Optimization of DevOps Transformation for Cloud-Based Applications
Abstract
:1. Introduction
2. Background and Related Work
2.1. Background
2.2. Available Tools and Related Work
2.3. Version Control with Git
2.4. Create Container Using Docker
2.5. Use Jenkins for Continuous Integration
2.6. Create Cloud Using AWS
2.7. Continuous Monitoring
3. Materials and Methods
Algorithm 1. Optimizing objectives |
begin: function setApplication(objectives) set i = 1 set itr = 0 while(itr ≤ 500) for(i = 1; i ≤ maximum) function generatePlansRandom() end end #end while loop for (i = 1; 500) function determineFitness(value_cost, CPU_no, memory, user_node_distance, inter_node_distance) #determine fitness of each individual function tournamentSelection(value_cost, CPU_no, memory, user_node_distance, inter_node_distance) #select individual based on tournament selection function inheritenceMutationCrossover() #perform inheritance, mutation and crossover on selected individuals end #end for loop function bestDeploymentProcedure() #choose the fitness individual with best deployment procedure function generatePlan(best_Individual) #generate best deployment plan end #end code |
4. Results
Design Algorithm Solution Based on Individual
5. Summary, Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leite, L.; Rocha, C.; Kon, F.; Milojicic, D.; Meirelles, P. A Survey of DevOps Concepts and Challenges. ACM Comput. Surv. 2019, 52, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Jambunathan, B.; Kalpana, Y. Design of devops solution for managing multi cloud distributed environment. Int. J. Eng. Technol. 2018, 7, 637–641. [Google Scholar] [CrossRef]
- Rafi, S.; Yu, W.; Akbar, M.A. RMDevOps: A road map for improvement in DevOps activities in context of software organi-zations. In Proceedings of the Evaluation and Assessment in Software Engineering, Trondheim, Norway, 15–17 April 2020; pp. 413–418. [Google Scholar]
- Zarour, M.; Alhammad, N.; Alenezi, M.; Alsarayrah, K. Devops Process Model Adoption in Saudi Arabia: An Empirical Study. Jordanian J. Comput. Inf. Technol. 2020, 6, 3. [Google Scholar] [CrossRef]
- Akbar, M.A.; Rafi, S.; Alsanad, A.A.; Qadri, S.F.; Alsanad, A.; Alothaim, A. Toward Successful DevOps: A Decision-Making Framework. IEEE Access 2022, 10, 51343–51362. [Google Scholar] [CrossRef]
- Ellen, L.; Riungu-Kalliosaari, L.; Mäkinen, S.; Lwakatare, L.E.; Tiihonen, J.; Männistö, T. DevOps Adoption Benefits and Challenges in Practice: A Case Study; Springer: Berlin/Heidelberg, Germany, 2016; pp. 590–597. [Google Scholar] [CrossRef] [Green Version]
- Cois, C.A.; Yankel, J.; Connell, A. Modern DevOps: Optimizing software development through effective system interactions. In Proceedings of the 2014 IEEE International Professional Communication conference (IPCC), Pittsburgh, PA, USA, 13–15 October 2014. [Google Scholar]
- Soni, M. End to End Automation on Cloud with Build Pipeline: The Case for DevOps in Insurance Industry, Continuous In-tegration, Continuous Testing, and Continuous Delivery. In Proceedings of the 2015 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), Bangalore, India, 25–27 November 2015; pp. 85–89. [Google Scholar] [CrossRef]
- Barna, C.; Khazaei, H.; Fokaefs, M.; Litoiu, M. Delivering elastic containerized cloud applications to enable DevOps. In Proceedings of the 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), Buenos Aires, Argentina, 22–23 May 2017; pp. 65–75. [Google Scholar] [CrossRef]
- Guerriero, M.; Ciavotta, M.; Gibilisco, G.P.; Ardagna, D. SPACE4 Cloud: A DevOps Environment for Multi-cloud Applications. Short-Pap. In Proceedings of the 1st International Workshop on Quality-Aware DevOps, Bergamo, Italy, 28 May 2015; pp. 29–30. [Google Scholar]
- Kang, H.; Yoonhee, J.K.; Rahm, J. A SLA Driven VM Auto-Scaling Method in Hybrid Cloud Environment. In Proceedings of the 2013 15th Asia-Pacific Network Operations and Management Symposium (APNOMS), Hiroshima, Japan, 25–27 September 2013; pp. 25–30. [Google Scholar]
- Li, Y.; Xia, Y. Auto-scaling web applications in hybrid cloud based on docker. In Proceedings of the 2016 5th International Conference on Computer Science and Network Technology (ICCSNT), Changchun, China, 10–11 December 2016; pp. 75–79. [Google Scholar] [CrossRef]
- Mor´n, D.; Vaquero, L.M.; Gal´n, F.; Moran, D.; Galán, F. Elastically Ruling the Cloud: Specifying Application’s Behavior in Federated Clouds. In Proceedings of the IEEE 4th International Conference on Cloud Computing, Washington, DC, USA, 4–9 July 2011; pp. 89–96. [Google Scholar] [CrossRef]
- Ghari, S. Devops for digital business: Optimizing the performance and economic efficiency of software products for digital business. In Proceedings of the 17th Symposium on Software Engineering for Adaptive and Self-Managing Systems, Pittsburgh, PA, USA, 18–23 May 2022; pp. 53–57. [Google Scholar]
- Tsilionis, K.; Sassenus, S.; Wautelet, Y. Determining the Benefits and Drawbacks of Agile (Scrum) and DevOps in Addressing the Development Challenges of Cloud Applications. In Proceedings of the International Research & Innovation Forum, Athens, Greece, 15–17 April 2021; pp. 109–123. [Google Scholar]
- Akbar, M.A.; Smolander, K.; Mahmood, S.; Alsanad, A. Toward successful DevSecOps in software development organizations: A decision-making framework. Inf. Softw. Technol. 2022, 147, 106894. [Google Scholar] [CrossRef]
- Jaatun, M.G.; Cruzes, D.S.; Luna, J. DevOps for Better Software Security in the Cloud Invited Paper. In Proceedings of the 12th International Conference on Availability, Reliability and Security, Reggio Calabria, Italy, 28 August–1 September 2017; p. 69. [Google Scholar] [CrossRef]
- Almeida, F.; Simões, J.; Lopes, S. Exploring the Benefits of Combining DevOps and Agile. Futur. Internet 2022, 14, 63. [Google Scholar] [CrossRef]
- Arulkumar, V.; Lathamanju, R. Start to Finish Automation Achieve on Cloud with Build Channel: By DevOps Method. Procedia Comput. Sci. 2019, 165, 399–405. [Google Scholar] [CrossRef]
- Ferry, N.; Chauvel, F.; Song, H.; Rossini, A.; Lushpenko, M.; Solberg, A. CloudMF. ACM Trans. Internet Technol. 2018, 18, 1–24. [Google Scholar] [CrossRef]
- Wettinger, J.; Breitenbücher, U.; Kopp, O.; Leymann, F. Streamlining DevOps automation for Cloud applications using TOSCA as standardized metamodel. Futur. Gener. Comput. Syst. 2016, 56, 317–332. [Google Scholar] [CrossRef]
- Shin, Y.; Williams, L. Can traditional fault prediction models be used for vulnerability prediction? Empir. Softw. Eng. 2011, 18, 25–59. [Google Scholar] [CrossRef]
- Blohowiak, A.; Basiri, A.; Hochstein, L.; Rosenthal, C. A Platform for Automating Chaos Experiments. In Proceedings of the IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Ottawa, ON, Canada, 23–27 October 2016; pp. 5–8. [Google Scholar] [CrossRef] [Green Version]
- Akbar, M.A.; Mahmood, S.; Shafiq, M.; Alsanad, A.; Alsanad, A.A.A.; Gumaei, A. Identification and prioritization of DevOps success factors using fuzzy-AHP approach. Soft Comput. 2020. [Google Scholar] [CrossRef]
- Rafi, S.; Akbar, M.A.; Manzoor, A. DevOps Business Model: Work from Home Environment. In Proceedings of the International Conference on Evaluation and Assessment in Software Engineering, Gothenburg, Sweden, 13 June 2022; pp. 408–412. [Google Scholar]
- Venkateswaran, S.; Santonu, S. Architectural partitioning and deployment modeling on hybrid clouds. Softw. Pract. Exp. 2018, 48, 345–365. [Google Scholar] [CrossRef]
- Singh, V.; Peddoju, S.K. Container-based microservice architecture for cloud applications. In Proceedings of the 2017 Interna-tional Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, 5–6 May 2017; pp. 847–852. [Google Scholar] [CrossRef]
- Ghimire, R. Deploying Software in the Cloud with CI / CD Pipelines. 2020. Available online: https://www.theseus.fi/bitstream/handle/10024/345618/Thesis_Ramesh_Ghimire_1.pdf?sequence=2 (accessed on 27 October 2022).
- AWS- Amazon Web Services, Amazon CloudWatch Developer Guide API Version 2010-08-01 Amazon CloudWatch: Developer Guide. 2010. Available online: https://s3.cn-north-1.amazonaws.com.cn/aws-dam-prod/china/pdf/acw-dg.pdf (accessed on 27 October 2022).
- Knott, M. Version Control with Git; O’Reilly Media: Sebastopol, CA, USA, 2014. [Google Scholar]
- Sullivan, B.O. Mercurial: The Definitive Guide Compiled from c3863298abc7. Available online: http://btn1x4.inf.uni-bayreuth.de/publications/dotor_buchmann/SCM/Mercurial/O%27Sullivan2009%20-%20Mercurial%20The%20defintive%20guide.pdf (accessed on 27 October 2022).
- Jakkula, V. Tutorial on Support Vector Machine (SVM). 2011. Available online: http://www.ccs.neu.edu/course/cs5100f11/resources/jakkula.pdf (accessed on 27 October 2022).
- Uphill, T.; Arundel, J.; Khare, N.; Saito, H.; Lee, H.C.C.; Hsu, K.J.C. DevOps: Puppet, Docker, and Kubernetes; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Jaramillo, D.; Nguyen, D.V.; Smart, R. Leveraging microservices architecture by using Docker technology. In Proceedings of the SoutheastCon 2016, Norfolk, VA, USA, 30 March–3 April 2016. [Google Scholar] [CrossRef]
- Bowes, J. Jenkins Continuous Build System Executive summary. 2012. Available online: https://docplayer.net/5686123-Jenkins-continuous-build-system-jesse-bowes-csci-5828-spring-2012.html (accessed on 27 October 2022).
- Li, Z.; Zhang, Y.; Liu, Y. Towards a Full-Stack DevOps Environment (Platform-as-a-Service) for Cloud-Hosted Applications. Tsinghua Sci. Technol. 2017, 22, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shiwani, S. Performance Analysis of IPv4 v / s IPv6 in Virtual Environment Using UBUNTU. In Proceedings of the Interna-tional Conference on Computer Communication and Networks, Valencia, Spain, 9–13 May 2011; pp. 72–76. [Google Scholar]
- Portnoy, J. Systems Monitoring with Prometheus and Grafana. Available online: https://flightaware.engineering/systems-monitoring-with-prometheus-grafana/ (accessed on 27 October 2022).
- Beaver, D.; Hutchison, S. Elasticsearch, Logstash, and Kibana (ELK). 2015. Available online: https://resources.sei.cmu.edu/asset_files/presentation/2015_017_001_431205.pdf (accessed on 27 October 2022).
- Padmanaban, S.; Khalili, M.; Nasab, M.A.; Zand, M.; Shamim, A.G.; Khan, B. Determination of Power Trans-formers Health Index Using Parameters Affecting the Transformer’s Life. IETE J. Res. 2022. [Google Scholar] [CrossRef]
- Aryal, R.G.; Altmann, J. Dynamic application deployment in federations of clouds and edge resources using a multiobjective optimization AI algorithm. In Proceedings of the 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC), Barcelona, Spain, 23–26 April 2018; pp. 147–154. [Google Scholar] [CrossRef]
ANOVA Table for Total Capacity | ||||||
---|---|---|---|---|---|---|
Df | Sum Sq | Mean Sq | F Value | Pr (>F) | ||
Cloud | 2 | 1,040,000 | 520,000 | 3.90 × 10+30 | <2 × 10−16 | *** |
Time | 12 | 0 | 0 | 1.00 × 10+00 | 0.478 | |
Residuals | 24 | 0 | 0 |
ANOVA Table for Used Space | ||||||
---|---|---|---|---|---|---|
Df | Sum Sq | Mean Sq | F Value | Pr (>F) | ||
Cloud | 2 | 397,492 | 198,746 | 5.13 × 10+01 | 2.17 × 10−09 | *** |
Time | 12 | 1,123,159 | 93,597 | 2.41 × 10+01 | 1.72 × 10−10 | *** |
Residuals | 24 | 93,041 | 3877 |
ANOVA Table for Instance Utilized Data | ||||||
---|---|---|---|---|---|---|
Df | Sum Sq | Mean Sq | F Value | Pr (>F) | ||
Cloud | 2 | 6292 | 3146 | 5.46 × 10+00 | 0.0111 | * |
Time | 12 | 470,574 | 39,215 | 6.80 × 10+01 | 1.6 × 10−15 | *** |
Residuals | 24 | 13,841 | 577 |
ANOVA Table for Instance Lang. UUID | ||||||
---|---|---|---|---|---|---|
Df | Sum Sq | Mean Sq | F Value | Pr (>F) | ||
Cloud | 2 | 565 | 283 | 5.89 × 10+00 | 0.00828 | ** |
Time | 12 | 154,506 | 12,876 | 2.68 × 10+02 | <2 × 10−16 | *** |
Residuals | 24 | 1151 | 48 |
ANOVA Table for Cost | ||||||
---|---|---|---|---|---|---|
Df | Sum Sq | Mean Sq | F Value | Pr (>F) | ||
Cloud | 2 | 1128 | 564 | 83.186 | 4.22 × 10−05 | *** |
Virtual Machine | 3 | 168.3 | 56.1 | 8.274 | 0.0149 | * |
Residuals | 6 | 40.7 | 6.8 |
ANOVA Table for Distance | ||||||
---|---|---|---|---|---|---|
Df | Sum Sq | Mean Sq | F Value | Pr (>F) | ||
Cloud | 2 | 779.4 | 389.7 | 1.16 × 10+02 | 4.57 × 10−13 | *** |
Time | 12 | 145.4 | 12.1 | 3.61 × 10+00 | 0.0036 | ** |
Residuals | 24 | 80.6 | 3.4 |
ANOVA Table for Memory | ||||||
---|---|---|---|---|---|---|
Df | Sum Sq | Mean Sq | F Value | Pr (>F) | ||
Cloud | 2 | 2243.9 | 1121.9 | 227.3 | 2.21 × 10−06 | *** |
Virtual Machine | 3 | 290.3 | 96.8 | 19.6 | 0.00168 | ** |
Residuals | 6 | 29.6 | 4.9 |
Optimization Parameters | Weights | ||
---|---|---|---|
Zero (0.0) | Equal (0.2) | Full (1.0) | |
Cost | 16.10 | 13.34 | 5.92 |
CPU | 8.43 | 10.75 | 11.99 |
Memory (GB) | 30.20 | 39.20 | 47.84 |
User-node distance(million) | 96.75 | 87.11 | 69.68 |
Inter-node distance | 14.85 | 18.41 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buttar, A.M.; Khalid, A.; Alenezi, M.; Akbar, M.A.; Rafi, S.; Gumaei, A.H.; Riaz, M.T. Optimization of DevOps Transformation for Cloud-Based Applications. Electronics 2023, 12, 357. https://doi.org/10.3390/electronics12020357
Buttar AM, Khalid A, Alenezi M, Akbar MA, Rafi S, Gumaei AH, Riaz MT. Optimization of DevOps Transformation for Cloud-Based Applications. Electronics. 2023; 12(2):357. https://doi.org/10.3390/electronics12020357
Chicago/Turabian StyleButtar, Ahmed Mateen, Adeel Khalid, Mamdouh Alenezi, Muhammad Azeem Akbar, Saima Rafi, Abdu H. Gumaei, and Muhammad Tanveer Riaz. 2023. "Optimization of DevOps Transformation for Cloud-Based Applications" Electronics 12, no. 2: 357. https://doi.org/10.3390/electronics12020357
APA StyleButtar, A. M., Khalid, A., Alenezi, M., Akbar, M. A., Rafi, S., Gumaei, A. H., & Riaz, M. T. (2023). Optimization of DevOps Transformation for Cloud-Based Applications. Electronics, 12(2), 357. https://doi.org/10.3390/electronics12020357