this study. Section 5
describes the results obtained and their subsequent discussions. Finally, Section 6 outlines
the conclusions of the study. We also describe how this study can be utilized in the future
for predictive maintenance purposes and the efficient reliable operation of a rotary system.

2. System Mathematical Model and Unbalance Estimation

Figure 1a represents the modeling of the rotor system with approximate dimensions
and coordinates considered in this study. This model is developed from the real turbine
rotor available in a local factory consisting of a flexible shaft, 3-stage impeller, two 5 tilting-
pad hydrostatic fluid film bearings. The system model is mathematically derived using
physics laws. Mostly, the rotor systems are derived using finite element model (FEM),
but in this research assumed-mode method (AMM) is utilized to derive the equations of
motion (EOMs) of the turbine rotor bearing system and the equations were formulated
in a MATLAB program to solve for the parameters. The AMM based model is validated
using a finite element based model and it is found to be acceptable for further analysis.
Figure 1b shows the 3D model developed using Solidworks and Figure 1c represents its
first natural frequency obtained using FEM. The natural frequencies obtained from both
FEM and AMM models differ from each other by 2% (i.e., 84.4 and 83 Hz), under rigid
support conditions. This rotor system generally runs at a speed of 11000 rpm but balanced
at a lower speed of 600 rpm in each overhaul.

Based on the AMM, the displacements of rotor’s center line in x and y directions,
measured with respect to the stationary coordinates, can be expressed as u(z, t) and v(z, t),

u(z, t) =
m

∑
i=1

pi(t)Φi(z) = pTΦ (1)

v(z, t) =
m

∑
i=1

qi(t)Φi(z) = qTΦ (2)
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Wherein, assumed modes i.e., Φi(z), consists of the natural modes of a free-free beam
plus two rigid body modes, translation, and rotation. p and q are generalized coordinates
and m is the number of modes deemed required accuracy.

Electronics 2023, 12, 312 5 of 25 
 

 

 
Figure 1. (a) System model with dimensions (b) modeling in Solidworks (c) FEM model of the first 
mode. 

Based on the AMM, the displacements of rotor’s center line in x and y directions, 
measured with respect to the stationary coordinates, can be expressed as u(z, t) and v(z, 
t), 

1
( , ) ( ) ( )

m

i i
i

u z t p t z
=

= Φ = Tp Φ  (1)

T

1
( , ) ( ) ( )

m

i i
i

v z t q t z
=

= Φ = q Φ  (2)

Wherein, assumed modes i.e., Φi(z), consists of the natural modes of a free-free 
beam plus two rigid body modes, translation, and rotation. p and q are generalized 
coordinates and m is the number of modes deemed required accuracy. 

The EOMs, via the Lagrange’s equation, are derived to be, 
2

2

2
2

 x xx

y yy

Ω Ω
Ω Ω

    − +         + + =           − −+                

C N QK N 0M N 0 p p p
N C Q0 K N0 M N q q q

 
 

 (3)

ρ
=

Φ Φ Φ Φ= +0
1

( ) ( ) ( ) ( )
dnl d

i j r i r j r
r

ij A z z dz m z zM
 

(4)

Figure 1. (a) System model with dimensions (b) modeling in Solidworks (c) FEM model of the
first mode.

The EOMs, via the Lagrange’s equation, are derived to be,[
M + N 0

0 M + N

]{ ..
p
..
q

}
+

[
Cx 2ΩN
−2ΩN Cy

]{ .
p
.
q

}
+

[
Kx −Ω2N 0

0 Ky −Ω2N

]{
p
q

}
=

{
Qx
Qy

}
(3)

Mij =
∫ l

0
ρAΦi(z)Φj(z)dz +

nd

∑
r=1

md
r Φi(zr)Φj(zr) (4)

Nij =
∫ l

0
ρIAΦ′ i(z)Φ′ j(z)dz +

nd

∑
r=1

Id
r Φ′ i(zr)Φ′ j(zr) (5)

Cxij =
nb

∑
n=1

CxnΦi(zn)Φj(zn) (6)

Cyij =
nb

∑
n=1

CynΦi(zn)Φj(zn) (7)

Kxij =
∫ l

0
EIAΦ′′ i(z)Φ′′ j(z)dz +

nb

∑
n=1

kxnΦi(zn)Φj(zn) (8)
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Kyij =
∫ l

0
EIAΦ′′ i(z)Φ′′ j(z)dz +

nb

∑
n=1

kynΦi(zn)Φj(zn) (9)

Here M, N, C, and K, respectively, represent the mass, rotary inertia, damping, and
stiffness matrix respectively. Also, (.) = d/dt, (′) = d/dz; nd, md, Id, nb, and IA denote the
number of disks, disk’s mass, disk’s diametric inertia, number of bearings, and shaft’s area
moment of inertia, respectively. Ω is the rotational speed in rad/s, ρ is the mass density in
kg/m3 and Qx, Qy are generalized force vectors.

The unbalanced (centrifugal) forces when decomposed into x and y components can
be expressed as,

Fx = UgΩ2 cos(Ωt + αg)δ(z− zg) (10)

Fy = UgΩ2 sin(Ωt + αg)δ(z− zg) (11)

where Ug = (m · e) is the customarily specified unbalance with a unit of gmm, e is the
eccentricity i.e., the distance of displaced mass centre from the geometric center due to
unbalance forces. αg is the unbalance phase angle relative to the key phasor. Here, the
subscript g denotes the gravity center.

The generalized force vectors are calculated as,

Qx = UgΩ2 cos αgΦ(zg) cos(Ωt)−UgΩ2 sin αgΦ(zg) sin(Ωt)

= Fc(zg) cos(Ωt)− Fs(zg) sin(Ωt)
(12)

Qy = UgΩ2 sin αgΦ(zg) cos(Ωt) + UgΩ2 cos αgΦ(zg) sin(Ωt)

= Fs(zg) cos(Ωt) + Fc(zg) sin(Ωt)
(13)

Substituting the values of Qx and Qy from (12), (13) in the EOM (3), and solving for
cosine and sine components of generalized components which can be evaluated from the
following equation,

Kx −Ω2M− 2Ω2N ΩCx 0 2Ω2N
−ΩCx Kx −Ω2M− 2Ω2N −2Ω2N 0

0 −2Ω2N Ky −Ω2M− 2Ω2N ΩCy
2Ω2N 0 −ΩCy Ky −Ω2M− 2Ω2N




pc
ps
qc
qs

 =


Fc
−Fs
Fs
Fc

 (14)

The above equation gives complete solution to an unbalance excitation. The rotor’s
unbalance responses in x and y directions, after solving Equation (14), can be expressed as

u(z, t) = pT
c Φ(z) cos(Ωt) + pT

s Φ(z) sin(Ωt)

= uc(z) cos(Ωt) + us(z) sin(Ωt) = Ax cos(Ωt− φx)
(15)

v(z, t) = qT
c Φ(z) cos(Ωt) + qT

s Φ(z) sin(Ωt)

= vc(z) cos(Ωt) + vs(z) sin(Ωt) = Ay cos(Ωt− φy)
(16)

The calculated unbalance vibration from above equation is compared with the mea-
sured response from the sensors to generate a residual and, model parameters is estimated
by minimizing the residual value.{

u(zi, t) = uc(zi) cos(Ωt) + us(zi) sin(Ωt)

v(zi, t) = vc(zi) cos(Ωt) + vs(zi) sin(Ωt)
, zi = z1 or z2 (17)

The subscript 1 and 2 at z denotes the two different bearing locations. The unbalance
mostly affects vibration components at 1× (rotational speed’s frequency), hence real-time
1× components dispalcement values are extracted from the sensor data at the two bearing
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locations to generate a residual with the above calculated value. Thus, the feature vector
for this is given by,

f = {uc1, us1, vc1, vs1, uc2, us2, vc2, vs2}T (18)

and residual error is given by,
E = ∑ ‖ (fT−fm) ‖ (19)

where, fT, and fm, respectively denote the calculated and measured feature vector and the
unbalance vector d to be identified at the two bearing planes is.

d = {U1, α1, U2, α2}T (20)

The optimization problem can hence be formulated as

min E =
8
∑

i=1
||fT(d)−fm(d) ||

subject to

U1 ≤ 1.2U1( latest one)

U2 ≤ 1.2U2( latest one)

α1 ∈ [αL
1 , αR

1 ]

α2 ∈ [αL
2 , αR

2 ]

(21)

U1, U2 are then calculated as the sum total unbalance acting at bearing locations 1 and
2 respectively and α1, α2 is their corresponding phase angles. An optimization problem
was created to determine the bearing parameters C and K for the system as shown in
Equation (21). Note that the constraint of unbalance quantities U1 and U2 less than 20%
increment of the latest ones is deliberately set up for computational efficiency, because
unbalance deterioration hardly exceeds 20% over one-day operation unless a sudden brake
down occurs. The boundaries for phase angles are calculated according to the measured
vibrations and details can be referred to [34].

Equation (21) is then solved for unbalances at two bearing planes d by the particle
swam optimization (PSO) [35]. The PSO method was found to give the most robust and
fast results when compared to five other optimization methods. As long as d is identified,
the unbalances can be configured into the so-called static (Ug, αg) and dynamic (Ud, αd)
unbalance, which respectively denote the offset of gravity center and the angle of principal
rotary inertia axis away off the rotation axis. More detailed analysis on the methodology
can be referred to [34]. In this paper, a physics-based model is built based on mathematical
derivations and parameter identification by PSO, the model was further validated using
real data from the industry.

A rotor’s balance would gradually deteriorate with time with load acting on it and
its continuous operation [36]. Both static and dynamic unbalance forces will keep on
increasing. A continuous monitoring approach can then be applied to collect the data and
calculate the unbalances to determine the trend for prognosis.

3. Forecasting Methods

In this paper, we propose various classical and non-classical/machine learning-based
forecasting methods that can be employed further in combination with our mathematical
model to establish a real-time unbalance prognosis system, which would be helpful in
determining the maintenance strategy of the rotor system. Assesment of the onset of
fault, is one of the imporant aspects of PHM and efficient condition monitoring of the
overall system. After the identification of fault, understanding its trend from past data and
prediction of failure in the future, also has significant consequence. Given below are the
brief descriptions of all the methods that have been used.
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3.1. Classical/Statistical Methods
3.1.1. Simple Exponential Smoothing (SES)

This is one of the oldest and simplest statistical forecasting technique which has been
in use for a long time, the reason being the calculations are easier and gives a relatively
good result in no time [37]. In this type of forecasting method, weights are assigned on
past value which decreases exponentially over time. The equation describing this method
is given below,

ft = αdt−1 + (1− α) ft−1 (22)

where the value of α varies from 0 to 1. ft is the forecast value for time t and ft−1 is the
forecast value for time t − 1.

3.1.2. Auto Regressive Integrated Moving Average (ARIMA)

In real life, datasets are mostly non-stationary in nature and in order to forecast using
ARIMA model, it is first required to make them stationary. ARIMA model [38] is an
extension of ARMA model wherin there is an additional integration step which is achieved
by differencing the time-series. Differencing refers to subtracting the previous value from
the current value. ARIMA model is based on its own lags and lagged forecast errors, so that
its equation can be used to forecast future values, given if the time series is stationary. Since
ARIMA modeling deals with a stationary time series, if the time series is not stationary,
they are made stationary first with help of differencing. ARIMA Model Equation can be
described as,

Yt = α + β1Yt−1 + β2Yt−2 + . . . + βpYt−pεt + ϕ1εt−1 + ϕ2εt−2 + . . . + ϕqεt−q (23)

where Yt−p represents the lags of series and βp is the coefficient of lag, α is the intercept
term, ε is the error of autoregressive models of the respective lags and ϕq is the coefficient
of errors.

Predict Yt = Constant + Linear combination Lags of Y (up to p lags) + Linear Combination of Lagged forecast errors (up to q lags).

3.2. Machine Learning Methods
3.2.1. Support Vector Regression (SVR)

To solve non-linear regression problem, inputs are non-linearly mapped into a high
dimensional feature space where the outputs are related linearly, given by,

y = f (x) = w · ϕ(x) + b (24)

Here y is the model output corresponding to input x which is mapped into feature
space by a non-linear function w · ϕ(x), where w is the weight vector and ϕ(x) is the
mapping function in the feature space. The regression problem for this, can be expressed as
the following optimization problem given by,

min
w,ε,εi

1
2 w2 + C∑l

i=1 (ξi + ξ∗i )

Subject to :

yi − (w · xi + b) ≤ ε + ξi

(w.xi + b)− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0, i = 1, 2, . . . , l

(25)

For a more detailed explanation of mathematical formulations in SVR can be referred
to from the article [39].
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3.2.2. Long Short-Term Memory (LSTM)

LSTM is an advancement to recurrent neural networks (RNN) where it addresses
the problem of vanishing gradient and is able to remember long term dependencies of
data, initially proposed by Sepp Hochreiter and Jurgen Schmidhuber in 1997 [40]. LSTM
generally consists of memory cells which are handled by three special gates, input gate,
output gate and forget gate. LSTM is found to be useful when building sequence to
sequence architectures [41].

For a time series network at time t, if xt is the input data for LSTM cell, ht−1 is the
output of previous cell, ct is the memory value of current memory cell, ct−1 is the memory
value of previous memory cell and ot is the output of LSTM cell, then the calculations are
given by following equations,

ct = tanh(wc[ht−1, xt] + bc) (26)

it = σ(wi[ht−1, xt] + bi) (27)

ft = σ(w f [ht−1, xt] + b f ) (28)

ct = ft ∗ ct−1 + it ∗ ct (29)

ot = σ(wo[ht−1, xt] + bo) (30)

ht = ot ∗ tanh(ct) (31)

where wi, wc, w f , wo are the weights, it, ft and ot represents input gate, forget gate and
output gate respectively. tanh and σ(sigmoid) are the two activation functions used for
calculations in a simple LSTM cell. Figure 2 shows a unit cell representation of LSTM
network with various gates.
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4. Proposed Prognosis Methodology Framework

As technology advances with Industry 4.0, there has been a need of establishing sys-
tems with early fault detection and failure prognosis. The main reason for prognostics
system generally is to determine or predict with accuracy the exact time when the compo-
nent will fail, i.e., determining its RUL. However, in the case of unbalance prognosis of a
rotor bearing system, for example the model given in Figure 1, it is difficult to determine
the RUL due to unbalance itself, as the turbine shaft will not normally fail only due to
the unbalance forces; even though it may lead to secondary faults as well as increase the
vibration of the system and reducing overall system efficiency. Thus, normally no sufficient
historical data exists for failure due to unbalance, hence, it becomes absolutely necessary
to balance the rotary system from time-to-time for safe, reliable and efficient operation of
the system. If we can evaluate the trend of unbalance and determine the time or threshold
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limit when the balancing has to be done, then the overall system can perform efficiently
and more reliably as well as it can prove to be more significant for the industry.

As we know, balancing of a rotating system improves its service life, makes the
system more efficient with reliable operation, aids in smooth running and reduces overall
vibration and unwanted noise in the system. Hence, it becomes essential to continuously
monitor the unbalance in the system and check for its trend analysis. So, our objective
is to evaluate a good prognostic approach with the aid of monitoring, which can give
month ahead predictions of unbalance with acceptable accuracy, so that further balancing-
based maintenance steps can be taken according to the forecast analysis. The proposed
methodology employed is described in Figure 3.
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The main steps to employed in our prognostic approach are described as follows,
Step 1: Data Acquisition: Sensors are employed for the collection of data from the

bearing locations of the system during its operation.
Step 2: Model-Based Unbalance Calculation: The static and dynamic unbalances are

calculated from the derived mathematical model methodology as stated above in Section 2
and can refer further in details in paper [34]. The unbalance dataset (Ug, αg, Ud, and αd)
evaluated from the model-based calculations consists of 489 days of data which varies with
respect to time. This data is considered raw data for further processing of trend analysis.

Step 3: Data Preprocessing: The raw data generated is processed by moving an
average filter over it to remove the noise and smoothen the data. The smoothening of data
is done using the function “smooth” (MATLAB Curve Fitting Toolbox, function “smooth”
with “rlowess” which is a robust linear regression function over a specified window).
A window of 15 is used in this case for smoothening. Figure 4 describes the plots of
smoothened dataset evaluated from raw static and dynamic unbalance (Ug, αg, Ud, and αd)
datasets, calculated from Equation (21). The curves in Figure 4 look jagged due to some
factors, such as loading fluctuations in operation, noises in measurement etc., but mostly the
fluctuations caused by shaft torsional vibration, which has not been considered in bending
vibration analysis. Torsional vibration will affect the key-phasor timing and subsequently
result in variations of vibration measurements. These factors, however, do not influence
the unbalance in a sense of long-term running. In order to prevent convergence issues and
eliminate the effect of different scales, input and output variables were then normalized.
At each run, the mean and standard deviation of the training set were calculated, and
normalized data was fed to the models for evaluation. Equation (32) shows the equation
for normalization where X is the input and Xt is the normalized output. µ and σ are mean
and standard deaviation respectively.

Xt =
(X− µ)

σ
(32)

Step 4: Models’ Hyperparameters Selection: There are several parameters in each
model that were varied to arrive at the best model parameter for each case. The proposed
framework is modeled in MATLAB software. The description of different hyperparameters
varied in all the models is shown in Table 1.
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Table 1. Hyperparameters taken into consideration for different models.

Model Hyperparameters Values

ES Smoothing Parameter [0.1, 0.2, . . . , 0.9]

ARIMA (p, d, q) D = 0, 1, and p, q = 0, 1, 2, 3

SVR
ε 0.1111

Kernel gaussian
n-fold cross validation 10

LSTM

Hidden units 10
Epochs 200

Dropout 0.2
Optimizer Adam

Initial Learn Rate 0.005
Mini-Batch Size 128

Learn Rate Drop Factor 0.1
L2 Regularization factor 0.0001

Gradient decay factor 0.1
Gradient threshold 1

The smoothing parameter in ES method is varied from 0.1 to 0.9, to determine which
one performs better for the given dataset.

The variables for ARIMA, i.e., p, d, q were also varied for evaluation. For modeling
of ARIMA, the MATLAB function arima is used with gaussian conditional probability
distribution.

For SVR modeling, MATLAB function fitrsvm is used with the gaussian kernel function
to optimize the SVR. A ten-fold cross-validation is performed to remove overfitting in
the model.

Hyperparameter tuning in LSTM: Figure 5 shows the different layer structures in
developing LSTM forecasting model. The LSTM model is sequence to sequence structure,
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where preprocessed data after normalizing is used as a sequential input, LSTM layer
with hidden units of 10 is used to map the output and a dropout probability of 0.01 is
used to avoid overfitting in the training, finally a fully connected layer, regression layer
is added to extract the output from the trained network. Adam optimizer is used since it
performed better than sgdm and rmsprop optimizer. The network was run for a maximum
of 200 epochs. To avoid the problem of gradient exploding, the gradient threshold is set to
1. The loss function in the regression layer is mean squared error, MSE, and training stops
when MSE is minimum. An L2 regularization factor of 0.0001 is added to the model. The
initial learning rate was set at 0.005.

Electronics 2023, 12, 312 12 of 25 
 

 

The variables for ARIMA, i.e., p, d, q were also varied for evaluation. For modeling 
of ARIMA, the MATLAB function arima is used with gaussian conditional probability 
distribution. 

For SVR modeling, MATLAB function fitrsvm is used with the gaussian kernel 
function to optimize the SVR. A ten-fold cross-validation is performed to remove 
overfitting in the model. 

Hyperparameter tuning in LSTM: Figure 5 shows the different layer structures in 
developing LSTM forecasting model. The LSTM model is sequence to sequence struc-
ture, where preprocessed data after normalizing is used as a sequential input, LSTM 
layer with hidden units of 10 is used to map the output and a dropout probability of 0.01 
is used to avoid overfitting in the training, finally a fully connected layer, regression lay-
er is added to extract the output from the trained network. Adam optimizer is used since 
it performed better than sgdm and rmsprop optimizer. The network was run for a max-
imum of 200 epochs. To avoid the problem of gradient exploding, the gradient threshold 
is set to 1. The loss function in the regression layer is mean squared error, MSE, and 
training stops when MSE is minimum. An L2 regularization factor of 0.0001 is added to 
the model. The initial learning rate was set at 0.005. 

 
Figure 5. Layer structure of LSTM model. 

Table 1. Hyperparameters taken into consideration for different models. 

Model Hyperparameters Values 
ES Smoothing Parameter [0.1, 0.2, …, 0.9] 

ARIMA (p, d, q) D = 0, 1, and p, q = 0, 1, 2, 3 

Figure 5. Layer structure of LSTM model.

Training architecture for machine learning models: the dataset is divided into two
XTrain and YTrain; in which XTrain ranges from start to end –− lag of time-series and
YTrain ranges from lag + 1 to end of time-series.

Step 5: Forecasting using the recursive method: Several forecasting methods were
employed to perform the forecasting analysis using a recursive strategy. Recursive strategy
refers to the estimation of the next day’s forecast given by the past values and then feeding
back the forecasted value for another day’s forecast. Both rolling and expanding window
were evaluated and we found expanding window to have better forecast results, so we
have used expanding window to develop our model. Thus, a p-step ahead forecast using
recursive strategy can be represented by Figure 6. In this figure, Xi represents data values
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at time i, shown in yellow color and blue color block is the model which is used to forecast
day ahead values.
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Step 6: Numerical Evaluation: To validate our forecasting model, we also need to
check for its accuracy which will further determine whether our model can be effectively
used for a real-world scenario with precision or not. For this reason, we have used root
mean square error for our evaluation.

Root mean squared error (RMSE): RMSE is one the most popular performance measure-
ment techniques commonly employed to check the error between predicted and original
values. The RMSE error can be defined by the following mathematical expression,

RMSE =

√
1
n∑n

i=1 (y
obs
i − ypred

i )
2

(33)

where, yobs
i is the current observation and ypred

i is the forecasted value from model. This
RMSE is used at last after the entire prognostic model is built for comparision about which
model will perform better under different training criterion, to better evaluate the real
industrial situation.

5. Results and Discussions

We have derived four different time-series datasets for our prognostic framework
evaluation namely, Ug, αg, Ud, and αd utilizing the sensor’s data and mathematical model
which span over 489 days. Here, the g subscript refers to static unbalance acting at its center
of gravity, while the d subscript refers to dynamic unbalance acting at its center of gravity.
The datasets are univariate time series i.e., they vary with time and are extracted from a
local factory recorded in the year 2020 to 2021 out of the company’s database.

For establishing a forecasting problem and training the dataset in real-time, we first
selected to train an initial window of certain days of data and continuously forecasting
30 days at a time and expanding the training set simultaneously i.e., expanding window
method, or moving the training set with a fixed window i.e., sliding window method and
forecasting 30 days again while tuning the different model parameters to achieve as much
accuracy as possible. Finally, evaluating with different forecast modeling methodologies
to check which works best for the rotating system dataset extracted from the industry.
Figure 7 illustrates the different approaches where training is the input time series, and the
test is the forecast computed from the training set.
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We chose 30 days to make monthly ahead unbalance predictions as it might be more
useful for consideration in the future for predictive maintenance purposes.

Datasets used: unbalance values from the calculations are,
Ug (static unbalance)—489 days of data,
αg (phase angle of Ug)—489 days of data,
Ud (dynamic unbalance)—489 days of data,
αd (phase angle of Ud)—489 days of data.
Different forecasting models are built to address the forecasting problem. All the

methods were modeled with the help of MATLAB R2022a programmed on an intel core
i7-8700 CPU (3.1GHz), 16 GB RAM, NVIDIA GeForce GTX1650 GPU Computer.

For the selection of exponential smoothing parameter in the simple exponential model,
it is varied from 0 to 1 and the one with least RMSE is selected for modeling. Figure 8 shows
the variation of RMSE on Ug when smoothing parameter, α is varied. From this figure, we
can observe that at smoothing parameter 0.1 gives the least RMSE value for exponential
smoothing model.
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For the selection of the ARIMA model, autocorrelation function (ACF) and partial
autocorrelation function (PACF) figures of the original time series are evaluated for the
stationarity of our time-series data. Autocorrelation refers to the degree of correlation the
time series has with the lagged version of itself over subsequent time intervals. The lag
values help to understand which lag has a more significant correlation in a time series,
which in turn helps in determining the more fitting model parameters. PACF on the other
hand, gives partial correlation with its own lagged values and regressively controls the
value of shorter lags. Figures 9 and 10 show the original ACF and PACF curves of time-
series data. From Figure 9, we have found that there is a slight trend in the data, also
to confirm that the series is not stationary, augmented dickey fuller (ADF) test is carried
out. ADF test is a kind of unit root test, in which if there is no root then the time-series is
stationary otherwise it is non-stationary. The ADF test result justifies that the time series is
not stationary, since the p-value of ADF test for d = 0, for unbalance datasets (Ug, αg, Ud, αd)
is less than 0.05. To make the time-series stationary, data is transformed using first-order
regular differencing of the series. After the transformation, it is checked for stationarity
again using the ADF test and it showed the p-value more than 0.05 which means time series
is now stationary. Table 2 shows the ADF test values. Figures 11 and 12, show ACF and
PACF curves of differenced time series. From the Figure 11, upto lag 5 is more significant,
whereas in Figure 12 upto lag 4 is significant. To calculate for p, q parameters and reduce
the comprexity of modeling, we chose lags 1, 2, 3, to check for the best p, q values. Since, the
first-order difference of the time series is established, to choose the best p and q parameter
of ARIMA (p, d, q) modeling, akaike information criterion (AIC), bayesian information
criterion (BIC) values are calculated for different combinations as represented in Table 3.
AIC is used to measure the model for analytical fitting whereas BIC is used to prevent the
model for becoming too complex. The expressions of AIC, BIC are described below,

AIC = −2 log(maximumlikelihood) + 2k (34)

BIC = −2 log(maximumlikelihood) +
k log n

n
(35)

where k is independently adjusted number of parmeters and n is number of data points.
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Table 2. ADF test results.

Time–Series p Value Result

Ug (d = 0) 0.6235 Not Stationary

Ug (d = 1) 0.001 Stationary

Ud (d = 0) 0.4042 Not Stationary

Ud (d = 1) 0.001 Stationary

αg (d = 0) 0.9648 Not Stationary

αg (d = 1) 0.001 Stationary

αd (d = 0) 0.8474 Not Stationary

αd (d = 1) 0.001 Stationary

Table 3. AIC, BIC values of different ARIMA models.

Arima Models AIC BIC

ARIMA (2,1,1) 1668.5 1671.2

ARIMA (2,1,2) 1641.4 1644.1

ARIMA (2,1,3) 1638.2 1640.8

ARIMA (3,1,2) 1638.6 1641

ARIMA (3,1,3) 1636.4 1638.8
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The lowest criteria value of AIC, BIC generally corresponds to the best ARIMA fit
model. Since, AIC, BIC value of ARIMA (3,1,3) is found to be the lowest, so it was selected
as the forecasting model for the given dataset.

Similarly, for the selection of LSTM model several variations of hidden sizes, number
of layers, dropout layer probabilities, epoch numbers are tried using trial and error to
establish a perfectly suiting forecast method. RMSE is selected as the performance criteria
to choose the best model out of others. Figure 13 shows the training performance curve
of LSTM, it shows that the LSTM converges after a suitable number of iterations with less
loss. Hence, the LSTM model is fit to make future predictions.

After the selection of various models, the initial window length of training is varied
both for sliding window and expanding window methodologies, to understand the effect
of windowing for training in the forecasting trend analysis as well as perform the real-time
trend analysis and it was evaluated using the least RMSE criterion. It is observed that
expanding window gives less RMSE values in all the models. This could be due to the
fact that our data is initially less, and it needs more data for better future predictions.
Figures 14 and 15 show the effect of windowing in the overall RMSE values both for sliding
and expanding windows of the respective models. The windowing does not affect the
simple exponential smoothing method because the forecast value in this directly depends
on single past value. In both the figures, red line has been used for ARIMA with asterisk
symbol at different windows, blue line is for SVR with circle symbol, yellow line LSTM
with plus symbol, purple line is for ES with square symbol respectively. From the figure,
it can be seen that most of the time, ARIMA performs better in forecasting performance
according to root mean square error (RMSE) evaluation.
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Figure 16a–d shows the overall variations of different models forecasting unbalance
trend predictions between the real and ES, ARIMA, SVR, and LSTM models. The red line
corresponds to the real values whereas ES model is shown by grey dotted, ARIMA model
with green, SVR model with orange dashed and LSTM model with a blue line. Note that,
the curves here are different model’s 30 days ahead moving forecast values using expanding
window method and considering the initial window length of 200. The training data starts
at 200 and keeps on increasing as it moves forward by taking the 30 days original data as the
data becomes available. The overall comparison of model performances in terms of RMSE
is shown in Table 4. From the figures and table, it is clear that ARIMA model gives best
prediction. Even though ARIMA is a simple model, it generally gives a good performance in
many scenarios where complex machine learning based systems fail to give good prediction
due to highly non-linear data structure. However, it is always reasonable to construct
machine learning models which have the capability to study non-linear relationships of
a model parameters and perform reasonably well in the long run and evaluate long time
dependencies on itself. In Table 4, the overall RMSE evaluation with sliding and expanding
windows of different models is represented, here the red color represents the lowest RMSE
values. However, in our observation, SVR also gives satisfactory results and is the second
best model. Although LSTM is recently a popular machine learning forecasting tool, yet
the LSTM results highly depend on good hyperparameter tuning and availability of larger
dataset to learn the long term dependencies. Since there is no set rule to determine the best
parameter setting for any dataset, a lot of times, trial and error or optimization algorithms
are utilized to determine those parameters. Even though, we have used several different
parameter combinations to find the most suitable LSTM forecasting model for determining
our prognostic model system, there is still a probability of finding a better machine learning
model for predictions since it has the capability to learn non-linear relationships of a
trend very well. Figure 17 shows the monthly-ahead forecasts using ARIMA methodology
and expanding window. An initial window of 200 days is selected for training and the
window keeps expanding by 30 days data with every month as time progresses. This
prognostic methodology can be utilized for further setting up of a threshold limit with the
help of continuous monitoring using this strategy to evaluate the necessary maintenance
based actions.
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Table 4. Overall RMSE performance comparison on different models (red color represents the
best value).

Window ES ARIMA SVR LSTM

Ug Sliding 44.8961 38.5293 39.5695 43.4528
Expanding 44.8961 37.8010 37.7116 38.3049

αg Sliding 25.1188 24.3614 29.3558 26.3688
Expanding 25.1188 22.0240 28.4961 26.5326

Ud Sliding 20.6870 16.4772 18.9522 20.3374
Expanding 20.6870 14.5949 17.7584 20.5

αd Sliding 2.7578 2.386 3.2505 3.05
Expanding 2.7578 2.3345 2.8 3.137

6. Conclusions

The accuracy of future predictions can significantly impact the overall decision-making
of maintenance-based actions. For this, many state-of-the-art forecasting models based on
statistical methods, or machine learning can play a pivotal role in analyzing real-time data



Electronics 2023, 12, 312 22 of 24

and estimating future failure from the obtained data. In this research, we have successfully
established a methodology to solve a forecasting problem that can benefit the industrial
sector by monitoring the health conditions of the rotor-bearing system.

To achieve this, we have developed a prognostic approach for identifying the de-
velopment of unbalance forces in the system with the aid of forecasting models such as
ARIMA, ES, SVR, and LSTM, etc., and compared them to see what best fits our system
with time-varying data. After that, we also developed our multi-step ahead forecasting
algorithm that can update itself in real-time and give future predictions of unbalance with
an acceptable range of prediction horizons. From all the observations we found that the
ARIMA model with gaussian error performs very well to solve our problem of a prognostic
framework, however SVR—a machine learning model—also gave a satisfactory perfor-
mance. Furthermore, we tested the promising LSTM methodology which highly depends
on the good tuning of hyperparameters and larger datasets, thus increasing model com-
plexity. Even though in our present case, it didn’t provide satisfactory results; tuning the
hyperparameters properly or combining the model with other methodologies may provide
better forecasting results. The main purpose of this research is to propose a methodology
for a prognostic framework of unbalance based on model-based and statistical/machine
learning methodologies and compare the different methodologies to derive a real-time
framework which can help in evaluating future fault trend in the system with the least
RMSE values. Even though, our main conclusion is that ARIMA is the best methodology
for the present case, which is a rotor-bearing system, it might not be so for every case as the
dataset can be different on a different system or different kind of fault trend evaluation. We
would like to contemplate more in detail about this in the future.

Also, better tuning of parameters and combinations of models can be explored to
extract a better prediction model. Further modifications can be made to the modeling to
make the predictions better. One of the main interests in the development of this prognostic
system is to aid the decision-making process for effective and reliable maintenance in a
rotary system by conducting necessary balancing of the system after it achieves a threshold
for more efficient operation of the overall system with less downtime. The model developed
can be used in the future to determine the timeline when the balancing of the rotor must
be done for a smooth operation of the overall system as well as what implications do
unbalance forces hold in the overall fault diagnosis. With the availability of failure data,
more accurate evaluations for scheduling time for rotor balancing can be established and
that is also a motivation for future research direction.
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