
Citation: Xie, G.; Yang, H.; Deng, H.;

Shi, Z.; Chen, G. Formal Verification

of Robot Rotary Kinematics.

Electronics 2023, 12, 369. https://

doi.org/10.3390/electronics12020369

Academic Editor: Janos Botzheim

Received: 20 November 2022

Revised: 30 December 2022

Accepted: 7 January 2023

Published: 11 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Formal Verification of Robot Rotary Kinematics
Guojun Xie 1 , Huanhuan Yang 2 , Hao Deng 1, Zhengpu Shi 1 and Gang Chen 1,*

1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 211106, China

2 College of Computer, National University of Defense Technology, Changsha 410073, China
* Correspondence: gangchensh@nuaa.edu.cn

Abstract: With the widespread application of robots in aerospace, medicine, automation, and other
fields, their motion safety is essential for the well-being of humans and the accomplishment of
vital socially beneficial programs. Conventional robot hardware and software designs mainly rely
on experiential knowledge and manual testing to ensure safety, but this fails to cover all possible
testing paths and adds risks. Alternatively, formal, mathematically rigorous verifications can provide
predictable and reliable guarantees of robot motion safety. To demonstrate the feasibility of this
approach, we formalize the mathematical coordinate transformation of a robot’s rigid-body kinemat-
ics using the Coq Proof Assistant to verify the correctness of its theoretical design. First, based on
record-type matrix formalization, we define and verify a robot’s spatial geometry by constructing
formal expressions of the matrix’ Frobenius norm, trace, and inner product. Second, we divide rotary
motion into revolution and rotation construct and provide their formal definitions. Next, we formally
verify the rotational matrices of angle conventions (e.g., roll–pitch–yaw and Euler), and we complete
the formal verification of the Rodriguez formula to formally verify the correctness of the motion
theory in specific rotating kinematics problems. The formal work of this paper has a variety of
essential applications and provides a generalizable kinematics analysis framework for robot control
system verification. Moreover, it paves the way for automatic programming capabilities.

Keywords: formal verification; Rodriguez formula; Coq Proof Assistant; robot rotary kinematics

1. Introduction

In recent years, robots have been adopted in many operational areas that require
high safety protocols (e.g., unmanned aerial vehicles (UAVs), surgery, and autonomous
driving). Hence, the reliability and safety of robot development have become topics of
considerable research interest [1]. Although most robots operate in structured environments
with extensive testing and parametric fail-safes, manual testing programs often do not
consider all high-risk scenarios, which compounds the risk of unforeseen mishaps. Formal
methods [2,3] are crucial for ensuring the reliable design and development of complex
robot systems, including their safety measures and fail-safes. Accordingly, our purpose in
this research is to introduce a formal method for robot safety verification.

Our focus is on the formal verification of robot rotary kinematics. As an application
of kinematic geometry, rotary kinematics [4] describes purely geometric problems (e.g.,
positions and orientations of robot motions). Thus, robot motion control [5] relies on
kinematic descriptions and can be validated mathematically. Our objective is to formally
verify the rotary problems of robot kinematics using the Coq Proof Assistant [6,7].

In a robot system, links and manipulators are considered rigid bodies; hence, vector-
matrix theory [8,9] can be used to establish a general description of their positions and
movements with respect to a global coordinate system, G. Robot manipulators can rotate
and move around each other. Thus, the various robot components’ rigid-body coordinate
systems (B1, B2, . . . , Bn) along each link are referred to in terms of the generalized local

Electronics 2023, 12, 369. https://doi.org/10.3390/electronics12020369 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12020369
https://doi.org/10.3390/electronics12020369
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3787-2983
https://doi.org/10.3390/electronics12020369
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12020369?type=check_update&version=1

Electronics 2023, 12, 369 2 of 23

coordinate system, B. Let G be the global coordinate system; BRG represents the transfor-
mation of vector r from G to B, and GRB represents the transformation of vector r from B to
G. Through BRG and GRB, we can globally define the positions between connecting rods
and between the rods and environment.

Formal verification relies on mathematical modeling and deductive reasoning, and it is
more rigorous and reliable than empirical and heuristic methods [10,11]. Thus, by formally
verifying robot rotary kinematics, we hope to ensure the safety of robot controls and their
algorithmic designs. In summary, we apply a formal mathematical method of proof to the
detection of “correctness” in robot rotary kinematics. The formal framework of robot rotary
kinematics is illustrated in Figure 1. First, based on Matrix formalization, we formally define
the matrix Frobenius norm, matrix trace, and matrix inner product, providing mathematical
formal support for the formal verification of robot rotary kinematics. Then, we divide
rotary motion into revolution and rotation, defining their formal representations. Based on
this, we perform the formal verification of some common rotary problems, including the
Euler angles and Rodriguez formula.

Figure 1. Formal framework of robot rotary kinematics.

Our contributions can be summarized as follows. First, we expand the formal matrix
library based on record type. Specifically, we add formal definitions and proofs of the
matrix Frobenius norm, trace, and inner product using a verifiable mathematical process.
We divide rotary motion into revolution and rotation, and formally verify the full system
coordinate transformation. Moreover, we construct a rotation matrix of angles, which
is conventionally used in engineering, to provide the formal definition and verification
of Euler angles. Furthermore, we provide the formal definition and verification of the
Rodriguez formula. Finally, we demonstrate the applicability of the proposed formal
method through case analyses of robot rotary motion problems and demonstrate how to
formally verify specific robot rotary problems.

The organization of the paper is as follows: In Section 2, we discuss related works. In
Section 3, matrix formalization and rotary kinematics are briefly reviewed. In Section 4,
formal spatial geometry verification methods are presented. In Section 5, we formally define
“revolution” and “rotation” and verify their pertinent properties. In Sections 6 and 7, we
formally verify Euler angles and the Rodriguez Formula, respectively. In Section 8, we
provide case analyses and verify the correctness of their rotary kinematics. Finally, in
Section 9, we conclude and discuss future efforts.

2. Related Works

In the field of robot verification, many methods have been proposed in recent years.
Ref. [12] focused on the safety of physical human–robot collaboration and proposed a
formal verification-based risk analysis method for detecting and modifying hazardous situ-
ations early in a model’s design. From a multidisciplinary perspective, ref. [13] developed
a two-step verification method by combining formal methods and schedulability analytics,
which led to the design of a novel multi-resource locking mechanism for real-time robot
services. A drone example was used to demonstrate the benefits of the above approach.

Electronics 2023, 12, 369 3 of 23

Considering that camera pose estimation is a critical component of robot tasks, ref. [14]
attempted to formalize and validate the unique and general solutions of pose estimation
algorithms using an interactive theorem prover. Some researchers have combined formal
validation with a robot operating system (ROS). Based on the formalization of ROS archi-
tectural models and node behaviors in Electrum, a formal specification language based
on first-order linear temporal logic, ref. [15] integrated their proposed technique into the
HAROS framework for the analysis and quality improvement of robotics software. Using
a linear logic theorem prover, ref. [16] presented a new technique to formally describe
and verify robotic systems to meet the need for an easy-to-use framework for expressing
and verifying robot systems in a ROS. In summary, many researchers have applied formal
verification methods to various real-world robot applications.

In the industrial domain, ref. [17] studied a representative safety-critical industrial
paint robot system from ABB Inc. Through the transfer of hardware abstractions and verifi-
cation results among tools, they formalized the convergence of a high-voltage system. To
meet the demands of user-defined verification goals in robot manufacturing, a layer-based
formal scheme was proposed by [18] to support state-space comprehensive verifications.

In healthcare settings, ref. [19] extended the application of formal methods to human
modeling using hybrid automata formalism to capture the variability of human behaviors.
This resulted in a user-friendly representation that used the Uppaal integrated tool envi-
ronment for modeling, validation and verification of real-time systems to automatically
generate and verify a formal model.

Notably, UAVs and autonomous vehicles are suitable for formal verification. In the
context of a distributed UAV scenario representing urban air mobility, ref. [20] construc-
tively provided some insightful ideas to accelerate the development cycle of transforming
formally verified models to robotic simulations. To navigate a UAV inside a safety corridor,
ref. [21] developed a genetic fuzzy system and demonstrated its adherence to behavior
safety specifications. Considering the importance of the formal verification of robotics
and autonomous vehicles, ref. [22] developed a binary-search method to extend timed au-
tomata models of robotic specifications with dynamic priority schedulers and demonstrated
scalability improvements in a real robot case.

Unlike the abovementioned studies, we focus specifically on rotary kinematics prob-
lems and use the Coq Proof Assistant [23] to formally verify robot rotary kinematics.

3. Preliminaries
3.1. Matrix Formalization Based on Record Type

Because higher-order theorem provers are based on λ-type calculus, the basic data
structure for traditional matrix realization is a λ expression rather than an imperative
language version [24]. Hence, the higher-order method is suitable for describing inductive
data structures with infinite extensibility (e.g., lists). However, it does not work for data
structures with fixed lengths (e.g., vectors and matrices) because there is no direct descrip-
tion method. To make it work, Ma et al. [25] proposed a formal matrix method based on
the Coq Record type to verify matrices of any size. In Coq, the Record type is a macro that
enables the creation of definitions. From this, a matrix definition is expressed as

Record Marix(m n : nat) : Set := mkMat{
mat : list (list A);

mat_length : length mat = m;

mat_all_le n : all_len_n mat n; }

where mat is a nested list that stores the data of the matrix, and mat_length and mat_all_len
are matrix attributes indicating that the length of mat is m and its width is n.

Electronics 2023, 12, 369 4 of 23

3.2. Rotary Kinematics

Rotary kinematics studies most often use global coordinate system G or local (i.e.,
rigid-body) coordinate system B to describe robot motion [26]. To verify robot rotary
kinematics, we describe the relationship between G and B.

For rigid body D in B, B initially coincides with G. We denote point O as the origin of
the coordinate systems [27]. The motion of D around G is “revolution”. In this motion,
rigid body D is stationary in B. Hence, for any vector, r, formed by point P and O in D,
the equivalence relation of vector r in G and B is given by Formula (1). Br and Gr are the
algebraic representations of r in B and G, respectively, and Q is the revolution matrix.

Gr = Q ∗ Br. (1)

For rigid body D in G, the motion of D around B is “rotation”. In this motion, rigid
body D is stationary in G. At this time, for any vector, r, formed by points P and O in D,
the equivalence relation of r in G and B is given by Formula (2), with A being the rotation
matrix [28].

Br = A ∗ Gr. (2)

4. Formalization of the Spatial Geometry
4.1. Formalization of the Matrix Trace

In linear algebra, the trace of matrix M(m×m) is defined as the sum of its diagonal
elements, which is also equal to the sum of its eigenvalues, as shown in Formula (3):

tr(M) =
m−1

∑
i=0

mii. (3)

In Coq, we formally solve the matrix trace recursively. In function tr, m is an implicit
parameter representing the width of the matrix, and ma is a matrix with dimension m ∗m.
In the recursive function body, get_Sum_tr, the elements along the diagonal of the matrix
are obtained and summed using the match strategy.

De f inition tr{m : nat}(ma : Mat R m m) :=

(f ix get_Sum_tr (m0 n : nat)(Zero : R)(ma0 : Mat R m0 m0){struct n} : R :=

match n with

|0⇒ Zero

|S n′ ⇒
get_Sum_tr m0 n′ (Zero + mat_nth ma0 (m0− n′ − 1) (m0− n′ − 1)) ma0

end) m m 0 ma.

4.2. Formalization of the Matrix Frobenius Norm

The Frobenius norm, also known as the F-norm, represents the length of a matrix for
an intuitive understanding of matrix theory. Its definition in matrix space Rm∗n is given by
Formula (4): |X|F =

√
∑m−1

i=0 ∑n−1
j=0 x2

ij

s.t.
{

xij ∈ X
(4)

Accordingly, the formal definition of the F-norm is given next. The recursive function,
get_Sum1, inputs list h as a real-number type and outputs the sum of the squares of all
elements in the list. Recursive function get_Sum2 inputs nested list ll as a real-number
type and provides the sum of the squares of all elements by calling get_Sum1. Function
Frobenius has an input matrix-type parameter, ma, with m rows and n columns, and
function mat provides the data elements as matrix types.

Electronics 2023, 12, 369 5 of 23

De f inition Frobenius {m n : nat}(ma : Mat R m n) :=

let ll := (mat R m n ma) in

sqrt ((f ix get_Sum2(l : list(list R)) : R := match l with

| [] => 0

|h :: t => (f ix get_Sum1 (l0 : listR) : R :=

match l0 with

| [] => 0 | h0 :: t0 => h0 ∗ h0 + get_Sum1 t0

end) h + get_Sum2 t

end) ll).

In Coq, we use Notation to define the Frobenius infix notation.

Notation “|ma|” : = (Frobenius ma) (at level 70).

Through the definition of Frobenius, we can formally verify the properties of special
matrices.

Lemma 1. The F-norm of a zero matrix is zero.

Lemma lemma1 : f orall{m n : nat}(ma : Mat R m n), ma = RMatrix.MO m n→ |ma| = 0.

Lemma 2. The F-norm of an n-dimensional identity matrix is
√

n.

Lemma lemma2 : f orall{n : nat}(ma : Mat R n n), ma = RMatrix.MI n→ |ma| = sqrt n.

4.3. Formalization of the Matrix Inner Product

The inner product of matrices in matrix space Rm∗n is given by Formula (5), where
xij ∈ X, yij ∈ Y:

X ·Y =
m−1

∑
i=0

n−1

∑
j=0

xij ∗ yij. (5)

Accordingly, the matrix inner product is formally defined as

De f inition Dot_Product {m n : nat}(ma mb : Mat R m n) :=

let ma′ := (mat R m n ma) in let mb′ := (mat R m n mb) in

(f ix get_Sum2(laa lbb : list(list R)){struct laa} : R := match laa with

| [] => 0 | haa :: laa′ => match lbb with

| [] => 0

| hbb :: lbb′ => (f ix get_Sum1(la lb : list R){struct la} : R := match la with

| [] => 0 | ha :: la′ => match lb with

| [] => 0

| hb :: lb′ => ha ∗ hb + get_Sum1 la′ lb′

end end) haa hbb + get_Sum2 laa′ lbb′

end end) ma′ mb′.

Similar to the definition of Frobenius, Dot_Product also uses two recursive functions
to calculate the matrix inner product. The infix notation of Dot_Product is expressed as

Notation “m1 ·m2” := (Dot_Product m1 m2) (at level 70).

Electronics 2023, 12, 369 6 of 23

We formally verify the commutative and associative laws of the matrix inner product
in the following lemmas.

Lemma 3. In matrix space Rm∗n, ma ·mb = mb ·ma.

Lemma lemma3 : f orall {m n : nat}(ma mb : Mat R m n),

(ma ·mb) = (mb ·ma).

Lemma 4. In matrix space Rm∗n, for k being a constant of type R, (k ∗ma) ·mb = k ∗ (ma ·mb).

Lemma lemma4 : f orall {m n : nat}(k : R)(ma mb : Mat R m n),

((k × ma) ·mb) = k ∗ (ma ·mb).

Lemma 5. In matrix space Rm∗n, (ma + mb) ·mc = ma ·mc + mb ·mc.

Lemma lemma5 : f orall {m n : nat}(ma mb mc : Mat R m n),

(ma + mb) ·mc = (ma ·mc) + (mb ·mc).

4.4. Vector Formalization

Because a vector is a special kind of matrix with a row or column of dimension 1, we
formally define it as follows:

De f inition R_vector(n : nat) := Mat R n 1.

Let m1 and m2 be any vector in space and θ be the angle between m1 and m2. The equiv-
alence relation between the inner product and F-norm of a vector is given by Formula (6):

m1 ·m2 = |m1|F ∗ |m2|F ∗ cos θ. (6)

We formalize the equivalence relation in Formula (6), where << m1, m2 >> represents
the angle between m1 and m2.

Lemma 6. Formal verification of Formula (6).

Lemma lemma6 : f orall{n : nat}(m1 m2 : (R_vector n)),

(m1 ·m2) = (|m1| ∗ |m2|) ∗ cos(<< m1, m2 >>).

5. Formalization of the Rotary Kinematics
5.1. Global and Local Coordinate Systems

Because the formalization of the coordinate system is the basis for the formal verifi-
cation of robot kinematics, we provide relative definitions. We use RAG to define global
coordinate system G as a type with three constructors, X, Y, and Z, which correspond to
the X, Y, and Z axes, respectively.

Inductive RAG : Type := | X | Y | Z.

Analogously, we use RAB to define local coordinate system B, where the three con-
structors, x, y, and z, in B corresponds to the x, y, and z axes, respectively.

Inductive RAB : Type := | x | y | z.

Figure 2 illustrates the two coordinate systems. Given any r, Gr and Br are the
representations of r in G and B, respectively. Additionally, X1, Y1, and Z1 are the coordinates
of r in G, whereas x1, y1, and z1 are the coordinates of r in B. Therefore, the r in G and B

Electronics 2023, 12, 369 7 of 23

can be expressed using Formula (7), where I, J, and K are the direction vectors of G, and i,
j, and k are the direction vectors of B.{

Gr = X1 ∗ I + Y1 ∗ J + Z1 ∗ K
Br = x1 ∗ i + y1 ∗ j + z1 ∗ k

(7)

We formally define Formula (7) as follows:

Variable X1 Y1 Z1 x1 y1 z1 : R.

De f inition Gr := X1 × I + Y1 × J + Z1 × K.

De f inition Br := x1 × i + y1 × j + z1 × k.

Then, axiom1 and axiom2 describe the relations of r in G and B. Therefore, the geomet-
ric meanings of Br · I, Br · J, and Br · K are expressed as the projection length of vector Br
on I, J, and K, respectively. Similarly, the geometric meanings of Gr · i, Gr · j, and Gr · k are
expressed as the projection length of vector Gr on i, j, and k, respectively.

Axiom axiom1 : X1 = (Br · I) ∧Y1 = (Br · J) ∧ Z1 = (Br · K).
Axiom axiom2 : x1 = (Gr · i) ∧ y1 = (Gr · j) ∧ z1 = (Gr · k).

Figure 2. Representation of vectors in different coordinate systems.

5.2. Formalization of Rotary Motion
5.2.1. Formalization of Revolution Motion

According to Formula (1), the formal definition of revolution matrix Q is as follows.
I, J, K, i, j, and k are unit vectors with F-norms of one (Formula (4)). The column vector
of matrix Q represents the cosine of the angle between each coordinate axis in B and G
(Formula (6)).

De f inition Q := mkMat_3_3
(i · I) (j · I) (k · I)
(i · J) (j · J) (k · J)
(i · K) (j · K) (k · K).

Based on this definition, we formally verify Formula (1) as follows:

Theorem 1. Formal verification of Formula (1)

Theorem theorem1 :Gr = Q × Br.

According to the definition of RAG, it can be divided into three cases (see Figure 3).
Figure 3a shows the position relation between the two coordinate systems after D (a rigid
body) rotates around the X axis of G (global coordinate system), where P is any vector in B.
Similarly, Figure 3b,c show the position relationship between the two coordinate systems
after D rotates around the Y and Z axes of G.

Electronics 2023, 12, 369 8 of 23

(a) (b) (c)

Figure 3. Revolution around the (a) X, (b) Y, and (c) Z axes of G.

According to Figure 3, we formally define the corresponding revolution matrix as
follows:

De f inition QX(γ : R) := mkMat_3_3
1 0 0
0 (cosγ) (−(sinγ))
0 (sinγ) (cosγ)

De f inition QY(β : R) := mkMat_3_3
(cosβ) 0 (sinβ)

0 1 0
(−(sinβ)) 0 (cosβ)

De f inition QZ(α : R) := mkMat_3_3
(cosα) (−(sinα)) 0
(sinα) (cosα) 0

0 0 1

We use the following theorems to formally verify the equivalence of matrices Q and
QX (QY and QZ).

Theorem 2. When B rotates by angle γ around the X axis of G, Q = (QX γ).

Theorem theorem2 : f orall (axis : RAG), axis = X → Q = (QX γ).

Theorem 3. When B rotates by angle γ around the X axis of G, Gr = (QX γ) ∗ Br.

Theorem theorem3 : f orall(axis : RAG), axis = X → Gr = (QX γ) × Br.

Theorem 4. When B rotates by angle β around the Y axis of G, Q = (QY β).

Theorem theorem4 : f orall (axis : RAG), axis = Y → Q = (QY β).

Theorem 5. When B rotates by angle β around the Y axis of G, Gr = (QY β) ∗ Br.

Theorem theorem5 : f orall (axis : RAG), axis = Y → Gr = (QY β) × Br.

Theorem 6. When B rotates by angle α around the Z axis of G, Q = (QZ α).

Theorem theorem6 : f orall (axis : RAG), axis = Z → Q = (QZ α).

Theorem 7. When B rotates by angle α around the Z axis of G, Gr = (QZ α) ∗ Br.

Theorem theorem7 : f orall (axis : RAG), axis = Z → Gr = (QZ α)× Br.

After B undergoes a finite number of continuous revolutions, Q1, Q2, Q3, . . . , Qn,
around RAG, the equivalence relation between r in G and B is given by Formula (8):

Gr = (Qn ∗ · · · ∗ (Q2 ∗ (Q1 ∗ Br))). (8)

Electronics 2023, 12, 369 9 of 23

Therefore, we formally define Formula (8) by CRG recursively. Thus, rl is a list
containing pair-type elements, with the first and last elements recording the revolution
type and angle, respectively. Br′ is the vector’s initial position.

Fixpoint CRG (rl : list (RAG ∗ R)) (Br′ : R_vector 3) :=
match rl with
| nil ⇒ Br′

| h :: l ⇒ let M = (get_Q (f st h) (snd h)) in
let Br′′ = M × Br′ in CRG l Br′′

end.

In CRG, the recursive structure first judges rl. If rl is empty, the function returns the
received Br′; otherwise, the function provides revolution matrix M through function get_Q
by multiplying M with Br′ while regarding the product as new position Br′′. Then, the
recursive structure uses l and Br′′ to continue the recursion. get_Q is formally defined as
follows:

De f inition get_Q (axis : RAG) (θ : R) :=
match axis with
| X ⇒ (QX θ) | Y ⇒ (QY θ) | Z ⇒ (QZ θ)

end.

We synthesize the finite continuous revolutions around RAG into one revolution
around a specific line. The synthesized revolution matrix is the global revolution matrix,
GQB, given by Formula (9): { GQB = Qn ∗ . . . Q2 ∗Q1

Gr = GQB ∗ Br
(9)

We formally define the global revolution matrix as follows, where function Cml
represents the left multiplication of the matrix in list ml:

De f inition GQB (ml : list(RAG ∗ R)) :=

(f ix Cml (matList : list(RAG ∗ R))(res : Mat R 3 3){struct matList} : Mat R 3 3 :=

match matList with

| []⇒ res

| h :: l ⇒ Cml l (get_Q (f st h)(snd h)× res)

end)ml (RMatrix.MI 3).

Based on this definition, we formally verify Formula (9) as lemma7:

Lemma 7. When rl = [Q1 Q2 . . . Qn] is an arbitrary rotation sequence, r is the initial location in
B,(Qn ∗ · · · ∗ (Q2 ∗ (Q1 ∗ r))) = (Qn ∗ · · · ∗Q2 ∗Q1) ∗ r..

Lemma lemma7 : f orall (rl : list(RAG ∗ R)) (r : R_vector 3), CRG rl r = (GQB rl) × r.

5.2.2. Formalization of Rotation Motion

Similar to the definition of a rotation matrix, Q, according to Formula (2), we formally
define the rotation matrix A as follows:

De f inition A := mkMat_3_3
(I · i) (J · i) (K · i)
(I · j) (J · j) (K · j)
(I · k) (J · k) (K · k).

Accordingly, we formally verify Formula (2) as follows:

Electronics 2023, 12, 369 10 of 23

Theorem 8. Formal verification of Formula (2).

Theorem theorem8 :Br = A × Gr.

Figure 4 shows three cases in RAB, in which the rotation matrices in Figure 4a–c are
defined as Ax, Ay, and Az, respectively.

(a) (b) (c)

Figure 4. Rotation around the (a) x, (b) y, and (c) z axes of B.

De f inition Ax(ψ : R) := mkMat_3_3
1 0 0
0 (cosψ) (sinψ)
0 (−(sinψ)) (cosψ)

De f inition Ay(θ : R) := mkMat_3_3
(cosθ) 0 (−(sinθ))

0 1 0
(sinθ) 0 (cosθ)

De f inition Az(φ : R) := mkMat_3_3
(cosφ) (sinφ) 0

(−(sinφ)) (cosφ) 0
0 0 1

We use the following theorems to formally verify the equivalence of matrices A and
Ax (Ay and Az).

Theorem 9. When D rotates by angle ψ around the x axis of B, A = (Ax ψ).

Theorem theorem9 : f orall (axis : RAB), axis = x → A = (Ax ψ).

Theorem 10. When D rotates by angle ψ around the x axis of B, Br = (Ax ψ) ∗ Gr.

Theorem theorem10 : f orall (axis : RAB), axis = x → Br = (Ax ψ) × Gr.

Theorem 11. When D rotates by angle θ around the y axis of B, A = (Ay θ).

Theorem theorem11 : f orall (axis : RAB), axis = y→ A = Ay θ.

Theorem 12. When D rotates by angle θ around the y axis of B, Br = (Ay θ) ∗ Gr.

Theorem theorem12 : f orall(axis : RAB), axis = y→ Br = (Ay θ) × Gr.

Theorem 13. When D rotates by angle φ around the z axis of B, A = (Az φ).

Theorem theorem13 : f orall (axis : RAB), axis = z→ A = (Az φ).

Theorem 14. When D rotates by angle φ around the z axis of B, Br = (Az φ) ∗ Gr.

Theorem theorem14 : f orall (axis : RAB), axis = z→ Br = (Az φ) × Gr.

Electronics 2023, 12, 369 11 of 23

After D performs a finite number of continuous rotations, A1, A2, A3, . . . , An, around
RAB, the equivalence relation between r in B and G is given by Formula (10):

Br = (An ∗ · · · ∗ (A2 ∗ (A1 ∗ Gr))). (10)

Similar to the definition of CRG, we formally define Formula (10) in CRB, where Gr′

is the vector initial position, and function get_A provides the corresponding rotation matrix
according to the rotation type and angle:

Fixpoint CRB (rl : list(RAB ∗ R))(Gr′ : R_vector 3) :=
match rl with
| nil ⇒ Gr′

| h :: l ⇒ let M = (get_A(f st h)(snd h)) in
let Gr′′ = M× Gr′ in CRB l Gr′′

end.

De f inition get_A(axis)(θ) :=
match axis with
| x ⇒ (Ax θ)
| y⇒ (Ay θ)
| z⇒ (Az θ)

end.

We synthesize the finite continuous rotations around RAB into one rotation around a
specific line in B. The synthesized rotation matrix is called the local rotation matrix (B AG),
and is given by Formula (11):{ B AG = An ∗ · · · ∗ A2 ∗ A1

Br = B AG ∗ Gr
(11)

We formally define B AG as follows, where function Cml′ represents the left multiplica-
tion of the rotation matrix in list ml:

De f inition BAG(ml : list(RAB ∗ R)) :=

(f ix Cml′ (matList : list(RAB ∗ R))(res : Mat R 3 3){struct matList} : Mat R 3 3 :=

match matList with

|[]⇒ res

|h :: l ⇒ Cml′ l (get_A(f sth)(sndh)× res)

end) ml (RMatrix.MI 3).

Based on this definition, we use a formal method to verify Formula (11), as shown in
lemma8:

Lemma 8. When rl = [A1 A2 . . . An] is an arbitrary rotation sequence, r is the initial location in
G,(An ∗ · · · ∗ (A2 ∗ (A1 ∗ r))) = (An ∗ · · · ∗ A2 ∗ A1) ∗ r.

Lemma lemma8 : f orall (rl : list(RAB ∗ R)) (r : (R_vector 3)), CRB rl r = (BAG rl) × r.

5.2.3. Relationship between B AG and GQB

From Formulas (9) and (11), the relationship between B AG and GQB is given by
Formula (12): {

Br = B AG ∗ GQB ∗ Br
Gr = GQB ∗ B AG ∗ Gr

(12)

For Formula (12), we use lemma9 and lemma10 to prove the inverse of GQB and B AG,
where rLB and rLG are lists. The list order is the same as the matrix rotation order, and
RMatrix.MI 3 represents an identity matrix with dimension 3.

Electronics 2023, 12, 369 12 of 23

Lemma 9. For any non-zero vector r, GQB is the revolution matrix of B → G and B AG is the
rotation matrix of G → B, then B AG ∗ GQB = I.

Lemma lemma9 :|Br| <> 0→ (BAG rLB) × (GQB rLG) = RMatrix.MI 3.

Lemma 10. For any non-zero vector r, GQB is the revolution matrix of B → G and B AG is the
rotation matrix of G → B, then GQB ∗ B AG = I.

Lemma lemma10 :|Gr| <> 0→ (GQB rLG) × (BAG rLB) = RMatrix.MI 3.

Similar to the proof of the inverses of GQB and B AG, we verify the transpose of GQB
and B AG. The formal definition of transpose is as follows, where trans represents the
transpose operation of the matrix, and rev represents the inverse operation of the list:

Lemma 11. GQB is the revolution matrix of B → G and B AG is the rotation matrix of G → B,
then GQB = B AT

G.

Lemma Lemma11 : GQB rLG = trans R 0 (BAG (rev rLB)).

Lemma 12. GQB is the revolution matrix of B → G and B AG is the rotation matrix of G → B,
then B AG = GQT

B.

Lemma Lemma12 : BAG rLB = trans R 0 (GQB (rev rLG)).

6. Euler Angles

In a three-dimensional (3D) space, the orientation of any coordinate system can be
represented by Euler angles. The global coordinate system is assumed to be stationary,
whereas the local coordinate system rotates with the rigid body. Euler angles are described
by three independent parameters that determine the position of a fixed-point rotating rigid
body through its precession, nutation, and rotation angles. Figure 5 shows the geometric
representation of the Euler angles in space, where X, Y, and Z are the axes of the global
coordinate system, and x, y, and z are the axes of the local coordinate system. Additionally,
N is the intersection line of XY_plane and xy_plane.

There is no consensus on the convention for Euler angles in different fields. Hence,
their use requires specifying one. In this paper, we formally define and verify commonly
used Euler angle conventions.

Figure 5. Euler angles.

6.1. Euler Angles per the xyz Convention

The angles obtained from the xyz convention are also called “Tait—Bryan” angles, and
they often appear in engineering applications to describe the direction of mobile vehicles
or missiles. The three angles reflect the roll about the rotation of the airframe axis, the
pitch describing the rotation perpendicular to the airframe axis, and the yaw describing the

Electronics 2023, 12, 369 13 of 23

rotation of the vertical axis. In Figure 6, the rotations around the x, y, and z axes are called
“roll” (ψ), “pitch” (θ), and “yaw” (φ), respectively.

Figure 6. Roll, pitch, and yaw angles.

Based on Formula (11), the roll–pitch–yaw rotation matrix is given by Formula (13):

BAG_rpy = A(z,φ) ∗ A(y,θ) ∗ A(x,ψ). (13)

According to the physical meaning of roll, pitch, and yaw, we provide the following
formal definition:

Variable ψ θ φ : R.

De f indetion BAG_rpy := (Az φ)× ((Ay θ)× (Ax ψ)).

Next, we prove the equivalence of BAG_rpy in lemma13 so that the roll–pitch–yaw
sequence can be transformed into a rotation matrix.

Lemma 13. Formal verification of Formula (13).

Lemma lemma13 :BAG_rpy = mkMat_3_3

(cosφ ∗ cosθ) (sinφ ∗ cosψ + cosφ ∗ sinθ ∗ sinψ) (sinφ ∗ sinψ− cosφ ∗ sinθ ∗ cosψ)
(−(sinφ ∗ cosθ)) (cosφ ∗ cosψ− sinφ ∗ sinθ ∗ sinψ) (cosφ ∗ sinψ + sinφ ∗ sinθ ∗ cosψ)

(sinθ) (−cosθ ∗ sinψ) (cosθ ∗ cosψ).

6.2. Euler Angles per the zxz Convention

Using the zxz convention, precession is the rotation around the z axis, nutation is the
rotation around the x axis, and spin is another rotation around the z axis. Its rotation matrix
is given by Formula (14), where α is the precession angle, ψ is the nutation angle, and φ is
the rotation angle:

Euler_zxz = A(z,φ) ∗ A(x,ψ) ∗ A(z,α). (14)

Our formal proof of the rotation matrix reflecting Euler angles is as follows:

Lemma 14. Formal verification of Formula (14).

Lemma lemma14 :Euler_zxz = mkMat_3_3

(cosφ ∗ cosα− sinφ ∗ cosψ ∗ sinα) (cosφ ∗ sinα + sinφ ∗ cosψ ∗ cosα) (sinφ ∗ sinψ)
−sinφ ∗ cosα− cosφ ∗ cosψ ∗ sinα) (−sinφ ∗ sinα + cosφ ∗ cosψ ∗ cosα) (cosφ ∗ sinψ)

(sinψ ∗ sinα) (−sinψ ∗ cosα) (cosψ).

Based on precession angle α, nutation angle ψ, and rotation angle φ, we can calculate
the overall rotation matrix according to lemma14. Given a rotation matrix, we can recover

Electronics 2023, 12, 369 14 of 23

the Euler angles. For example, Formula (15) describes the solution for precession angle α
from a rotation matrix:

α =


− arctan (Euler_zxz31/Euler_zxz32)− π, −π ≤ α < −π/2,

− arctan (Euler_zxz31/Euler_zxz32), −π/2 ≤ α < π/2,

− arctan (Euler_zxz31/Euler_zxz32) + π, π/2 ≤ α < π.

(15)

We formally verify the precession angle solution as follows, where lemma15–lemma18
represent the verification of α in the first–fourth quadrants, respectively.

De f inition r (i j : nat) := mat_nth Euler_zxz (i− 1) (j− 1).

Lemma 15. In the domain of definition [0, π/2), α = − arctan (r31/r32).

Lemma lemma15 :0 <= α < PI/2→ cosα <> 0→ α = −atan((r 3 1)/(r 3 2)).

Lemma 16. In the domain of definition [π/2, π/2), α = − arctan (r31/r32) + π.

Lemma lemma16 :PI/2 <= α < PI → cosα <> 0→ α = −atan((r 3 1)/(r 3 2)) + PI.

Lemma 17. In the domain of definition [−π,−π/2), α = − arctan (r31/r32)− π.

Lemma lemma17 :− PI <= α < −(PI/2)→ cosα <> 0→ α = −atan((r 3 1)/(r 3 2))− PI.

Lemma 18. In the domain of definition [−π/2, 0), α = − arctan (r31/r32).

Lemma lemma18 :− (PI/2) <= α < 0→ cosα <> 0→ α = −atan((r 3 1)/(r 3 2)).

Formula (16) describes the solution for nutation angle ψ, given a rotation matrix:

ψ =

{
− arccos (Euler_zxz33), −π ≤ ψ < 0,

arccos (Euler_zxz33), 0 ≤ ψ < π.
(16)

Then, the formal verification of the nutation angle solution is expressed as

Lemma 19. In the domain of definition [0, π), ψ = arccos (r33).

Lemma lemma19 :0 <= ψ < PI → ψ = acos(r 3 3).

Lemma 20. In the domain of definition [−π, 0), ψ = − arccos (r33).

Lemma lemma20 :− PI <= ψ < 0→ ψ = −acos(r 3 3).

Finally, Formula (17) describes the solution for rotation angle φ, given a rotation
matrix:

φ =


arctan (Euler_zxz13/Euler_zxz23)− π, −π ≤ φ < −π/2,

arctan (Euler_zxz13/Euler_zxz23), −π/2 < φ < π/2,

arctan (Euler_zxz13/Euler_zxz23) + π, π/2 < φ < π.

(17)

Accordingly, the formal verification of the rotation angle solution is as follows:

Lemma 21. In the domain of definition [0, π/2), φ = arctan (r13/r23).

Lemma lemma21 :0 <= φ < PI/2→ cosφ <> 0→ φ = atan((r 1 3)/(r 2 3)).

Electronics 2023, 12, 369 15 of 23

Lemma 22. In the domain of definition [π/2, π), φ = arctan (r13/r23) + π.

Lemma lemma22 :PI/2 < φ < PI → cosφ <> 0→ φ = atan((r 1 3)/(r 2 3)) + PI.

Lemma 23. In the domain of definition [−π,−π/2), φ = arctan (r13/r23)− π.

Lemma lemma23 :− PI <= φ < −(PI/2)→ cosφ <> 0→ φ = atan((r 1 3)/(r 2 3))− PI.

Lemma 24. In the domain of definition [−π/2, 0), φ = arctan (r13/r23).

Lemma lemma24 :− (PI/2) < φ < 0→ cosφ <> 0→ φ = atan((r 1 3)/(r 2 3)).

7. Rodriguez Formula

For a rigid body with fixed point O, a revolution by angle, φ, around ξ in G can be
decomposed into revolutions around three specific non-coplanar axes. On the contrary,
after a rigid body rotates for a finite number of times, its revolution effect is equivalent to a
specific revolution around a specific axis. The Rodriguez formula is a simple and effective
way to describe such revolutions.

7.1. Proof of the Existence of the Rodriguez Formula

Let ξ ′ be a line passing through origin O in G and the rigid body that rotates by angle
φ around ξ ′. We denote the direction vector of ξ as u. The revolution of the rigid body
around u is equivalent to the following process: (1) Rotate one axis in B to coincide with u;
(2) B rotates φ around u; (3) B performs a revolution inverse to that in Step 1. We rotate the
z axis in B to coincide with u, as shown in Figure 7.

Figure 7. Relation diagram of the coordinate system when z and u coincide.

In Figure 7, the rigid body first rotates by angle ϑ around the z axis and then by angle
ϕ around the y axis, such that the z axis coincides with u. Then, it rotates by angle φ around
the z axis and finally rotates in the reverse sequence. The corresponding revolution is
shown in Formula (18), where GRB is the revolution matrix of B→ G:

GRB = GQB = B AT
G

= ((Az (−ϕ))× (Ay (−ϑ))× (Az φ)× (Ay ϑ)× (Az ϕ))T (18)

s.t.

 sin ϕ = u2√
u2

1+u2
2

cos ϕ = u1√
u2

1+u2
2

sin ϑ =
√

u2
1 + u2

2 cos ϑ = u3

With this corollary, we can assume that the z axis coincides with u after two rotations.
We use a formalization to verify this assumption.

Electronics 2023, 12, 369 16 of 23

Lemma 25. There are angles ϕ and ϑ such that direction vector [0 0 1] of the z axis coincides with
u in G after two rotations.

Lemma lemma25 : Br = mkMat_3_1 0 0 1→ exists(φ′ θ′ : R),

u = trans R 0((Ay θ′)× (Az φ′))× Br.

According to Formula (18), we assume the equivalence of GRB and solve the matrix
form of GRB under constraints:

Variable φ′ θ′ : R.
Hypothesis GRB_Hy : GRB = trans R 0 ((Az (−φ′))× (Ay (−θ′))×
(Az φ)× (Ay θ′)× (Az φ′)).
Hypothesis u_len : |u| = 1.
De f inition vers(x : R) := 1− (cos x).

Lemma 26. Formal verification of Formula (18)

Lemma lemma26 :sin φ′ = u2/sqrt(u12 + u22)→ cos φ′ = u1/sqrt(u12 + u22)→
sin θ′ = sqrt(u12 + u22)→ cos θ′ = u3→ GRB = mkMat_3_3

(u12 ∗ (vers φ) + cosφ) (u1 ∗ u2 ∗ (vers φ)− u3 ∗ sinφ)
(u1 ∗ u2 ∗ (vers φ) + u3 ∗ sinφ) (u22 ∗ (vers φ) + cosφ)
(u1 ∗ u3 ∗ (vers φ)− u2 ∗ sinφ) (u2 ∗ u3 ∗ (vers φ) + u1 ∗ sinφ)

(u1 ∗ u3 ∗ (vers φ) + u2 ∗ sinφ)
(u2 ∗ u3 ∗ (vers φ)− u1 ∗ sinφ)

(u32 ∗ (vers φ) + cosφ)
.

7.2. Formal Definition of the Rodriguez Formula

In lemma25, we proved that for any revolution axis, u, passing through the origin, it
is always possible to match the u and z axes after two rotations. In lemma26, we verified
the equivalent form of revolution matrix GRB under constraints. Using lemma26, the
Rodriguez formula can be deduced as shown in Formula (19) for direction vector u:

I =

1 0 0
0 1 0
0 0 1

 u =

u1
u2
u3

 û =

 0 −u3 u2
u3 0 −u1
−u2 u1 0


R(u,φ) =

GRB = (cos φ) ∗ I + (1− cos φ) ∗ u ∗ uT + (sin φ) ∗ û.

(19)

Generally, for any non-zero vector, ξ, its direction vector is eu = ξ
|ξ| .

According to Formula (19), we formally define the Rodriguez formula as ELR. In
the definition of ELR, φ′ represents the revolution angle, and ξ ′ represents any non-zero
revolution axis:

De f inition I := RMatrix.MI 3.

De f inition ξ_tilde (ξ ′ : Mat R 3 1) := mkMat_3_3

0 (−(mat_nth ξ ′ 2 0)) (mat_nth ξ ′ 1 0)
(mat_nth ξ ′ 2 0) 0 (−(mat_nth ξ ′ 0 0))

(−(mat_nth ξ ′ 1 0)) (mat_nth ξ ′ 0 0) 0.

De f inition ELR(φ′ : R)(ξ ′ : Mat R 3 1) :=

match Req_EM_T (|ξ ′|) 1 with

| le f t _ =>

[(cos φ′)× I] + [(vers φ′)× [ξ ′ × (trans R 0 ξ ′)]] + [(sin φ′)× (ξ_tilde ξ ′)]

| right _ => let ξ ′′ := [(1/|ξ ′|)× ξ ′] in

[(cos φ′)× I] + [(vers φ′)× [ξ ′′ × (trans R 0 ξ ′′)]] + [(sin φ′)× (ξ_tilde ξ ′′)]

end.

Electronics 2023, 12, 369 17 of 23

7.3. Equivalence between the Rodriguez Formula and a Revolution around RAG

The Rodriguez formula applies to a rigid body rotating around ξ, a vector in G. When
ξ coincides with the X axis (Y or Z axes), ELR is equivalent to revolution matrix Q around
RAG.

Lemma 27. When ξ = [x, 0, 0] and u = ξ/|ξ|, R(u,φ) = QX φ.

Lemma lemma27 : f orall x : R, x <> 0→ ξ = mkMat_3_1 x 0 0→ ELR φ ξ = QX φ.

Lemma 28. When ξ = [0, y, 0] and u = ξ/|ξ|, R(u,φ) = QY φ.

Lemma lemma28 : f orall y : R, y <> 0→ ξ = mkMat_3_1 0 y 0→ ELR φ ξ = QY φ.

Lemma 29. When ξ = [0, 0, z] and u = ξ/|ξ|, R(u,φ) = QZ φ.

Lemma lemma29 : f orall z : R, z <> 0→ ξ = mkMat_3_1 0 0 z→ ELR φ ξ = QZ φ.

lemma27 indicates that when the revolution axis coincides with the X axis, the Ro-
driguez formula describes a revolution around the X axis. Similarly, lemma28 and lemma29
show that when the revolution axis coincides with the Y and Z axes, respectively, the
Rodriguez formula describes revolutions around RAG.

7.4. Non-Uniqueness of the Revolution Axis and Angle

Using ELR, we can obtain the corresponding revolution matrix, GRB, given revolution
angle φ and revolution axis ξ. Conversely, for the given GRB, we can obtain φ and u (i.e.,
the direction vector of ξ). This is shown in Formula (20), where GRB10 denotes the element
at position (1,0) in GRB:

û = 1
2sinφ (

GRB − GRB
T
)

sinφ =
(G RB10−

G RB01)+(G RB02−
G RB20)+(G RB21−

G RB12)

2(u1+u2+u3)
cosφ = 1

2 (tr(
GRB)− 1)

(20)

From Formula (20), the solutions of φ and ξ are non-unique for the given GRB. We
formally verify the non-uniqueness of the solution in lemma30 and lemma31:

Lemma 30. When ξ is any non-zero vector and u = ξ/|ξ|, R(u,φ) = R(−u,−φ)

Lemma lemma30 : f orall (φ′ : R)(ξ ′ : Mat R 3 1), ELR φ′ ξ ′ = ELR(−φ′)(−ξ ′),

Lemma 31. When ξ is any non-zero vector and u = ξ/|ξ|, R(u,φ) = R(u,φ+2π)

Lemma lemma31 : f orall (φ′ : R)(ξ ′ : Mat R 3 1), ELR φ′ ξ ′ = ELR(φ′ + 2 ∗ PI)(ξ ′).

lemma30 shows that when the rigid body revolution by angle φ′ around ξ ′, the revo-
lution is equivalent to a revolution by angle −φ′ around −ξ ′. This equivalence relation is
obvious in a geometric proof. lemma30 proves this equivalence through the formal method.
Similarly, lemma31 shows that when the revolution angle increases by 2π, the revolution
matrix is equivalent.

Electronics 2023, 12, 369 18 of 23

7.5. Generalized Rodriguez Formula

The formal verification of the Rodriguez formula assumed that B and G coincide
initially. That is, in the initial state, r has an equivalence in G and B. More generally, B and
G need not coincide initially, as shown in Formula 22, where BR′G is the revolution matrix.

Br =
BR′

G ∗ Gr. (21)

When the initial state coordinate systems do not coincide, to obtain the Rodriguez
formula, we assume a new global coordinate system, G0, which coincides with B initially.
Therefore, transformation B→ G of r is decomposed into B→ G0 and G0 → G.

To obtain the revolution matrix of B → G0, we apply the Rodriguez formula. The
revolution axis should be represented in u0, as shown in Formula (22), where u (|u| = 1) is
the revolution axis in G, 0RB is the revolution matrix of B → G0, and φ is the revolution
angle.

0RG = BR′
G

u0 = 0RG ∗ u
0RB = cos φ ∗ I + (vers φ) ∗ u0 ∗ uT

0 + (sin φ) ∗ û0
= cos φ ∗ I + (vers φ) ∗ (0RG ∗ u) ∗ (0RG ∗ u)T + (sin φ) ∗ 0RG ∗ û ∗ 0RT

G
= cos φ ∗ I + (vers φ) ∗ (0RG ∗ u) ∗ uT ∗ 0RT

G + (sin φ) ∗ 0RG ∗ û ∗ 0RT
G

(22)

Therefore, the revolution matrix of B→ G in the final state is given by Formula (23),
where GR0 = 0RT

G can be obtained from lemma11 and lemma12. Similarly, GR0 ∗ 0RT
G = I

can be obtained from lemma9 and lemma10.
GR0 = 0RT

G
GRB = GR0 ∗ 0RB

= cos φ ∗ GR0 + (vers φ) ∗ u ∗ uT ∗ GR0 + (sin φ) ∗ û ∗ GR0
= R(u,φ) ∗ GR0

(23)

We use the formal methods to infer and verify Formula (23). First, we formally define
revolution axis u, revolution angle φ, and revolution matrix _0RG of G → B (in the initial
state) and set the length of u to one.

Variable u : Mat R 3 1. Variable φ : R.

Variable _0RG : Mat R 3 3.

Hypothesis u_len : |u| = 1.

Second, according to lemma11, we define revolution matrix GR0 of B → G in the
initial state.

Let GR0 := trans R 0 _0RG.

Again, according to Formula (22), we redefine revolution axis _0u in G0:

Let _0u := 0RG× u.

Let _0RB := ELR φ _0u.

Finally, we formally define revolution matrix GRB for B→ G0 → G:

Let GRB := GR0× _0RB.

Based on this definition, a formal proof of the equivalence relation in Formula (23) is
provided in lemma32:

Electronics 2023, 12, 369 19 of 23

Lemma 32. Formal verification of Formula (23).

Lemma lemma32 :GRB = ELR φ u× GR0.

8. Case Analysis and Verification

In this section, we analyze and prove several cases related to robot rotations to show
the applicability of our formal verification of designed robots.

8.1. Revolution around the Global Coordinate System

Case 1: In the initial state, G coincides with B. Let rigid body D, represented in B,
rotate continuously around the X axis of G at an angular velocity of 0.6 π rad/s along with
point PB = [10, 20, 30]T in rigid body D. We illustrate the calculation of position PG of point
PB, represented in G, at t = 5 s.

Section Example1.

Variable δt δθ : R. Variable axis : RAG.

Example Eg_1 : Br = mkMat_3_1 R 10 20 30 → δt = 5→
ω δt δθ = 0.6 ∗ PI → axis = X → Gr = mkMat_3_1 R (−10) 20 (−30).

Proo f .

. . .

Qed.

End Example1.

For this case, we obtain solution PG = [−10, 20,−30]T via the informal method. For
the formal method, we apply the formal verification shown above, where δt is the time
variable, δθ is the revolution angle variable, and axis is the revolution axis variable. From
Eg_1, we observe that the solution to this case is [−10, 20,−30]T , as expected.

8.2. Rotation around the Local Coordinate System

Case 2: In the initial state, G coincides with B. Let rigid body D, represented in G,
first rotate by π/4 around the z axis and then rotate by π/4 around the x axis to finally
rotate by π/4 around the y axis in B along with point PG = [10, 20, 30]T in rigid body D.
We illustrate the calculation of position PB of point PG, represented in B, after rotation.

Similar to case 1, we obtain solution [5
√

2/2, 5 + 15
√

2, 30− 5
√

2/2] T using the
informal method. For the formal method, we show the formal verification below, where
rotList is a list corresponding to the rotation order. From Eg_2, the solution to this case is[
5
√

2/2, 5 + 15
√

2, 30− 5
√

2/2
]T

, as expected.

Section Example2.

Variable rotList : list(RAB ∗ R).

Example Eg_2 :

rotList = (pair z (PI/4)) :: (pair x (PI/4)) :: (pair y (PI/4)) :: nil →
CRB rotList (mkMat_3_1 R 10 20 30) =

mkMat_3_1 R (5 ∗ sqrt2/2) (5 + 15 ∗ sqrt2) (30− 5 ∗ sqrt2/2).

Proo f .

. . .

Qed.

End Example2.

Electronics 2023, 12, 369 20 of 23

8.3. Euler Angle Cases

Case 3: Given precession angle α = π/4, nutation angle ψ = π/4, and rotation angle
φ = π/4, we determine the corresponding Euler angle rotation matrix.

To obtain the rotation matrix from the given Euler angles, we can use lemma14 to
complete the formal verification with the following script:

Example Eg_3 : f orall α ψ φ : R, α = PI/4→ ψ = PI/4→ φ = PI/4→
Euler_zxz α ψ φ = mkMat_3_3

(1/2− sqrt 2 /4) (1/2 + sqrt 2 /4) (1/2)
(−1/2− sqrt 2 /4) (−1/2 + sqrt 2 /4) (1/2)

(1/2) (−1/2) (sqrt 2 /2).
Proo f .

. . .
Qed.

Our analysis of the Euler angles for a given rotation matrix is shown below.
Case 4: Given the rotation matrix in Formula (24), we determine the corresponding

Euler angles:

Euler_zxz =


1
2 −

√
2

4
1
2 +

√
2

4
1
2

− 1
2 −

√
2

4 − 1
2 +

√
2

4
1
2

1
2 − 1

2

√
2

2

. (24)

For this type of case, we can use lemma15–lemma26 for verification, as follows:

Example Eg_4 : f orall α ψ φ : R, 0 <= α < PI/2→ 0 <= ψ < PI/2→
0 <= φ < PI/2→ Euler_zxz α ψ φ = mkMat_3_3

(1/2− sqrt 2 /4) (1/2 + sqrt 2 /4) (1/2)
(−1/2− sqrt 2 /4) (−1/2 + sqrt 2 /4) (1/2)

(1/2) (−1/2) (sqrt 2 /2)
→ α = PI/4∧ ψ = PI/4∧ φ = PI/4.

Proo f .
. . .

Qed.

8.4. Rodriguez Revolutions

Case 5: Let local coordinate system B rotate by three Euler angles (π
4 , π

4 , π
4) with respect

to global coordinate system G. We determine revolution axis u and revolution angle φ
equivalent to that revolution.

Example Eg_5 : sinφ <> 0→ GRB = ELR φ u→ θ1 = PI/4→
θ2 = PI/4→ θ3 = PI/4→ BRG = Euler θ1 θ2 θ3→
u = mkMat_3_1

(sqrt2/sqrt(5 + 2 ∗ sqrt2))
0

((4 ∗ sqrt2 + 4)/(4 ∗ sqrt(5 + 2 ∗ sqrt2)))

∨

u = mkMat_3_1
(−(sqrt2/sqrt(5 + 2 ∗ sqrt2)))

0
(−((4 ∗ sqrt2 + 4)/(4 ∗ sqrt(5 + 2 ∗ sqrt2))))

Proo f .

. . .

Qed.

Case 6: Let a rigid body rotate by π/6 around the X axis, and suppose the rigid body
continues to rotate by phi = π/2 around u = [

√
3/3,
√

3/3,
√

3/3]. We determine the
corresponding revolution matrix, GRB.

Electronics 2023, 12, 369 21 of 23

For this type of case, we can use lemma32 for verification, as follows:

Let u := mkMat_3_1 (sqrt3/3) (sqrt3/3) (sqrt3/3). Let φ := PI/2.

Let 0RG := QX (PI/6). Let GR0 := trans R 0 0RG.

Let 0u := 0RG× u. Let 0RB := ELR φ 0U.

Let GRB := GR0× 0RB.

Example Eg_6 : GRB = mkMat_3_3

(1/3) (−(2/3)) (2/3)
(sqrt3/3 + 1/3) (sqrt3/3− 1/6) (sqrt3/6− 1/3)

(−(sqrt3/3) + 1/3) (sqrt3/6 + 1/3) (sqrt3/3 + 1/6).

Proo f .

. . .

Qed.

9. Conclusions

As one of the most basic theories in motion control systems, rotary kinesthetics is
widely used in different research topics. In this paper, the formal technology was applied
to verify the correctness of robot rotary motion theory. We divided rotary motion into two
types (i.e., revolution and rotation) and defined them formally. Specifically, we established
a 3D coordinate system model in the Coq Proof Assistant and formally defined the matrix
trace, Frobenius norm, and inner product in the model. We formalized the definition of
Euler angle and verified its transformation relationship with the rotation matrix. Moreover,
we completed the machine proof of the Rodriguez formula. In this paper, all proofs and
verifications were implemented using the Coq Proof Assistant. All source files are accessible
at https://github.com/GuojunXie123/RFV.git (accessed on 7 January 2023).

Overall, the proofs of the formal verification consist of about 3200 lines of code. The
code has been tested and should compile under Coq 8.13.2. Table 1 provides a detailed
account of the formalization in terms of script files. To help navigate through them, we
indicate the related sections in the paper. The count in terms of lines of code distinguishes
between specifications and proofs.

Table 1. Overview of the formal verification of robot rotary kinesthetics.

File Reference Specification Proof

Trace.v Section 4.1 33 0
Norm.v Section 4.2 88 20
DotProduct.v Section 4.3 115 30
DotAngle.v Section 4.4 100 47
Coordinate_Basics.v Section 5.1 376 350
Rotate_Around_G.v Section 5.2.1 290 260
Rotate_Around_G_Lemma.v Section 5.2.1 320 300
Rotate_Around_G_Example.v Section 5.2.1 148 130
Rotate_Around_B.v Section 5.2.2 270 240
Rotate_Around_B_Lemma.v Sections 5.2.2 and 6.1 320 300
Rotate_Around_B_Exaplme.v Section 5.2.2 150 130
General_Rotate.v Section 5.2.3 70 60
Relation_GB.v Section 5.2.3 130 120
Euler_Angle.v Section 6.2 180 170
RodriguezDef.v Section 7.2 260 230
RodriguezPf.v Section 7.1 115 100
RodriguezLem.v Sections 7.3 and 7.4 310 300

In the future, we will complete the verification of more robot control technologies
based on the formal verification framework of this paper. With more complex kinematic

https://github.com/GuojunXie123/RFV.git

Electronics 2023, 12, 369 22 of 23

logic, we will improve the formal verification framework of more types of robot kinematics.
Our goal is to complete the formal verification of a robot control system. We also plan to
develop some automatic tactics that can be used to increase the automation of formal proofs.
This will be a meaningful exploration and a worthwhile attempt in the field of automated
control system verification. Additionally, we will also try to combine the technologies of
code generation and formal verification. We plan to design a robot control algorithm and
automatically generate the C code using Coq Proof Assistant. This is expected to vastly
improve the safety assurance of robot control systems.

Author Contributions: Conceptualization, methodology, and validation, G.X. and H.D.; formal
analysis and investigation, G.X. and Z.S.; writing–original draft preparation, G.X.; writing–review
and editing, H.Y. and G.C.; supervision, G.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available in [github] at
[https://github.com/GuojunXie123/RFV.git].

Acknowledgments: The authors are grateful to the anonymous reviewers for their helpful comments
and valuable suggestions that led to a significant improvement in the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shen, Y.; Jia, Q.; Huang, Z.; Wang, R.; Fei, J.; Chen, G. Reinforcement learning-based reactive obstacle avoidance method for

redundant manipulators. Entropy 2022, 24, 279. [CrossRef] [PubMed]
2. Sun, T.; Yu, W. A formal verification framework for security issues of blockchain smart contracts. Electronics 2020, 9, 255.

[CrossRef]
3. Selsam, D.; Liang, P.; Dill, D.L. Developing bug-free machine learning systems with formal mathematics. In Proceedings of the

International Conference on Machine Learning, Vienna, Austria, 12 July 2020.
4. Xu, J.; Yu, Z.; Ni, B.; Yang, J.; Yang, X.; Zhang, W. Deep kinematics analysis for monocular 3D human pose estimation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 14 June 2020.
5. Korovesis, N.; Kandris, D.; Koulouras, G.; Alexandridis, A. Robot motion control via an EEG-based brain–computer interface by

using neural networks and alpha brainwaves. Electronics 2019, 8, 1387. [CrossRef]
6. Yang, K.; Deng, J. Learning to prove theorems via interacting with proof assistants. In Proceedings of the International Conference

on Machine Learning, Taiyuan, China, 8 November 2019.
7. Zholtkevych, G. Event universes: Specification and analysis using Coq Proof Assistant. In Proceedings of the ICTERI Workshops,

Kherson, Ukraine, 12 June 2019.
8. Vu, V.H. Recent progress in combinatorial random matrix theory. Probab. Surv. 2021, 18, 179–200. [CrossRef]
9. Dou, R.; Yu, S.; Li, W.; Chen, P.; Xia, P.; Zhai, F.; Yokoi, H.; Jiang, Y. Inverse kinematics for a 7-DOF humanoid robotic arm with

joint limit and end pose coupling. Mech. Mach. Theory 2022, 169, 104637. [CrossRef]
10. Alkassar, E.; Böhme, S.; Mehlhorn, K.; Rizkallah, C. A framework for the verification of certifying computations. J. Autom. Reason.

2014, 52, 241–273. [CrossRef]
11. Ben Hafaiedh, I.; Ben Hamouda, R.; Robbana, R. A model-based approach for formal verification and performance analysis of

dynamic load-balancing protocols in cloud environment. Clust. Comput. 2021, 24, 2977–2994. [CrossRef]
12. Vicentini, F.; Askarpour, M.; Rossi, M.G.; Mandrioli, D. Safety assessment of collaborative robotics through automated formal

verification. IEEE Trans. Robot. 2019, 36, 42–61. [CrossRef]
13. Foughali, M.; Zuepke, A. Formal verification of real-time autonomous robots: An interdisciplinary approach. Front. Robot. AI

2022, 9, 1–25. [CrossRef] [PubMed]
14. Chen, S.; Wang, G.; Li, X.; Zhang, Q.; Shi, Z.; Guan, Y. Formalization of camera pose estimation algorithm based on Rodrigues

formula. Form. Asp. Comput. 2020, 32, 417–437. [CrossRef]
15. Carvalho, R.; Cunha, A.; Macedo, N.; Santos, A. Verification of system-wide safety properties of ROS applications. In Proceedings

of the International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 24 October 2020.
16. Kortik, S.; Shastha, T.K. Formal verification of ROS-based systems using a linear logic theorem prover. In Proceedings of the IEEE

International Conference on Robotics and Automation, Xi’an, China, 30 May 2021.
17. Murray, Y.; Sirevåg, M.; Ribeiro, P.; Anisi, D.A.; Mossige, M. Safety assurance of an industrial robotic control system using

hardware/software co-verification. Sci. Comput. Program. 2022, 216, 102766. [CrossRef]
18. Rathmair, M.; Haspl, T.; Komenda, T.; Reiterer, B.; Hofbaur, M. A formal verification approach for robotic workflows. In

Proceedings of the International Conference on Advanced Robotics, Ljubljana, Slovenia, 6 December 2021.

https://github.com/GuojunXie123/RFV.git
http://doi.org/10.3390/e24020279
http://www.ncbi.nlm.nih.gov/pubmed/35205573
http://dx.doi.org/10.3390/electronics9020255
http://dx.doi.org/10.3390/electronics8121387
http://dx.doi.org/10.1214/20-PS346
http://dx.doi.org/10.1016/j.mechmachtheory.2021.104637
http://dx.doi.org/10.1007/s10817-013-9289-2
http://dx.doi.org/10.1007/s10586-021-03305-4
http://dx.doi.org/10.1109/TRO.2019.2937471
http://dx.doi.org/10.3389/frobt.2022.791757
http://www.ncbi.nlm.nih.gov/pubmed/35494538
http://dx.doi.org/10.1007/s00165-020-00520-5
http://dx.doi.org/10.1016/j.scico.2021.102766

Electronics 2023, 12, 369 23 of 23

19. Lestingi, L.; Askarpour, M.; Bersani, M.M.; Rossi, M. Formal verification of human-robot interaction in healthcare scenarios. In
Proceedings of the International Conference on Software Engineering and Formal Methods, Amsterdam, The Netherlands, 14
September 2020.

20. Praveen, A.T.; Gupta, A.; Bhattacharyya, S.; Muthalagu, R. Assuring behavior of multirobot autonomous systems with translation
from formal verification to ROS simulation. IEEE Syst. J. 2022, 16, 5092–5100. [CrossRef]

21. Arnett, T.; Ernest, N.; Kunkel, B.; Boronat, H. Formal verification of a genetic fuzzy system for unmanned aerial vehicle navigation
and target capture in a safety corridor. In Proceedings of the North American Fuzzy Information Processing Society Annual
Conference, Washington, DC, USA, 20 August 2020.

22. Foughali, M.; Hladik, P.E. Bridging the gap between formal verification and schedulability analysis: The case of robotics. J. Syst.
Archit. 2020, 111, 101817. [CrossRef]

23. Fatkina, A.; Iakushkin, O.; Selivanov, D.; Korkhov, V. Methods of formal software verification in the context of distributed
systems. In Proceedings of the International Conference on Computational Science and Its Applications, Saint Petersburg, Russia,
1 July 2019.

24. Ma, Z.W.; Chen, G. Matrix formalization based on Coq record. Comput. Sci. 2019, 7, 139–145.
25. Ma, Y.Y.; Chen, G. Coq-based matrix code generation technology. J. Softw. 2022, 33, 2224–2245.
26. Zhang, Y.; Guo, J.; Li, X. Study on redundancy in robot kinematic parameter identification. IEEE Access 2022, 10, 60572–60584.

[CrossRef]
27. Ali, Z.A.; Zhangang, H. Maneuvering control of hexrotor UAV equipped with a cable-driven gripper. IEEE Access 2021, 9,

65308–65318. [CrossRef]
28. Shah, K.; Mishra, R. Modelling and optimization of robotic manipulator mechanism for computed tomography guided medical

procedure. Sci. Iran. 2022, 29, 543–555. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JSYST.2022.3149677
http://dx.doi.org/10.1016/j.sysarc.2020.101817
http://dx.doi.org/10.1109/ACCESS.2022.3181206
http://dx.doi.org/10.1109/ACCESS.2021.3076129
http://dx.doi.org/10.24200/sci.2021.57259.5149

	Introduction
	Related Works
	Preliminaries
	Matrix Formalization Based on Record Type
	Rotary Kinematics

	Formalization of the Spatial Geometry
	Formalization of the Matrix Trace
	Formalization of the Matrix Frobenius Norm
	Formalization of the Matrix Inner Product
	Vector Formalization

	Formalization of the Rotary Kinematics
	Global and Local Coordinate Systems
	Formalization of Rotary Motion
	Formalization of Revolution Motion
	Formalization of Rotation Motion
	Relationship between BAG and GQB

	Euler Angles
	Euler Angles per the xyz Convention
	Euler Angles per the zxz Convention

	Rodriguez Formula
	Proof of the Existence of the Rodriguez Formula
	Formal Definition of the Rodriguez Formula
	Equivalence between the Rodriguez Formula and a Revolution around RAG
	Non-Uniqueness of the Revolution Axis and Angle
	Generalized Rodriguez Formula

	Case Analysis and Verification
	Revolution around the Global Coordinate System
	Rotation around the Local Coordinate System
	Euler Angle Cases
	Rodriguez Revolutions

	Conclusions
	References

