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Abstract: Due to the fact that the quality of the received signal is adversely affected by the beam
squint phenomenon, which is especially pertinent to the millimeter wave (mmwave) bands, many
studies have been utilised by other researchers to provide light on some of the challenges that come
with analysing this type of occurrence. Squint causes several issues, the most important of which are
its detrimental effects on gain, line of sight, angle of arrival, progressive phase, usable bandwidth, and
fading effect. As a result of these obstacles, the advantages of adopting a high-frequency band such
as mmwave in modern wireless communication systems are severely limited. Squint-phenomena-
related difficulties, such as decreased channel capacity, increased bit error rate (BER), and lowered
quality of services, may have a substantial detrimental impact on channel performance. The squint
phenomenon and associated issues become more pressing with the expansion of the frequency
spectrum and the deviation of the arrival angle from boresight. The purpose of this article is to
provide a comprehensive overview of the relevant literature and to compare and contrast various
methods in order to identify the most fruitful lines of inquiry for future research.

Keywords: beam squinting; massive MIMO; millimeter waves

1. Introduction

In today’s world, almost everyone has a mobile device, and the number of people who
do is growing. Concurrently, the number of interactive multimedia apps is also growing,
and experts predict that this pattern will continue into the foreseeable future [1]. In spite
of the fact that mobile technologies of the first, second, third, and fourth generations have
spent the last 25 years working to increase the speed and efficiency of wireless networks,
there are still some specific application areas in which current wireless networks are unable
to deliver [2]. As the need for mobile traffic steadily develops, a bottleneck between
spectrum constraints and capacity requirements is becoming more obvious. This bottleneck
is becoming more and more apparent. The wireless bandwidth bottleneck is one of the
most serious challenges faced by 5G communications [3]. Wireless carriers need to be ready
to sustain a growth in total mobile traffic that may be as much as 1000 times higher than
it is now since the need for capacity in mobile broadband communications is growing
at a substantial rate each year. The pursuit of inventive solutions is required in order to
make the transition to the fifth generation (5G) of wireless technology [4]. Because of the
growing need for bandwidth, the millimetre wave spectrum has been standardised for
use in high-speed wireless communication [5]. mmwaves are an interesting possibility
since they have a significant amount of bandwidth and spectrum that is readily available
(approximately 60 GHz) [6]. mmwave communications may make use of the large capacity
that is now being underutilised, which will help them fulfil the high demands of the future
generation of wireless networks [7].
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Although the potential bandwidth of mmwave frequencies is promising, the prop-
agation characteristics of these frequencies are very different from those of microwave
frequency bands [8]. These propagation characteristics include path loss, diffraction and
blockage, rain attenuation, air absorption, and foliage loss behaviours. The massive
multiple-input multiple-output (MIMO) technology is a potential answer to this prob-
lem. With this technology, a considerable number of antennas might provide sufficient gain
to compensate for the route loss [9,10]. Massive MIMO over mmwaves is a novel approach
that combines the benefits of massive MIMO antenna arrays with the vast amount of
bandwidth that is currently accessible over mmwaves [11]. Massive MIMO over mmwaves
has the potential to revolutionise wireless communication. Beam squint is one of the issues
that arise in mmwave communications. This issue manifests itself as a change in the spatial
direction of a beam as a function of frequency. As a consequence, there are discernible
variations in the path phases at various frequencies.

In this paper, we explore the research that has been conducted so far on the subject
of beam squint and how it might be alleviated while also minimising the complexity and
expense of hardware implementation. Specifically, we examine how it might be possible
to fix the problem while also keeping the implementation as simple and inexpensive as
possible. Additionally, the segment of the research that relates to the exploitation of beam
squint is presented in this study. The following is the structure of the paper: In Section 2, we
discuss the many issues that pertain to the broadband communication. In the third section,
the research that pertains to the beam squint effects are presented. While the research
concerning the beam squint exploitation are discussed in Section 4, this section also focuses
on other topics. Section 5 is where the conclusion of the paper can be found.

2. Broadband Communication
2.1. Millimeter Waves and Massive MIMO

In order to attain more bandwidth than traditional frequency bands, 5G and the follow-
ing 6G mobile networks operate in high-frequency zones [12]. This allows for high-capacity
wireless transmission of data at speeds up to several gigabits per second (Gbps) [13]. It is
generally agreed that mmwave communication [14] is one of the most crucial technologies
for reaching peak data rates of 10 Gbit/s [15]. This is due to the fact that increasing the
bandwidth is an effective method for increasing the system’s capacity [7] and that there
is a lot of bandwidth available in the mmwave channels. Measurement and modeling of
mmwave channels [16] and assessment of the band’s potential for future wireless systems
have received significant academic and industrial attention because of the spectrum’s
abundance [17]. However, due to negative propagation effects, particularly those brought
on by obstructions in the line of sight (LoS), these high frequencies have been used only
sparingly up to this point [18]. It is important to handle the greater propagation losses asso-
ciated with mmwave frequencies, especially beyond 100 m and in non-line of sight (NLoS)
environments [19]. On the one hand, signal transmission becomes more difficult in areas
with dense foliage and higher propagation loss [20]. Nonetheless, the link could be forced
into the low signal-to-noise ratio (SNR) zone due to the constrained send signal power
dispersed over a broad bandwidth [21]. To address these problems, several transceiver
topologies have been created that steer the received or broadcast beams in the appropriate
direction. [22]. The two main technologies that will enable 5G mmwave communication are
MIMO and beamforming [23]. Beamforming is a method for using MIMO/array elements
to direct the main lobe radiation beam at the transmitters and receivers in the desired
directions, eliminating the undesirable spatial selectivity [24]. The beamforming array is
widely divided into the following categories: analog, digital, and hybrid beamforming
array [25]. Figure 1 shows the block diagram of massive MIMO system.
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log-to-digital converter (ADC) in the receiver or a digital-to-analog converter (DAC) in 
the transmitter. Frequency-up converters, power amplifiers, and other components form 
a transmitter’s RF chain; low-noise amplifiers, frequency-down converters, and other 
components form a receiver’s RF chain [27]. 

The phased array’s antenna weights are required to be digitally controllable phase 
changes. The relative amplitudes of the signal sent into the antennas of the transmitter 
cannot be adjusted, and the phases of the phase shifters are normally quantized to low 
resolution [28]. A beam is created as a result of the send signal, which is constructive in 
certain directions and destructive in others. On the basis of precise beam-steering tactics, 
the phase shifters’ phases can be dynamically changed. The receiver has a similar set of 
features [27]. 
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2.1.2. Digital Beamforming 
The radio frequency (RF) signal in a digital array is transformed into a digital signal 

at the sub-array or element level, and beamforming is accomplished using a digital signal 
processor [30]. In order to process the control signals for beamforming, a digital signal 
processor is used, which offers additional flexibility and degrees of freedom for the im-
plementation of effective beamforming algorithms. Due to the method’s requirement for 

Figure 1. Functional block diagram of massive MIMO system [26].

2.1.1. Analog Beamforming

The architecture of analog beamforming is shown in Figure 2. A phased array is
used to accomplish analog beamforming, and the single RF chain is powered by either an
analog-to-digital converter (ADC) in the receiver or a digital-to-analog converter (DAC)
in the transmitter. Frequency-up converters, power amplifiers, and other components
form a transmitter’s RF chain; low-noise amplifiers, frequency-down converters, and other
components form a receiver’s RF chain [27].

The phased array’s antenna weights are required to be digitally controllable phase
changes. The relative amplitudes of the signal sent into the antennas of the transmitter
cannot be adjusted, and the phases of the phase shifters are normally quantized to low
resolution [28]. A beam is created as a result of the send signal, which is constructive in
certain directions and destructive in others. On the basis of precise beam-steering tactics,
the phase shifters’ phases can be dynamically changed. The receiver has a similar set of
features [27].
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2.1.2. Digital Beamforming

The radio frequency (RF) signal in a digital array is transformed into a digital signal at
the sub-array or element level, and beamforming is accomplished using a digital signal
processor [30]. In order to process the control signals for beamforming, a digital signal
processor is used, which offers additional flexibility and degrees of freedom for the imple-
mentation of effective beamforming algorithms. Due to the method’s requirement for a
separate RF chain for each antenna element, it consumes a great deal of power and has a
complicated architecture [31]. Figure 3 shows the structure of digital beamforming.
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2.1.3. Hybrid Beamforming

Recently, interest in the hybrid analog/digital beamforming array has increased [32,33].
This type of array increases the efficiency of analog beamforming while reducing the
complexity of digital beamforming [34]. The hybrid beamformer is composed of two parts:
an analog and a digital component [35]. The RF chains that compose the digital portion
share a common structure with the many plans under discussion. For each user on each
subcarrier, a hybrid beamforming’s digital component can be used, just like in traditional
fully digital beamforming. In contrast, this is not true of the hybrid beamforming analog
network or analog component. Since the transmitted signals for all users are combined by
the digital beamformers and analog RF beamforming is a post-IFFT (inverse Fast Fourier
Transform) operation, all users and subcarriers in an analog network share the same RF
component [36]. Hybrid beamforming’s fundamental architecture is depicted in Figure 4.
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Beam squint is a phenomenon caused by the frequency dependence of the magnitude
of the phase shift in analog beamforming [37]. This can cause issues with wideband com-
munication. The Digital Signal Processing (DSP) logic and digital beamforming algorithms
can both use actual time delay. As a result, a phased array architecture with every element
digitalized would naturally lend itself to solving the frequency dependency problem as
well as offer the greatest degree of programmable flexibility. However, issues with this
solution’s strength, size, and price can arise.

A time delay among elements occurs as a wavefront approaches an array of elements,
and it depends on the wavefront angle in relation to boresight. The beam steering can be
achieved with a single frequency by substituting a phase shift for the time delay [38]. This
is true for narrowband waveforms, but in wideband waveforms when a phase shift is used
to provide beam steering, the beam’s direction can change with frequency. As a result, the
needed phase shift varies with frequency for a given beam direction. Alternately, the beam
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direction varies with frequency for a given phase shift. Beam squint is the effect where the
beam angle changes depending on the frequency [39]. Figures 5 and 6 shows the effect of
beam squint.
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In addition, keep in mind that there is no phase shift between the elements at boresight
(θ = 0◦); hence, there is no way to induce any beam squint. As a result, both the frequency
variation and the angle must be functions of the amount of beam squint [38]. Beam
squint can seriously affect performance since mmwave communications depend heavily
on accurate beam alignment between the transmitter and the receiver [40].

2.2. Effect of Beam Squint on the Communication System Performance

• Bandwidth and Capacity:

The system bandwidth in wideband communication is constrained by the beam-
squint phenomenon [41]. The beam squint effect is closely correlated to bandwidth; as
bandwidth rises, the beam squint effect becomes more pronounced, and a larger fraction of
the subcarriers experience tiny array gains. Even outside the main lobe, certain subcarriers
may exist. As a result, the whole system’s capacity starts to decline [42]. Figure 7 shows
the channel capacity versus the bandwidth with and without beam squint. It is clear from
this figure that the capacity decreases as the array’s element count, fractional bandwidth,
and beam focus angle rise.
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• Channel estimation:

Channel estimation algorithms for Orthogonal Frequency Division Multiplexing
(OFDM), Maximum Mean Square Error (MMSE) estimator, and Maximum Likelihood
Estimation (MLE) estimator are widely used [41]; however, these estimators do not con-
sider beam squint phenomena. In [42], the MLE channel estimator was used to investigate
the effect of beam squint on the estimation process, Fading was considered fixed, and the
results showed that beam squint increases the error of channel estimation, even without
any noise. The error also increases with increasing the number of antenna elements in
the array, fractional bandwidth, and the magnitude of beam focus angle. Figure 8 shows
an example of the MLE channel estimation with beam squint, where H(n) represents the
true channel, and H (̂n) represents the estimated channel. It is clear from this figure that
there is a difference between the actual channel and the estimated channel, even without
considering the noise.
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3. Studies Related to the Beam Squint Effects

Since the 1990s, beam squint phenomena in antenna attracted much attention; in [43],
the authors drew a comparison between prime focus beam squint and offset fed of mi-
crostrip reflect arrays. Results from an examination of a linear reflectarray are presented,
and a straightforward criterion for decreasing beam squint with frequency is discussed.

The author in [44] describes the design of a tri-mode matched feed horn in order to
counteract the effects of beam squinting in a circularly polarized offset parabolic reflector
antenna. Three modes—TE11, TM11, and TE21—are merged in a conical horn at the correct
amplitude and phase ratio to provide a tri-mode matched feed arrangement. The circularly
polarized offset parabolic reflector antenna is then lit using the suggested tri-mode horn as
the primary feed mechanism. The radiation parameters of the offset reflector are simulated,
the amount of beam squinting is calculated, and the results are compared with those of a
conventional offset reflector fed by a potter horn. The study also includes the experimental
findings regarding the secondary radiation pattern.

In [45], in order to calculate beam squinting in a phased array antenna system, a general
formula was created. This formula is especially useful for estimating wide band beam
squinting (time-delay) in phased array antenna systems. To determine beam squinting, the
authors calculated the criterion (fφ = 0, cell) from the delay cell’s phase-transfer function,
then used (fφ = 0, cell) as a parameter in the beam-squinting formula.

In radar communications, the beam squint phenomena were studied in [46]. By
employing phase shifters as opposed to time-delay, Matt Longbrake was able to construct a
formula for beam squint and demonstrated how the array factor varies. In order to address
the beam squint issue, true temporal delay (TTD) beam steering was applied using two
different techniques, the first of which was dubbed optical delay lines, and the second,
electronic delay lines. In the first technique, an RF signal was used to modulate a laser
diode’s bias current. A length of optical fiber delays the light, which is subsequently
transformed by a photodetector back into an electronic signal.

The main drawback of optical time delay was the modulator’s and detector’s subpar
RF performances, particularly insertion loss. Traditional microstrip lines or coax wire was
employed in electronic technologies to delay the signal. Overall, the results demonstrated
that TTD beam steering outperforms phase shifters; however, this implementation came at
a considerable cost and complexity of the system.

Waleed A. and Amir M. in [47] implemented a novel design for a serially fed antenna
array using a negative group delay (NGD) in their study of the beam squint problem in
mobile communication [48]. Each active antenna unit included an amplifier, a T-junction
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power divider, and an antenna in the array of series-fed active antennas that composed the
design (see Figure 9).
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Beam squinting was a significant problem with the conventional series-fed antenna
array. To solve this issue, the phase shift among the antennas should be frequency-
independent. In other words, there cannot be a delay in the group. To achieve zero-group
delay between the adjacent antennas, a negative group delay (NGD) circuit was added to
the feed line. The variance of phase shift with frequency was decreased and the beam squint
was minimized by fusing the NGD circuit with the connecting line. With no additional
losses, this method significantly reduced the beam squint problem by a factor of six.

In [49], the authors investigated the 60 GHz mmwave wireless communication beam-
forming process’s beam squint issues in 2013. The goal of beamforming was to choose the
best weight vectors for the transmitter and reception antennas with high antenna gains or
the best beam pattern pairings, and this criterion depended on several factors, including
capacity, the signal-to-noise and interference ratio (SNIR), and others. It was found that the
phenomena of beam squint are caused by distinct frequency bands away from the 60 GHz
core frequency.

The authors established three different codebook strategies in order to cut down on
beam squint. The initial methodology is referred to as the “Phase Improvement Scheme
Based on 3C Codebook.” The authors of this plan developed codebooks for a number
of different bands and altered the phase by utilising an additional phase shifter. The
suppression of the beam squint resulted in a reduction in the amount of spatial interference
and an increase in system capacity. On the other hand, the enhanced system capacity came
at the expense of an increase in the complexity of the implementation. A comparison of the
most common approaches of removing the squint effect from beams is shown in Table 1.

Table 1. Comparison among the main methods used to remove beam squint effect.

Parameter Digital Beamforming Analog Beamforming Codebook Design

Complexity High complexity Acceptable complexity

Increases the number of
phase shifters, which
increases the
complexity

Cost
Increased hardware
requirements lead to a
high cost

Compared with their
digital counterparts, the
costs are much lower

Power and cost rose
significantly

Effectiveness Incredibly efficient at
correcting the squint

Has the potential to
decrease the effect of
squinting and improve
efficiency

Able to significantly
lessen the “squint”
effect
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The authors proposed the “MRA Alignment Scheme Based on Uniform-Weighting
Codebook” as the second scheme to enhance system performance. The final proposal
assumed that since neighboring parts have a strong correlation, it was possible to alter the
phase of two nearby antennas using a single-phase shifter, which significantly reduced the
complexity of the transceiver.

Figure 10 shows compression among the three schemes as a function of the system
capacity. Although these schemes worked very effectively in removing the beam squint,
they increased the system complexity by increasing the number of phase shifters.
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In [50], the beam squint problem in Uniform Linear Array (ULA) was modelled, and
its effect on codebook design was analyzed. The study demonstrated that beam squint
reduces the bandwidth that is usable. The authors created an algorithm to fix codebook
designs with beam squint. The goal of codebook design was to ensure that every beam
exceeds a specified threshold and has a minimal gain for a variety of frequencies and angles
in the wideband system. Analysis and numerical examples indicated that to account for
beam squint, a denser codebook was needed. In other words, compared with a codebook
design that disregards beam squint, more beams were required.

In order to boost the expected average beam gain, the authors of [51] studied the beam
squint issue in mmwave communication and suggested a beamforming architecture that
optimizes average beam gain inside the bandwidth while minimizing average beam gain
outside the bandwidth. Additionally, the design shows little variation in the bandwidth at
various frequencies. To take into account the beam squint and guarantee constant beam gain
for each subcarrier in the wideband system, the authors suggested a beamforming approach
based on space–time block coding. In order to offer a less-than-ideal answer, on the basis of
eigenvalue decomposition, the semidefinite relaxation (SDR) approach was applied. The
simulation results showed that, under specific circumstances, the suggested transmission
method can effectively reduce beam squint and improve wideband communication systems’
throughput performance.

In order to demonstrate how the number of antenna elements influences beam squint
and how wideband beam squint affects the traditional narrowband models, an analysis of
capacity was carried out in [52]. Combining two state-of-the-art cooperative algorithms led
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to the suggestion of a method for assigning subcarriers to beams. The first methodology
determines the optimal beams for allocation in a multi-carrier implementation and deter-
mines how much beam squint is present in the system, whereas the second methodology
maps data to the appropriate beams. The results of the investigation showed that beam
squint significantly affected system capacity. The results also showed that beam squint
might be utilized to better manage resources and expand system capacity, as shown in
Figure 11.
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The beam squint effect on channel estimation had been analyzed in [53]. In this study
the authors clarified that beam squint in an MIMO-OFDM system causes the subcarri-
ers to see distinct angles of the same path and renders the existing channel estimation
and precoding algorithms inapplicable. For frequency-division duplex (FDD) mmwave
massive MIMO-OFDM systems with hybrid analog/digital precoding, the authors sug-
gested a channel estimation approach that takes the beam squint effect into account. The
angle of arrival (AoA) and time delay, which are frequency-insensitive parameters of each
uplink channel path, as well as the complex channel gain, which is frequency-sensitive,
were extracted using a compressive sensing-based methodology. The reciprocity of these
frequency-insensitive parameters in frequency division duplex (FDD) systems allows for a
significant simplification of the downlink channel estimating process, using only a small
number of pilots to acquire the downlink complex gains and reconstruct the downlink chan-
nels. The results of this study showed that the proposed channel estimation scheme can
perform better than the other conventional methods under general system configurations
in mmwave communication.

The authors of [54] developed an off-grid CSS technique to calculate the uplink channel
and offered a non-negligible beam squint in the field of channel estimation with beam
squint. According to the authors, the direction of arrival (DOA) and the delay parameters
might be calculated from the signals received on the uplink channel’s pilot subcarriers
using a shift-invariant block-iterative gradient technique. The entire set of channels over all
subcarriers was then rebuilt using the DOA and delay settings. The outcomes demonstrated
that this offered superior outcomes in comparison with previous approaches that neglected
to account for beam squint.
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The authors in [55] present a unique digital method for correction of beam squint by
utilizing Nonlinear Frequency Modulation (NLFM) Tansec waveforms when addressing
phase-based phased array antennas. An algorithm was designed that chooses Tansec wave-
forms with phases that rectify FM-induced phase variations in the necessary transmitted
signals phases. Simulations for a typical 77 GHz automobile radar with a 3 GHz BW show
that the suggested technique can reduce beam squint.

The authors of [56] examined the issue of estimation of channel for mmwave MIMO
systems with hybrid beamforming. A beam squint for channel estimation and an asymp-
totically ideal analog-beam scanning and pilot tone allocation system were developed. The
suggested architecture is expanded to include the Uniform Planar Array (UPA) situation
that satisfies the channel vectors’ asymptotic orthogonality. To further support the effec-
tiveness of the proposed design, a numerical comparison with the computed Cramer Rao
lower bound (CRLB) was performed.

The wideband mmwave communication supported by a reconfigurable intelligent
surface (RIS) suffering from the beam-squinting effect was first studied by [57]. Each
component of the RIS is a nearly passive device, similar to the phase shifter [58], and it is
a novel sort of “array” that has garnered considerable interest from both academics and
the industry. Compared with a conventional antenna array, which has energy-hungry
radio frequency chains, RIS is able to adaptively reflect the incident signals in the desired
directions while using less power. Given that a passive reconfigurable intelligent surface
(RIS) is applied in time domain and that mmwaves communications will have bandwidths
up to several GHz, the phase shifts are assumed symmetrical for all frequencies. This will
result in significant performance degradation. Several phase shifter design ideas were put
forth to address the beam squint issue, taking into consideration both line of sight and
non-line of sight instances.

A near-optimal phase shift design approach was developed, which is dependent only
on the long-term angle data after identifying the best phase shift for each frequency in the
LoS scenario. To achieve this, the obtained upper bound of the cumulative attainable rate
was maximized. For the non-line of sight (NLoS) scenario, a method based on the mean
channel covariance matrix (MCCM), was presented in order to determine the common
phase shift for all frequencies. When a large number of components or a high bandwidth
were used in the RIS, the detailed numerical analyses showed that the beam squint would
result in a performance loss of more than 3 bps/Hz, and the effectiveness of the suggested
approaches was proven to lessen the influence of the beam squint.

In [59], two wideband hybrid beamforming techniques were proposed. The authors’
first approach suggested dividing the array into virtual subarrays, as illustrated in Figure 12,
to produce a bigger beam and provide an evenly distributed array gain across the entire
operational frequency spectrum. Results showed that this technique can reduce beam
squint to some extent.

The second method modified the analog beamformer/combiner for a hybrid phased
array transceiver on the basis of true time delay lines (TDD). Instead of replacing the phase
shifters entirely, a small number of TTD lines are utilized to reduce the costs. The phase
shifters were divided into groups and each group had one TTD line, as shown in Figure 13.
The results of this method showed better results in removing beam squint while reducing
the cost.

In [60], the authors investigated the impact of beam squinting on single carrier fre-
quency domain equalization (SC-FDE) transmission systems used in mmwave commu-
nications. In high-throughput mmwave LoS multiple-input single-output (LoS-MISO)
systems, the response of a uniform linear array (ULA) antenna and the common analog
beamforming vector was described as a spatial equivalent channel. It was discovered
through analysis of the spatial equivalent channel’s characteristics that it behaves similarly
to frequency-selective fading. The spatial equivalent channel’s deep fading points were
eliminated using an improved analog beamforming technique based on the Zadoff-Chu
(ZC) sequence. The receiver then uses low-complexity linear zero-forcing and minimal
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mean squared error equalizers to reduce ISI brought on by the beam squint. The simulation
results show that the proposed analog beamforming based on ZC can successfully reduce
the performance impact of beam squint.
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Beam squint in RF lens antenna was discussed in [61] for ultra-wideband millimeter-
wave (mmwave) systems. According to the authors of this study, phased array antennas
are not affected by the same factors that cause RF lens antenna beam squint. According
to Snell’s law, if an electromagnetic wave passes through a dielectric lens, it will be bent.
Refraction is a result of permittivity being a function of frequency, one of the reasons of
beam squint, according to the Drude–Lorentz model [62]. Due to the resonance frequency
and damping constant, permittivity is also nonlinear. Permittivity has both genuine and
fictitious components. The real component is represented by the dielectric constant, and
the tangent loss is the ratio of the real to the imaginary component. As can be seen, the
component of the refractive index, known as the real part, is the one that determines the
degree to which the beam is deflected. Because permittivity affects the actual portion of the
refractive index, the beam squints at the lens when a wave with a different frequency band
travels through a material with a different degree of refraction, as shown in Figure 14. This
occurs because a wave with a different frequency band travels through a material with a
different degree of refraction.
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To make fully digital beamforming less complicated, the authors developed hybrid
beamforming. The lens structure at the front of the antenna array and the antenna array
itself formed the two components of the RF lens antenna. The analog beamforming process
uses the lens structure to concentrate the beam produced by the antenna array. With the
antenna switched on and off, beam steering was accomplished utilizing lens refractions.
Under comparable circumstances for beam squint, beamforming gain, and received power,
the authors compared and contrasted the lens antenna and the phased array. Through
study, they were able to confirm that stable permittivity materials can be used to minimize
the beam squint issue with the RF lens system. Then, they demonstrated the reduced
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spectral efficiency brought on by beam squint for both the lens antenna and the phased
array using 3D ray tracing in an interior setting. Finally, they used the constructed RF lens
to illustrate the indoor mmwave link level and to confirm that beam squint negatively
affects performance.

In [63], the authors proposed a transceiver design based on lens antenna subarray
(LAS) and analog sub-band filters to compensate for the beam squinting. The design
is based on the idea of dividing the ultra-wideband signal into narrowband beams and
controlling them with a simplified exhaustive search-based precoding that is proposed to
align the beam angle to the target direction. Analysis was based on various performance
parameters, such as beam gain, complexity, power consumption, and capacity. The pro-
posed design involved using both phase shifters and switching networks to steer the beam
to compensate for the beam-squinting problem while maintaining the intended beamwidth
performance. Phase shifters were used to steer the beam to the desired direction on the
basis of the location of the targeted user, and the switching mechanism was used to select
an antenna element under the lens that can correct/minimize the deviation of the beam
(due to squinting) from the intended direction. The results of this study showed significant
performance improvement. However, this study requires the use of high-quality narrow-
band filters for higher frequencies. This can increase the complexity of the system as well
as the cost.

Another approach, based on reconfigurable intelligent surface for satellite-to-terrestrial
relay networks, was developed and described in [64]. The Taylor expansion and penalty
function methods were used in this approach to optimise phase shifters between the surface
unit cells by adding a weight function in order to maximise the channel performance under
certain conditions.

4. Studies Related to the Beam Squint Exploitation

Beam squint is not always a bad thing; the idea of the main beam changing direction
with frequency was appealing for many researchers, and some studies even used it to
enhance system performance. For instance, in [65], the authors formed many beams
using the beam-squinting property of planar arrays using wideband perfect phase shifters
instead of an existing hybrid structure. The following steps can be used to describe the
work: initially, the authors determined the beam characteristics of the wideband array.
Second, they created a coplanar array using the concept of the fractal that can operate
across three mmwave frequency bands. The array’s phase shifter was then swapped with
one based on cells, as shown in Figure 15, which illustrates the steps for the suggested
Sierpinski carpet antenna array with three antenna tiers, and in Figure 16, which illustrates
the extensions and variations of the three-tier Sierpinski carpet array. Finally, they created
the squinting multi-beam algorithm that facilitates multi-user communications on the basis
of the beam-squinting property of the wideband array with optimal phase shifters. Under
ideal circumstances, the study demonstrated an improvement in system performance
(mutual coupling and isotropic elements were assumed).

In [66], a joint optimization design based on non-orthogonal multiple access-based
satellite–terrestrial integrated network at mmwave was developed for cellular network tech-
nology. They developed, in their work, a user pairing scheme, therefore; non-orthogonal
multiple access technique was exploited through grouping more than two users in the
same cluster.

In [67], the authors explained how beam squint can be utilized for user localization.
The author’s idea was to control the beam squint using time delays and using it for
localization. They created a method to regulate the trajectory of these beam squint points
by deriving a trajectory equation for near-field beam squint points, as shown in Figure 17.
In order for users in various positions to obtain the most power at various subcarriers,
beamforming from various subcarriers would purposefully point to various angles and
distances. Therefore, using the beam squint effect, one can easily determine the positions
of the various users. The efficiency of beam squint in user localization can be shown from
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the study’s findings. In addition, the same authors in [67] applied an advanced technique,
called reconfigurable intelligent surface (RIS) [68], which suppressed the beam-squinting
effect in broadband mobile communication.
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We believe that, in the future, there will be a considerable number of studies that,
rather of focusing on eliminating beam squint, would instead focus on using it in a certain
way in order to accomplish a certain goal. As a direct consequence of this, mmwave
communication systems will become simpler and less expensive. Table 2 is a synopsis of
the studies that were conducted on beam squint by a number of different people, and it lists
the conclusions from that research. We have accomplished all that is within our ability to
answer the most pertinent results and remarks, in addition to the several types of methods
that were used in these studies. It was found that the tradeoff between the array size and
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the reduction of the impacts of beam squint was significantly similar and directly related
to the cost and design complexities of the hardware that was employed for these systems.
This was found to be the case after it was discovered that these two factors were directly
related to each other.
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Ref. Year Method Results Remarks

[46] 2012 TTD instead of phase shifters TDD provided good result in
overcoming beam squint Increasing complexity and cost

[47] 2012 Negative Group Delay Circuits Reduced the beam squint Hardware complexity

[49] 2013 Three beamforming codebook design
schemes Reduced the beam squint

Increases the number of phase
shifters, which increases power
usage and complexity

[50] 2016 Algorithm that ensures minimum gain for
all frequencies and angles Reduced the beam squint

Greatly increases the size of
codebook, which leads to high
latency

[51] 2018 Alamuti-based beamforming scheme
May successfully fix the beam
squint and increase throughput
performance.

Proposed beam pattern
optimization involves
eigenvalue and -vector
computation, the computation
complexity of this scheme grows
with the number of antennas

[52] 2019 Proposed subcarrier-to-beam allocation
scheme

Exploited beam squint to
enhance system performance

Hardware complexity since it is
applied in digital domain

[53] 2019

Frequency-division duplex (FDD) massive
MIMO-OFDM systems with hybrid
analog/digital precoding using a channel
estimation scheme

Provided more accurate channel
estimation than other conventual
methods

The assignment of pilot
subcarriers and the design of
training beams were not
considered
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Table 2. Cont.

Ref. Year Method Results Remarks

[54] 2019 Shift-invariant block-sparsity-based
compression sensing (CS) algorithm

Provided more accurate channel
estimation than other conventual
methods

-

[55] 2020
Tansec waveform with nonlinear
frequency modulation to account for
carrier frequency variation

Beam direction error was
reduced

Implemented in digital domain
which increase complexity

[56] 2021

Algorithm for channel estimation using
the greatest likelihood criterion in relation
to the analog training beam and pilot
subcarrier assignment

The proposed algorithm
minimized the mean square
error

-

[57] 2021

For RIS-aided wideband (mmwave)
communications, phase shift design
approaches are used to reduce the impact
of beam squint in both LoS and NLoS
scenarios

Beam squint in such systems
was effectively reduced by the
proposed phase shift architecture

-

[59] 2021 Virtual subarrays and TDD lines Effective in removing beam
squint Increasing hardware complexity

[60] 2021
Advanced analog beamforming method
proposed based on the Zadoff-Chu (ZC)
sequence

The performance loss caused by
the beam squint can be
efficiently reduced using the
suggested strategy

-

[61] 2021 Three-dimensional electromagnetic
analysis software

Clarify how beam squint
occurred in RF lens antenna and
compare its effect with phased
array antenna

-

[63] 2022
Transceiver design based on lens antenna
subarray (LAS) and analog sub band
filters

Results showed performance
enhancement

Higher frequencies require high
quality filters which increase
hardware complexity

[65] 2020

Create multi-user communication plans
that make use of squinting multi-beam
properties and small multi-wideband
antenna arrays

Effective method to exploit beam
squint with multi-user systems

Squint-beam-based compact
multi-wideband array for
millimeter-wave
communications

[67] 2022 Control the beam squint using time delays
and using it for localization

Effective method to exploit beam
squint in localization -

5. Conclusions

In this paper, a literature review has been introduced to analyse the relative issues
of the squint phenomena of mmwaves in antenna arrays for modern communication
systems. It is found that such problems become very effective at high-frequency bands due
to the dispersion effects of antenna arrays in terms of angle of arrival and gain variation,
which directly effect the channel performance. For this purpose, the authors classified the
main effective solutions to resolve such problems, which include beamforming, antenna
geometry, and channel estimation algorithms. Another classification can be considered
that exploits the beam squint to take advantages from squint phenomena to enhance the
channel localization and capacity through splitting the beam to different directions. In
spite of these classifications, beamforming, for example, based on digital processes, realizes
an excellent solution to minimize the effect of beam squint on bit error rate and channel
capacity, however; it consumes high complexity with excessive cost. The relative algorithm
based on channel estimation could be considered the next revolutionary approach, whereby
the system consumes less hardware complexity and cost. However, it is very limited
when the channel environment becomes highly dynamic, which consumes high delay
in the data processing. For this reason, it becomes unreliable with increasing traffic and
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signal attenuation. The third classification is assumed to be a solution method; however,
it is not. It is indeed a suggestion to avoid the negative effects of such phenomena by
splitting the beam of the antenna array to support channel localization and create multiuser
communication channels. In view of the previous indications, a possible connection is
found between the proposed classes to create a hybrid mixture to realize a high impact on
the channel performance enhancement. This conclusion is built on the fact of dispersion,
which is a relative problem with antenna arrays, channels, and subcarriers that cannot be
resolved from one side and neglected from the other two. Therefore, for future research, a
new technique must be recognized to find a complete solution that takes into the account
beam squint effects at all communication system parts, thus leading us to fill the gaps in
the developments in mmwave communication system for 5G and beyond.
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