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Abstract: This paper proposes a novel mathematical theory of adaptation to convexity of loss
functions based on the definition of the condense-discrete convexity (CDC) method. The developed
theory is considered to be of immense value to stochastic settings and is used for developing the
well-known stochastic gradient-descent (SGD) method. The successful contribution of change of the
convexity definition impacts the exploration of the learning-rate scheduler used in the SGD method
and therefore impacts the convergence rate of the solution that is used for measuring the effectiveness
of deep networks. In our development of methodology, the convexity method CDC and learning rate
are directly related to each other through the difference operator. In addition, we have incorporated
the developed theory of adaptation with trigonometric simplex (TS) designs to explore different
learning rate schedules for the weight and bias parameters within the network. Experiments confirm
that by using the new definition of convexity to explore learning rate schedules, the optimization is
more effective in practice and has a strong effect on the training of the deep neural network.

Keywords: derivative-free convexity; trigonometric simplex design; stochastic gradient descent;
adaptive learning rate; deep neural network

1. Introduction

The nature of convexity of many machine learning models has not been addressed
properly in literature, particularly when it comes to train parameters of neural networks.
The first-order methods such as the stochastic gradient descent (SGD) and its variants
are the preferred techniques for optimizing neural networks and many other machine
learning algorithms. However, these methods do not consider the learning activity of the
parameters in the different layers of neural networks. Therefore, there is a need to calculate
learning rates mathematically for the individual parameters in a deep neural network and
better understand the learning hierarchy of the different layers of the network. In machine
learning applications including deep learning, a number of different convexity definitions
have been presented in the literature (e.g., see a recent review by [1]). In addition, based on
the definition of convexity, SGD for empirical risk minimization is utilized to converge to a
global optimum for convex loss and non-convex loss of objective functions [2]. The nature
of strong convexity requires the objective function f : Rn → R to be twice differentiable
(i.e., C2) for all of its variables, and the classical Hessian matrix given in Equation (1) can be
used for determining convexity results for the function.

H f =

[
∂2 f
∂wjk

]
d×d

(1)
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The iterative SGD method applies the gradient operator ∇ = ∂
∂w to the function f (i.e.,

∇ f ) with the stochastic variables ξ and w ∈ Rd and calculates:

wt+1 = wt − ηt∇ f (wt, ξt) (2)

where ηt is the learning rate.
At each evaluation, SGD selects a random training sample from the training dataset;

then, the network output is computed to perform the sub-gradient of the loss function
over the selected sample, and the algorithm adjusts the network parameters [3]. Therefore,
determining an efficient learning rate ηt is crucial for successfully solving machine learning
problems as a part of the corresponding SGD algorithm. Strong convexity and w-convexity
presented recently by [1] are two of the convexity definitions introduced in the literature for
solving stochastic optimization problems. In this work, we use the SGD method to solve
the well-known stochastic optimization problem:

min
w∈Rd
{F(w) = E[ f (w; ξ)]} (3)

where ξ is a random variable of a stochastic distribution [4]. One can define

fi(w) := f (w; ξi) (4)

for a given training set {w; ξi}, where ξi is a random variable that is defined by a single
random sample {xi; yi}m

i=1 pulled uniformly from the training set. The empirical risk
minimization reduces to

min
w∈Rd

{
F(w) =

1
m

m

∑
i=1

fi(w)

}
(5)

The existence of the unbiased gradient estimator (i.e., ∇F = Eξ [∇ f (w; ξ)]) is required
for any fixed w to apply the SGD in its form of Equation (3).

We present a brief glance at gradient descent optimization algorithms that mainly
contributed to the development of the learning-rate schedulers. Duchi et al. introduced
the “AdaGrad” method, an adaptive learning-rate based on previous knowledge gained
from observing the accumulative sum of squared gradients in earlier iterations [5]. The
proposed subgradient-based learning has improved the robustness of the SGD algorithm
by controlling the gradient steps of the algorithm [6]. “AdaDelta” is an enhanced version of
“AdaGrad”, restricting the past accumulated gradients to be a fixed window size [7]. This
window is implemented as an exponentially decaying average of the squared gradients.
The new implementation ensures that a separate dynamic learning rate is computed on
a per-dimension basis. The adaptive-moment estimation, “Adam” [8], is designed to
combine the heuristics of the exponential decaying average of past gradients “AdaGrad”
with the root mean square prop or “RMSprop” of the exponential average of square of
gradients [9]. Adam is observed to be robust and particularly well-suited for non-convex
optimization problems. A new variant of the Adam method is “AMSGrad” [10], which
relies on the long-term memory of past gradients. The AMSGrad is proposed to develop a
new principled exponential moving average because it has been shown that the reliance on
only the past few gradients to update the learning rate can result in poor convergence rates.
A successful contribution to SGD with diminishing learning rates is performed for convex
objective functions by [1]. The defined framework is characterized by a core property,
called curvature. Based on the curvature, a new inequality is derived to find an optimal
sequence of learning rates by solving a differential equation.

2. CDC and Optimization

CDC is introduced as a nonlinear real extensible closed form function f : Zd → R
by [11]. For the sake of completeness, we summarize the CDC results relevant to SGD
optimization.
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The first difference of an integer variable function f : Zd → R is defined by:

4j f (w) = f
(
w + ej

)
− f (w) (6)

where ej represents the integer vector of the unit length at the jth position of the function f
towards the direction of jth dimension. The difference of the first difference, namely, the
second difference of f is defined by Equation (7) below.

4jk f (w)= f
(
w + ej + ek

)
− f
(
w + ej

)
− f (w + ek)+ f (w) (7)

The d× d discrete Hessian matrix corresponding to the function f contains the second
differences and this matrix is presented in Equation (8) as follows:

A f =
[
4jk f

]
d×d

=


411 f 412 f . . . 41d f
421 f 422 f . . . 42d f

...
...

. . .
...

4d1 f 4d2 f . . . 4dd f


d×d

(8)

This Hessian matrix is introduced in local settings, and the convexity results are
obtained for condense-discrete convex functions similar to the convexity results obtained in
real convex analysis. The discrete Hessian matrix A f is shown to be symmetric and linear,
and it vanishes when the condense discrete function is affine. The coefficient matrix A f
of f : D → R is shown to satisfy the properties of the Hessian matrix corresponding to
real convex functions. That is, A f is linear with respect to the condense discrete functions,
symmetric, and vanishes when f is discrete affine. It is also shown that a function f : D → R

is condense-discrete convex if and only if the corresponding discrete Hessian matrix is
positive definite in D.

To obtain minimization results for a given condense-discrete convex function, we
require the given condense-discrete convex function to be C1.

Assuming f : Zd → R is a C1 strict condense-discrete convex function, the set of
local minimums of f form a set of global minimums and vice versa. The importance of
applying CDC to stochastic gradient-descent calculations is the elimination of the second
differential operator for determining convexity. Given a function without knowing its
convexity structure, CDC determines the convexity within the domain without calculating
derivatives of the function.

2.1. SGD and CDC Functions

Given a function f : B → R such that B ⊆ Rd, the condensed convexity of f can
be checked by showing that the corresponding discrete Hessian matrix H f is positive
definite; therefore, CDC allows for convexity calculations by using simple mathematical
operations. The existence of w∗ depends on the assumption ∇ f = 0. In this section, we
use the definition of condense-discrete convexity as a part of the SGD algorithm and its
application. Using the iterative procedure

wj(t+1) = wjt − ej (9)

where
∣∣ej
∣∣ = 1 for and using the definition of the first difference of f , we introduce:

ej = ηjt∇ f
(
wjt; ξ jt

)
(10)

Noting that the iterative procedure follows the directional method, we use the jth
entry ∂ f

∂w of the gradient vector ∇ f ; therefore, we attain:
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ηjt =
ej

∂ f (wjt ;ξ jt)
∂wj

(11)

in the vector form and
ηjt =

1
∂ f (wjt ;ξ jt)

∂wj

(12)

in the scalar form towards the jth direction satisfying the first difference4j f . By using the
function differentiation definition, the differential of f can be approximated by choosing
sufficiently small γjt such that

∂ f
(
wjt; ξ jt

)
∂wj

'
f
(
wjt + γjt; ξ jt

)
− f

(
wjt; ξ jt

)
γjt

(13)

indicating

ηjt =
τtγjt

f
(
wjt + γjt; ξ jt

)
− f

(
wjt; ξ jt

) (14)

where ηjt is the step size of the iterative procedure in the jth dimension of the directional
derivative and τt is a non-negative scalable parameter. The use of τt is a key tuning
component that is essential for defining the step size for adjusting it based on the algorithmic
solution.

2.2. CDC Examples

This section presents the condense-discrete convexity of logistic regression examples
that are shown to be convex, w− convex, and strongly convex by [1]. These examples are
going to be used for attaining experimental results in Section 3.

fi(w)= log
(

1 + e−yixT
i w
)

(convex) (15)

f (a)
i (w)= fi(w)+λ||w|| (w− convex) (16)

f (b)i (w) = fi(w) + λG(w) (w− convex) (17)

f (c)i (w)= fi(w) +
λ

2
||w||2 (strongly convex) (18)

where fi(w) is a convex function, f (a)
i (w) and f (b)i (w) are w-convex functions, and

G(w) = ew + e−w − 2− w2. The following calculations prove that fi(w) is a CDC:

411 f (w)= log
(

1 + e−yixT
i (w+2)

)
−2 log

(
1 + e−yixT

i (w+1)
)
+ log

(
1 + e−yixT

i w
)

411 f (w)= log(eyixT
i

(
eyixT

i (w+2) + 1
)(

eyixT
i w + 1

)
(

eyixT
i (w+1) + 1

)2 )

For simplicity we let ci = eyixT
i , then

411 f (w) = log

(
ci

(
c2

i cw
i + 1

)(
cw

i + 1
)(

cicw
i + 1

)2

)

411 f (w) = log

(
ci

c2
i c2w

i +
(
c2

i + 1
)
cw

i + 1
c2

i c2w
i + 2cicw

i + 1

)



Electronics 2023, 12, 419 5 of 9

The second difference 411 f is non-negative for c2
i + 1 > 2ci which holds for ci > 1.

Therefore, 411 f is non -negative for yixT
i > 0 that naturally holds in a data set for non-

negative input x and output y.
Now, we explain the condense-discrete convexity of the function f (a)

i :

411 f (a)
i (w) = 411 fi(w) + λ411 ||w||

It is shown by [12] that the 2− norm (i.e., ||w||) is a condense-discrete convex function;
noting that fi(w) is also CDC, the summation of the two functions, f (a)

i (w), is also a CDC.
Next, we show that G(w) is a CDC function:

∆1G(w) = ew+1 + e−(w+1) − 2− (w + 1)2 −
(

ew + e−w − 2− w2
)

= (e− 1)ew +
(

e−1 − 1
)

e−w − (2w + 1)

∆11G(w) = (e− 1)ew+1 + e−(w+1)
(

e−1 − 1
)
− (2

(w + 1) + 1)−
[
(e− 1)ew + e−w

(
e−1 − 1

)
− (2w + 1)

]
=
(

e2 − 2e1 + 1
)(

ew + e−(w+2)
)
− 2 > 0 for w > 1

Therefore, the convex, w− convex, and strongly convex examples we examined are
condense-discrete convex functions.

2.3. Learning-Rate Estimation

In this work, we utilize the Hassan–Nelder–Mead algorithm (HNM) to tune the
hyperparameters of Equation (14) and help in estimating a set of optimal learning rates
for the different weights and biases of the loss functions [13–15]. The HNM algorithm
is a variant of the famous Nelder–Mead algorithm [16], which allows the k-dimensional
simplex to break down into a set of trigonometric simplex designs that work sequentially to
locate a minimum of a nonlinear function. In addition, the HNM algorithm has delivered
a higher accuracy than a famous Matlab function, known as “fminsearch”, for handling
unconstrained optimization problems. To create k-trigonometric simplex designs of the
HNM algorithm, we need to generate 5 vertices that reflect 5 different initialization points
in k-dimensional space. The 5 vertices of the standard HNM algorithm are the points
(p1, ..., p5) ∈ Rk. In this particular case, the vertex parameters are the parameters of the
neural network, including weights and biases. After creating the vertices of the HNM
algorithm, we need to arrange them in ascending order according to the values of the
objective function.

In the above design of the learning rates scheduler, we have noticed that from
Equation (14), if the SGD algorithm proceeds successfully to the next iteration, then a
good set of γt vector has to be extracted from exploring the solution space of any of the
convex objective functions defined in the previous section. So, if we assume the starting
vector of the randomly initialized parameters of a deep network is the initial vertex of the
HNM algorithm, then we can generate the other vertices using Pfefferś method [17] and
run the HNM algorithm to explore the neighborhood around w0. For example, suppose
that the objective function is convex and defined as in Equation (15). For a given training
set (xi, yi)

n
i=1, we allow the HNM simplex optimization to explore the solution space and

extract different features of non-isometric reflections for the next vector w1, which has a
lower function evaluation than w0. After the vector (w1 = w0 + γt) is determined, the
optimal values of γt and the constant value of δ can be found to adjust the learning rates
scheduler for the next iteration. Hence, the values of τt are calculated for each iteration and
set to (δ/Max(γt)).
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If we train the network to learn the characteristics of an objective function relative to
a particular case or dataset by forcing the network to update its parameters with a single
learning rate, then there is a possibility that the network can converge to a non-stationary
point or fall into a local minimum. On the contrary, our solution is to examine the solution
space for optimal step sizes that individual parameters in the network can perform and
use to optimize the network to find an optimal point . Some parameters in the network
can push the learning process faster than others; therefore, they need larger learning rates,
while others need to slow down and thus need smaller learning rates . The advantage of
using the HNM algorithm is that it generates independent trigonometric simplex designs
that can extract distinct non-isometric reflections to sequentially estimate different and
adaptive learning rates for the parameters of the network.

3. Discussion

This section is devoted to experimental results by testing the CDC results and the
learning-rate estimation introduced in the previous section, using the HNM algorithm.
In addition, the test is designed to examine the performance of the proposed learning-
rate scheduler on a logistic regression dataset, “mushroom”, introduced by [18]. The
proposed framework includes various modules for data cleaning up, preprocessing, and
normalization. In order to provide a comprehensive evaluation of the performance of
the proposed learning-rate scheduler, we conduct four experiments on the “mushroom”
dataset from the UCI machine learning repository, which is a binary classification problem.
We test Equation (14) for the convex logistic regression examples given in the previous
section that are shown to be CDC. The additional tests compare the proposed learning-rate
scheduler for the adaptive SGD algorithm to state-of-the-art models such as [1] .

The results given in Figure 1 indicate that the proposed learning-rate scheduler has
helped the hidden layers of the network to adapt efficiently to an optimal solution. It is
also observed that the network shows fast convergence rates as the different weight and
bias parameters of the network are characterized by different learning rates. Our solution
confirms the known results in the literature such as the previous study introduced by [1],
which indicates that the optimal performance of training a neural network is obtained by a
diminishing step size scheduler as the network progresses in terms of evaluations. In [1], a
new definition of curvature of convex objective functions is presented, and the value of
the curvature property determines the optimal learning rates for deep networks. The best
step size that is determined for Equation (15) is ηt = 0.1/

√
t [1]. In this work, however,

the trigonometric simplex designs explore the solution space of the loss function around
the neighborhood with respect to the values of the network parameters and determine the
optimal sequence of the learning-rate scheduler based on the CDC definition.

The experimental results on Equations (16) and (17) are shown in Figures 2 and 3,
reflecting the computational results on regularized and unregularized logistic regression
examples. These test results prove the successful contribution of the CDC definition to
estimate a vector of optimal learning rates for different weights and biases and have resulted
in developing an efficient deep learning network architecture. When comparing our results
to those of [1], the pattern of the learning rates results is almost similar when exploring w-
convex loss functions (Equations (16) and (17)); however, the scale of diminishing learning
rates presented in this study is more efficient than [1] in stabilizing training and accelerating
the convergence rate due to the use of the simplex optimization method to explore the
properties of the objective functions. Thus, the adaptive step sizes provide different learning
activities for the parameters of the network compared to the use of one diminishing step
size to update the network parameters. In particular, the optimal step sizes proposed by [1]
for Equations (16) and (17) are ηt = 0.1/t1/1.25 and ηt = 0.1/t1/1.5, respectively.



Electronics 2023, 12, 419 7 of 9

Figure 1. Values of loss function and convergence rate for convex binary problem [1].

Figure 2. Values of loss function and convergence rate for w-convex binary problem
(Equation (16)) [1].

Figure 4 displays the experimental results using our theoretical framework on the
function given in Equation (18). The empirical results show that the proposed learning-rate
scheduler achieves remarkable success in obtaining a faster convergence rate for optimizing
the SGD method. In addition, the idea of adapting network parameters to various levels of
learning enhances the effectiveness of the neural network for analyzing convex optimization
problems. CDC-based updates on learning rates proved to perform better than a single
rate-based method to adjust the network parameters. The main problem of adjusting
network parameters based on a single adaptive rate comes from the fact that the objective
function for the multilayer network is not an explicit function of the weights and biases
in the hidden layers. The effectiveness of our framework is characterized by allowing
the parameters of the objective function to be tuned with respect to the architecture and
performance of the deep neural network.



Electronics 2023, 12, 419 8 of 9

Figure 3. Values of loss function and convergence rate for w-convex binary problem (Equation (17)) [1].

Figure 4. Values of loss function and convergence rate for strongly convex binary problem
(Equation (18)) [1].

4. Conclusions

In this work, we introduced a new convexity definition to calculate the learning-rate
scheduler for the SGD method. This convexity method and learning rate are directly related
to each other, and this work is the first time such a relationship between the convexity and
learning rate has been introduced, to the best of our knowledge; learning rate calculations
follow from the first difference of a given function with a modification by using a tuning
parameter, while the condense-discrete convexity determination follows from the second
difference of the given function. The developed theory incorporates CDC with a sequence
of trigonometric simplex designs to explore various characteristics of convex, w-convex,
and strongly convex loss functions and determine an optimal vector of learning rates for
SGD to adjust the network parameters. In fact, the proposed learning-rate scheduler can be
used for other convex optimization applications pertaining to deep learning and pattern
analysis. The four functions used by [1] for computational results are also used for attaining
the numerical results in this work after showing that they are CDC. The computational
results proved that the different parameters of the network could increase their adaption at
various levels of the learning hierarchy when they are characterized by different step sizes.
Finally, the proposed optimization solution has an advantage over the solution attained
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by [1]: being able to work on a given problem without knowing its curvature conditions,
while requiring statistical estimate tests based on trigonometric simplex evaluations .
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