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Featured Application: Presented controller synthesis strategy applies to systems running under
tight time dependencies and requiring precise and repeatable timing of operations. The presented
solution is used in PMSM drive control but also can find an application in inverters drive.

Abstract: Implementation of the permanent magnet synchronous motor vector control implies strong
time dependencies. The control process requires precise measurement of motor shaft position and
winding currents to establish correct driving. The tight time dependencies are difficult to achieve
using a programmatic approach. Specific controller architecture is proposed for programmable sys-
tems on chip architectures enabling operations precise timing and improved processing performance.
The controller is decomposed into a dedicated hardware interface system and programmatic part for
easy implementation and modification of the control algorithm. The proposed architecture offers
precise and repeatable input-output operations timing and assures meeting tight time dependencies.
The control algorithm is executed as an interrupt service requested by the interface system in a
constant processing period with relatively weak time dependencies. Additionally, the interface
system preprocesses input and output signals reducing the computation effort and saving time
for algorithm computations. The specific implementation enabled improved measurement of the
motor’s windings current with suppression of disturbances caused by inverter operation. There is
shown an efficient implementation of Parke’s and Clarke’s transformations using specific resources of
modern programmable logic devices. In opposite to the software-managed implementation presented
implementation assures completing processing faster, using a minimal number of hardware resources
of the FPGA platform and offering the highest flexibility of software part implementation.

Keywords: permanent magnet synchronous motor (PMSM); vector control; real time system; field-
programmable gate array (FPGA); hardware-software codesign

1. Introduction

Permanent magnet synchronous motors (PMSM) are the most promising solutions for
power drive systems including transportation systems. High efficiency and large torque
along with small size, weight, and simple construction are its short characteristics [1].
The motor stator is similar to the stator of induction motors while the rotor consists of
permanent magnets. The magnets and the armature winding are positioned so that the
electromotive force generated as a result of rotation is sinusoidal. PMSM motors can operate
at a wide range of rotation speeds offering flexible driving capabilities [1,2].

These motors require a power electronic drive system, typically using field-oriented
control to be efficiently driven [3]. The motor controller operates in tight time dependencies.
The available time for the controller is determined by the base period of the power inverter.
It is essential to work out the driving parameters of the inverter for each period based on
evaluated signals. This makes the most critical task of controller implementation [4].

Electronics 2023, 12, 440. https://doi.org/10.3390/electronics12020440 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12020440
https://doi.org/10.3390/electronics12020440
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1043-290X
https://orcid.org/0000-0002-5110-6783
https://doi.org/10.3390/electronics12020440
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12020440?type=check_update&version=2


Electronics 2023, 12, 440 2 of 18

The other essential problem is the operation safety of the insulated gate bipolar
transistor (IGBT) power components. It is important to correctly drive complementary
pairs and immediately react to overloading conditions. The tight time dependencies
and requirements of synchronous operation of input signals acquisition and respective
outputs controlling make the software implementation using a typical microcontroller very
difficult or almost impossible [5]. The dedicated direct hardware implementation is the
opposite choice [6–9]. Due to implementation complexity, specific skills are required. It
is not suitable for wide use by automation engineers. The solution should combine the
easiness of programming with the exact timing of input-output operations. There exists
an implementation trap caused by improperly used high-level synthesis tools [10]. A
superficial analysis of requirements results in significant implementation overhead both
resources and computation time as well unnecessary programming complexity.

The paper proposes the nonstandard implementation of a controller utilizing the
ZYNQ Programmable System on Chip (PSoC) architecture [11]. It allows for the develop-
ment of a system that utilizes the complex hardware peripheral system implemented in a
Field Programmable Gate Array (FPGA) structure and linked with a programmable system
driven by a dual-core ARM Cortex A9 processing unit.

1.1. The PMSM Controller Architecture and Requirements

The field-oriented control system block diagram is shown in Figure 1. The controller
structure has been partitioned into blocks depending on its functionality that constitute
4 layers. The controlled object consists of the motor with an IGBT-driven inverter and
respective sensors determining its operation conditions. The motor shaft position and
winding currents sensing are essential for working out driving signals for the inverter.
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The next layer named a system interface is responsible for exchanging signals between
the controlled object and the core controller. The IGBT power stage [12] is driven by a
pulse width modulation (PWM) unit with 3 complementary operating channels. The
PWM driving principle is based on push-pull driving with an appropriate proportion
between both activities that correspond to the requested output voltage (an average voltage
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of a switching power supply). To avoid the simultaneous activity of both transistors
(resulting in instant damage of a bridge) of the quasi-complementary IGBT stage there
must be inserted a dead time gap allowing for the undriven transistor completely switch
off. To eliminate power stage damage possibility the dead time gap must be assured by its
hardware structure.

The motor operation conditions are observed using winding currents and shaft posi-
tion. The current sensors are placed on the power lines of the motor. The winding currents
measurement process requires the elimination of disturbances generated by the inverter
operation [13,14] assuring a recent period average current delivery. Along with the current
measurement the shaft position is measured. In the experimental model, the absolute
position encoder unit with a serial synchronous interface (SSI) is used [15]. The moment of
position measurement is synchronized with the current measurement to keep the relation
of currents and the shaft position for further computations.

The next layer called signal transformations consists of input and output paths. The
input path is aimed at preprocessing measured values for the control system. The input
path transforms the current values ia and ib from a 3-phase system using Clarke (iα, iβ)
and Park transformations to the static vector reference system id, iq and angle α [16]. The
output path is responsible for translating what has been worked out by the controller Vd
and Vq voltage static vector system to appropriate control signals for the PWM controller.

The control system is the last block that closes the control loop. Based on the motor
operation conditions [id, iq, α] and required operation parameters (here limited to required
rotation speedωREQ) computes the required driving parameters of the inverter. This part
of the controller is implemented in software giving an opportunity to easily accommodate
control logic implementation to the needs. The diagram shows an exemplary control unit
that minimizes the iq current and accommodates the Vd voltage to the required speed. To
simplify the software design the control function is implemented as an interrupt handler.
The hardware front-end layer manages the timing dependencies of all operations while the
software part is expected to deliver motor driving parameters only.

1.2. High-Performance Controller Concept for Tight Time Dependencies Systems

The essential problem in implementing the control systems operating under tight
time conditions is assuring completion of all processing and measurement tasks in a given
time according to the schedule of operation that is especially important for input signals
measurements (ADC sampling, external measurement device triggering and response
processing). This puts the problem of time predictability of a computation system [5]. The
commonly used microprocessor systems are derived from microprogrammable control
systems. The execution time of digital systems is well described by the number of clock
cycles that correspond to the execution time. Microprocessors are digital systems that
optimization was pushed toward fast and efficient execution of instructions [17]. Introduced
improvements in the instruction execution system like pipelined execution (pipe flushing
on jumps), and cache memories (cache mishit problem) the problem of execution time make
complex and difficult. Even for a simple microprocessor implementation, the execution
time estimation is a difficult task due to multiple conditional paths and internal program
state dependencies. This results in imprecise operations timing (variation of the moment in
time an operation is executed). To makes things more complex use of different peripheral
units that are only software-linked makes it impossible to achieve synchronous operation
of all units assuring the exact in-time operation of multiple peripheral units as required for
the considered control system. It should also be observed that increasing the speed of the
processor and the complexity of the system results in the hierarchical implementation of
the internal bus system. In other words, the input-output peripherals are located behind
several bus system crossbar layers (e.g., AXI). This extends the data exchange time between
the processor and peripherals.

The paper proposes the architecture of a controller for driving permanent magnet
motors using ZYNQ device [11]. There is shown the implementation methodology of
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the integrated hardware-software system which assures precise timing with a resolution
of 1 period of the peripheral clock signal. The goal is achieved by implementing an
integrated hardware interface that manages measurement and driving operations according
to a deterministic schedule. In the proposed architecture time dependencies for software
implementation are reduced allowing for completing computations in a relatively wide time
window. Moreover, the hardware platform is capable of observing the control processing
loss in time cycles. The proposed architecture allows for a simplified control algorithm
implementation while all tasks requiring precisely timed operations are managed by a
dedicated hardware platform implemented using the FPGA part of the ZYNQ device.

The paper is outlined as follows. The next section analyses the architecture of the
ZYNQ device in terms of applications operating under tight time dependencies. Next, the
proposal of the control system including the control algorithm principles is shown. There
is shown an implementation of a custom hardware input-output processing system that
assures precise time execution for the software system. An efficient implementation of the
processing algorithms in reference to other implementation strategies is considered. The
paper is concluded with experimental results of controller implementation.

2. Implementing a Time-Predictable Controller

The common choice for implementing any control system is a microcontroller-based
electronic system. Microcontrollers integrate a microprocessor system with a set of periph-
erals in one chip. The main goal of implementation is to develop a control program that is
able to read inputs, compute control and write outputs in time not longer than the available
period. In many cases, the exact periodic operation is expected (e.g., Inverter operations,
PMSM drives). Assuring this requirement in modern microprocessor systems is impossible
to meet due to the attempt of linking independent peripheral units with a program that
execution time varies. Microprocessors are synchronous finite state machines but their
architecture is optimized for fast execution of the instructions. The main attention is put on
fast program execution while the time that elapses between two points (or code lines) of the
program depends on current processing conditions and can be impacted by higher priority
interrupts (exception processing). As it was shown in Thile’s and Wiliam’s work [5] it is
possible to construct a time-predictable machine. To meet this requirement we proposed
the specific implementation of an input-output system that eliminates the problem of exact
timing on the software side.

Advanced Systems Architecture and Performance

The ZYNQ device [11] is a modern high-performance integrated system on chip
implementation. The processing units (a two ARM Cortex A9) can operate with a frequency
of up to 660 MHz. This allows expecting a very short response time of a system and fast
access to the peripheral units. The internal connection bus system has been examined to
analyze the system performance interacting with peripherals. The schematic block diagram
of the internal connection system is shown in Figure 2. A set of AXI-4 [11,18] crossbar
modules are used to exchange data and assuring the arbitration to resource access. The
microprocessor is optimized for fast program execution utilizing two-level cache memories.

To reach the FPGA fabric the data transfer request from the microprocessor is passed
through three layers of AXI controllers. The microprocessor performs a single data item
access cycle that does not take benefit from burst transfers offered by the AXI bus. A data
exchange cycle is measured by the performance monitor unit. It uses an internal counter
clocked with the elementary bus frequency of the local AXI controller. To make exact mea-
surements the data exchange block has been programmed using inlined assembly language.
The clock signal frequency influence on the AXI interconnection system performance has
been evaluated for two frequencies. For the FPGA part, the 100 MHz and 200 MHz were
used while the ARM processor core operated with 200 MHz and 600 MHz.
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Table 1 gathers the interface cycles completion time for data read and data write
issued by the processor to the peripheral device implemented in FPGA. The interface cycle
duration is given using clock cycles (relative timing) and recalculated to time using clock
frequency. It should be noted that the high-performance computing system due to its hier-
archical architecture requires a relatively long time for accessing the input-output system.
It should be noted that pooling the input-output device reduces sampling performance
to 90 ns in the best case and 240 ns in the worst case. The data exchange cycle (read cycle
followed by a write cycle) takes from 135 ns up to 510 ns in the worst case. Those properties
of the interconnection system significantly influence the response time of the system. The
elementary event that can be directly observed from the processing system depending on
the frequency proportion between the processor and FPGA part must be longer than 90 ns
(in the worst case 240 ns). The system reaction time to an event is no shorter than 225 ns in
the best case. Shown system properties require designing an interface of a control system
that manages time dependencies of a control cycle while software processing is called on
the request of the interface system to relax the available time requirements of software
processing.
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Table 1. The AXI crossbar performance for data transfer between CPU and FPGA fabric.

CPU Clock
Frequency

FPGA Clock
Frequency Data Read Data Write

[MHz] [MHz] Clock Cycles [ns] Clock Cycles [ns]

200 100 24 240 27 270
200 200 42 210 48 240
600 100 12 120 5 50
600 200 18 90 9 45

3. Controller Implementation Concept

The PMSM controller implementation block diagram is shown in case A of Figure 3.
The controller is partitioned into interface system logic and controller computation part.
The AXI bridge is a boundary between hardware and software. The interface system logic
creates a tightly connected set of hardware peripheral components that implement input
and output signals translation for the control algorithm. The input path implements a
processing unit R2S (Rotating to Static) that transforms the winding currents of the tri-phase
system into static vectors. The inverse transformation is performed in the output path by
the S2R (Static to Rotating) computation unit. The S2R module delivers duty factors for
the PWN controller for each phase of the inverter. It assures an appropriate relationship
between the activity time of transistors separated by dead time gaps. The PWM controller
determines the elementary computation cycle using the SYNC signal for initializing input
signals acquisition. The windings current is averaged over the elementary period of the
inverter using oversampling. This allows for the suppression of switching disturbances of
the inverter. The motor shaft angle measurement (SHA) is placed at the end of the operation
cycle allowing for obtaining the recent position for measured currents. Finally obtained
results are passed to R2S processing and made available along with the activation of the IRQ
line. This requests the software-based processing by calling the PMSM interrupt service.
The time window for completing computation is almost equal to the inverter’s basic period
(125 µs). The software processing results are collected from registers and passed to the S2R
processing block. At the same time, the IGBT driver block starts the driving period with a
dead time gap. Only 12 clock cycles are required for completing the computations by the
S2R unit and delivering driving values for the inverter. The computation cycles of the S2R
unit are hidden behind the dead time gap. In the considered implementation, the minimal
dead time assuring correct operation is 120 ns while typically it is around several µs [12].

The controller operation schedule is shown in case B of Figure 3. The waveform depicts
the sequence of operations in a single control cycle. On the top is placed a SYNC/IRQ
signal that triggers a new computation cycle. Listed resources are placed in the order of
data flow. In the diagram are shown hardware components operations in control cycle time
and software part procedure execution window.
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4. Controller Interface System Implementation Details

The controller interface system assures precise input-output operations scheduling
with relaxed timing requirements for software processing. The following subsections give
architecture details and discuss the implementation efficiency of processing methods.

4.1. The PWM and Timing Controller Block

The FPGA device enables the implementation of a complex pulse width modulation
system that integrates the synchronous operation of the tri-phase inverter driver system.
The simplified block diagram of the synchronization unit and PWM modulator channel is
shown in case A of Figure 4. The functional waveforms that illustrate the operations in the
control cycle period are shown in case B of Figure 4.
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The PWM controller is responsible for synchronizing all computation processes of the
controller. In the implementation, the 125 µs fundamental period is chosen. The TP counter
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generates a SYNC pulse every 12,500 clock cycles (f CLK = 100 MHz) which is determined
by the TPER signal.

The PWM channel duty factor is controlled by the TD signal only. Based on its numeric
value is generated a pulse on THx output and its complement on TLx output. The activities
of outputs are separated by dead time periods of TOFF duration. The signals activity time
expressed in clock cycles are as follows:

tH = TDTCLK : 0 < TD ≤ TPER − 2TOFF
tL = (TPER − (TD + 2TOFF))TCLK

(1)

where: tH is the activity time of the THx output while tL is the activity time of TLx output
for given settings of TD, TPER and TOFF, TCLK is the period of the clock signal.

The hardware implementation of the PWM assures the generation of all timing depen-
dencies between signals necessary for the correct driving of the IGBT bridge. The crucial
is assuring an appropriate time gap between active periods of opposite transistors that
protects an expensive power element against accidental damage. To avoid an accidental
modification of the dead time value (TOFF), it is implemented directly in the hardware
structure and can be modified by resynthesizing the PWM module.

4.2. The Windings Current Sesning Unit

The winding current is measured in every period of the PWM inverter operation along
with the measurement of the motor shaft position. Those values must be obtained in a
correlated manner to assure correct computations of id and iq current values for the control
algorithm. Switching transistors of the inverter are sources of significant disturbances
influencing the momentary value of the current. Even though the passive filtering circuits
are implemented in the power lines of the inverter, measured current signals are strongly
distorted by the switching activity of transistors. Exemplary oscillograms of current sensors
output are shown in Figure 5. The directly sampled signal is shown in case A It contains
significant noise components from the working inverter. The noise can be eliminated
through averaging, as case B illustrates. The square waveform at the bottom is the most
significant bit of the angle converter used for synchronization purposes.
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Using a compensation analog to digital converter a momentary value of the signal is
captured and converted to a number. This method introduces a high error of measurement
signals with periodic noise. Using an analog filter in the input signal path introduces the
phase shift that results in the incorrect computation of static coordinate system values of id
and iq in reference to the shaft angle. To get a usable signal appropriate filtering must be
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applied. The measurement process must be averaged in the period of inverter operation.
This can be implemented as collecting an equally spaced sequence of samples for the period
of inverter operation:

iw = ∑n−1
k=0 i

(
t0 + k·TINV

n

)
(2)

where: iw is a sum of n winding current samples i(. . . ) over the inverter operation period,
TINV—inverter period, t0—sampling start time. The iw is proportional to the average signal
with a factor of n. The averaging measurement unit implementation requires synchroniza-
tion of the sampling process to the inverter operation.

The ZYNQ device is equipped with a compensation analog to digital converter [19]. It
can achieve the sampling performance of 1 Ms/s. The exact performance is slightly lower
at 100 MHz clock, while the conversion takes 104 clock cycles. The converter performance
is enough to take 64 samples over a 125 µs inverter basic period. The block diagram of
the averaging integrated converter is shown in Figure 6. The XADC control is completely
synchronized with the inverter operation. A set of samples is collected upon request pulse
of the RQ signal. The value of collected signal samples is accumulated since the beginning
of the measurement cycle as shown by (2).

The measurement timing waveforms are shown in Figure 7. The implementation
utilizes two ADC channels that are alternatively selected by the control unit to assure
uniform distribution of measurement points in both current measurement channels. The
distance of samples is 192 clock cycles. In total, 32 samples are collected for input current
for each channel during one period of operation.

The winding currents obtained using the proposed averaging method and acquired
shaft angle are shown in Figure 8. Comparing oscillograms from Figure 5 and winding
currents there could be observed switching noise elimination. The method can be compared
to dual integration voltmeters where the input signal measurement is done over the period
(or its integer multiplicity) of the disturbing signal. This results in eliminating the noises
coming from the inverter’s IGBT switching.
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Figure 8. Windings current captured by XADC using inverter period averaging and shaft angle
acquired from MAB sensor.

4.3. The Vector System Processing Units S2R and R2S

The vector processing system consists of two transformation modules. The input path
performs a transformation of the rotating input system of windings currents [ia, ib, ic] to
static vectors [id, iq]. Initially, the tri-phase system is converted into two vectors [iα, iβ]

iα = ia
iβ =

√
3(ia + 2ib)

}
: ia + ib + ic = 0 (3)

Next, the rotation of the [iα, iβ] with the angle α of shaft position is calculated to project
vectors on [id, iq]:

id = iαcos(α)− iβsin(α)
iq = iαsin(α) + iβcos(α)

(4)
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The inverse transformation is based on computing tri-phase system voltages [Va, Vb,
Vc] from [Vd, Vq] and the current motor shaft position α. First, voltage vectors from the
static system are projected to rotating vectors [Vα, Vβ]:

Vα = Vdcos(α)−Vqsin(α)
Vβ = Vdsin(α) + Vqcos(α) (5)

Next, rotating vectors are projected to individual driving vectors of the inverter

Va = Vd

Vb =
(−Vd+

√
3Vq)

2

Vc =
(−Vd−

√
3Vq)

2

(6)

There is also required post-processing of the vectors that shifts the vector from the
signed range to the unsigned range of PWM space and assure value saturation in the range
of correct operation of the PWM:

VPWM =


0 : Vx < −VMAX

Vx < −VMAX : −VMAX ≤ Vx ≤ VMAX
2VMAX : Vx > −VMAX

(7)

Outlined above theoretical background of the computations to perform allow moving
to the implementation stage. The essential part of both transformations is the rotation of the
vectors in two-dimensional space (4) (5). This operation requires computing sine and cosine
functions of α angle. This task is complex and usually is implemented using floating-point
computation (e.g., C math library) [20]. This introduces significant complexity and results
in a long computation time. The coordinate rotation procedure should be accommodated
to the resolution of angle measurement in the system that is represented by a 12-bit value.
The precision of computations offered by a standard 32-bit floating point representation
(IEEE 754) with 24-bit mantissa gives a 12-bit of computation precision margin.

Computing vector rotation can be considered a complete computation problem using
the CORDIC approach [21]. The CORDIC algorithm is based on an iterative compensation-
based approach. Step-by-step computations quickly converge to desired angle value. The
computations in general can be put down as multiple vector rotations for the angle that
arcus tangent is the power of 2 with a negative integer exponent {0, −1, −2, . . . }. The
direction of the rotation is chosen based on the sign of the angle value from the previous
computation step:

ϕi+1 = ϕi + γiatan
(

2−i
)

: γi =

{
1 : ϕi ≥ 0
−1 : ϕi < 0

(8)

Putting down the rotation matrix and dividing it by cos we get:[
xi
yi

]
=

[
cos(ψi) −sin(ψi)
sin(ψi) cos(ψi)

][
xi+1
yi+1

]
=

1√
1 + tan2(ψi)

[
1 −tan(ψi)

tan(ψi) 1

][
xi+1
yi+1

]
(9)

Assuming that in each step the tangent value is selected as the ki factor above equation
can be put down as follows:[

xi
yi

]
= ki

[
1 γi

(
−2−i)

γi2−i 1

][
xi+1
yi+1

]
: ki =

1√
1 + 2−2i

(10)

The CORDIC method utilizes the addition and division by an integer power of two.
In digital systems utilizing binary numbers division by a power of two is implemented as
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a shift-right operation. The final result requires scaling by the factor depending on step
number:

k(n) = ∏n−1
i=0 ki = ∏n−1

i=0
1√

1 + 2−2i
(11)

The rotation process of the point for a given angle is calculated using conditionally
selected addition or subtraction and shift operation as shown in (8)–(11). In a considered
implementation, the final scaling can be omitted while values are used in the control loop
with negative feedback. The adjustment multiplication can be assumed as a gain factor of
the current sensor path or inverter voltage selection.

The computation procedure is well mapped into systolic array implementation that
block diagram is shown in Figure 9. Computations can be implemented as an iterative
structure that implies reduced requirements of hardware resources. The hardware resource
reduction can be roughly estimated around the n (number of stages) to systolic implementa-
tion but some specific problems should be analyzed. The iterative implementation requires
programmable shifters for xi and yi. A barrel shifter utilizing analogue switches [22] is
implemented in ASICs. In FPGA devices the multiplexer-based structure consumes a large
number of programmable resources. There is also an alternative of using a combinational
multiplier block for shifting. The low resource count implementation is a shift register
with the parallel load. This concept results in a significant extension of computation time.
Additional clock cycles required for shift operations are a sum of the arithmetic sequence
from 1 to n with a step of 1.

The systolic structure can be implemented as a pure combinational path (eliminating
intermediate registers in Figure 9) or pipelined structure. The combinational implementa-
tion requires including wait cycles between arguments passing and obtaining the result
while pipelined implementation offers the ability to achieve high clock frequency and
average computation performance of one result per clock cycle.
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It is essential to determine the number of steps required for computing the results
with satisfactory precision. In the considered case the position sensor delivers an angle
with a precision of 12 bits [15]. The number of iterations depends on the precision of the
angle determination and can be calculated from following inequality:

n :
π

2k−1 ≥ atan
(
2−n) (12)

where: k is the number of bits of angle sensor and n is the number of iterations for the
CORDIC method to compute results with the required precision. Solving the precision
inequality for the 12-bit shaft angle sensor number of iteration should be no less than 12.
This constitutes the unit’s requirements for 12 systolic layers and a computation time of
13 clock cycles (including the input capture cycle) for pipelined architecture.

The CORDIC unit (as shown in Figure 9) allows the implementation of vector rotation
only. Additional computations must be implemented separately. Since Xilinx Virtex II-PRO
(high-end FPGA family) and Spartan 3 (budget FPGA family) multipliers are available
in FPGA structures as dedicated hardware blocks. This allows for saving a lot of logic
resources and achieving significantly better performance when multiplication is performed.
For this reason, the implementation of vector rotation directly (either in the case of (4) or (5))
could be easily embedded into the preprocessing of winding currents and postprocessing
of inverter voltages (PWM duty factors).

The essential problem is the fast computation of the sine and cosine of the shaft position
angle. This method should compute results quickly and with the required precision of
12-bit angle encoding. The only way to get the result as quickly as possible is to use the
lookup table approach. The implementation requires remembering three functions that are
{sin(ϕ), cos(ϕ), and −sin(ϕ)}. There arises a question of implementation nature. Do we have
to implement all three functions separately?

The first feature exploited in implementation is function symmetry. It is enough
to remember only sin(ϕ) samples in the closed range

[
0, π

2
]
. The remaining part of the

function is restored by symmetry. When the period of the function is divided into 2k equally
spaced intervals the lookup table must store 2

k
4 + 1 samples. This requires nonstandard

implementation of the memory module with an odd number of cells and specific decoding
circuitry.

The problem is overcome in the proposed implementation shown in Figure 10 by
storing the sine function samples in the range [0, π) (case B–black line). This allows the
reduction of memory requirements only by half but eliminates the problem of additional
hardware necessary for accessing the odd number of memory cells. Case A of Figure 10
illustrates the implementation of a universal sine and cosine function generator. The
hatched rectangles denote the registers in the signal paths. The implementation with the
required angle resolution is possible using the RAMB36 module [23] which can hold 2048
18-bit words. The output of the lookup table is passed to an adder that depending on the
value of the MSB of the angle ϕ complements or passes simple content of the memory cell.
In order to balance the registered delay of the memory block the register is placed on the
A11 line to synchronize it with data arriving from the memory. In order to use the same
lookup table for obtaining the sine and cosine functions the indexed addressing concept
is used. The function selector (sel input) is considered as a two-bit offset added to the
high-order bits of the angle ϕ. This two-bit vector when considered as the natural number
introduces an angle shift inside the address word: A = ϕ +

(
π
2 ·sel

)
.
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This simple and fast function generator is only a part of the rotation computation
unit. The computation system must implement equations (3)–(4) or (5)–(7) or both at once
enabling separated calculations. When implementation of the unit is made the remaining
calculations should be implemented to create the complete processing solution. The
following will be illustrated the implementation of rotation to a static (R2S) computation
core. The processing problem is illustrated using the data flow graph shown in case A of
Figure 11. It could be observed that a similar sum of products is computed three times.
To achieve high clock frequency the implementation should shorten the combinational
paths and separate them with registers. Such architecture enables the introduction of a
pipelined (overlapped) operation. Based on earlier authors’ experience and developed
mapping methodologies [7] the developed data path block diagram is shown in case B
of Figure 11. The modern FPGAs implement the DSP block that integrates a multiplier
followed by an adder. In the case of Xilinx’s ZYNQ family, the DSP block is named
DSP48E1 [24]. Such a structure is perfectly suited to implement multiply and accumulate
(or pipelined add). Fitting computations into the DSP48E1 block allows for reducing the
requirements for general-purpose logic resources and obtaining the processing system with
short propagation delays that reflect the possibility of increasing the clock frequency.
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It is essential to illustrate the performance and logic requirements of the proposed
processing system in reference to other possible implementations that justify the selection.
It is also important to compare the hardware implementations with pure software-based
computations. Table 2 gathers the performance factors of different implementations. The
two first rows collect the programmatic implementation of rotations using ARM Cortex
A9 running at 600 MHz and compiled with speed optimization [20]. The first one (Trig.
Rotation) utilizes the math library and floating point implementation. Even though ARM
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supports floating point instructions computing a single rotation requires 3.83 µs. An
improvement is observed for the CORDIC sw (abbreviation of software) implementation
utilizing integers for number representation. In this implementation, computation time has
been reduced to 37.7% of the initial time and requires 1.445 µs.

Table 2. Comparison of computation execution time and resource requirements depending on
implementation method–programmatic or direct hardware implementation.

Implementation Platform

Performance Resources
f MAX

[MHz]f CLK
[MHz]

tC
[ns] LUT FF RAMB DSP48

Trig. Rotation ARM A9 600 3834 - - - - -
CORDIC sw ARM A9 600 1445 - - - - -

CORDIC comb. FPGA 100 30 641 78 0 0 67.8
CORDIC pipe FPGA 100 130 641 542 0 0 406.0

SIN_COS_LUT pipe FPGA 100 30 19 31 1 1 621.2
R2S FPGA 100 120 76 164 1 1 294.5
S2R FPGA 100 140 145 256 1 1 266.5.

The next five implementations are dedicated to the programmable hardware platform.
It is assumed that the hardware platform is clocked with a frequency of 100 MHz. First,
the CORDIC implementation is examined. The benefit of this implementation enables
getting rotation results of both coordinates in a single computation process. The first
implementation utilizes the combinational structure. Registers are placed on the processing
system inputs and outputs only enabling free data flow through the structure. In this case,
the rotation is computed in 30 ns (3 clock cycles). There is an observed long propagation
delay in the circuit path that requires two clock cycles to completely propagate the data
(propagation delay of 14.8 ns). This is illustrated by the maximal clock frequency of
67.8 MHz. The CORDIC pipe implementation shows changes in performance when all
stages are separated with registers. The computations take 130 ns (13 clock cycles). It
should be observed that the pipelined structure offers the maximal performance of average
computations of one clock cycle per sample. In the considered case the deep pipelined
structure (12 stages) is not required while only one computation is done for a sample.

Next, implementation is based on the computation of sine and cosine using the
lookup table approach. The performance of the sine and cosine computation unit based
on RAMB memory used as a lookup table is shown first to give the reference point. There
should be observed minimal resource requirements for computing. When compared
with CORDIC implementations the LUTs requirement has been reduced 33.7 times (from
641 to 19). The lookup table based architecture offers an extremely high clocking frequency
of more than 600 MHz and pipelined operation. Using a pipelined architecture enables
completing the computations of sine and cosine functions in 6 clock cycles that improve the
performance of the following implementations of R2S and S2R units. Finally, coordinate
system computation units are presented. Its implementation utilizes the lookup table-based
sine and cosine computation unit. The data flow diagram shown in Figure 11 perfectly fits
the DSP48E1 unit computing capabilities. It should be noted that such a unit is located next
to the RAMB32 block. The close location of components reduces programmable connection
length allowing for high-frequency operation. The total computation time of R2S is 12 clock
cycles while reverse computations in S2R blocks take 14 clock cycles. In comparison to
CORDIC pipe implementation, the computation time is comparable. There is a wide margin
between maximal and operating frequency (requested 100 MHz, the worst achieved case
is 266.5 MHz for S2R). The peripheral frequency can be set to 250 MHz meeting timing
requirements, which is the maximal frequency of PLL for peripheral clocking [11]. The
CORDIC implementation enables the illustration of resource requirements reduction and
architecture fitting. The R2S requires about 8.4 times fewer general-purpose logic resources
while the S2R ratio is about 4.42. It should be noted that the CORDIC algorithm is only a
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part of the computations to be implemented while remaining the transformations between
3-phase and two vectors systems that require general-purpose resources and additional
computation time.

4.4. The Controller Interface Implementation Summary

Processing blocks that are shown as separate units are put together creating a complete
input-output system for the ZYNQ device shown in Figure 3. The synthesis results for
separate modules and the complete interface unit are gathered in Table 3. There are listed
resource requirements for specific types and the maximal clocking frequency for each unit.
Finally, it is summarized with the complete system implementation in the last row. Results
are obtained using Vivado synthesis and implementation toolset [25].

Table 3. Resource requirements and performance of elementary components and complete interface
system for PMSM control implemented in XC7Z010.

Unit LUT FF RAMB DSP48 f MAX
[MHz]

LEM_XADC 176 155 0 0 338.3
MAB_SSI 12 37 0 0 482.4

IGBT_PWM 124 104 0 0 409.5
S2R 144 256 1 1 275.5
R2S 76 164 1 1 294.5

Processing cores
(total resources) 532 718 2 2 -

PMSM AXI 721 826 1 2 274.6

Processing blocks resources consumption is relatively low in comparison to CORDIC
processing core implementation (641 LUTs and up to 542 flip-flops Table 2). The high
maximal frequencies are achieved by reducing the number of logic layers between registers.
The modules architecture utilizes pipelined approach for arithmetic processing systems and
utilizes dedicated DSP48E1 cores for multiplication and addition operating in pipelined
fashion by separating the multiplier and the 48-bit accumulator with registers (Figure 11,
case B) [24]. It is worth pointing out that even though the R2S and S2R are implemented
as independent units they share the same sine lookup table implemented using RAMB32
memory operating in dual port mode [23] as seen in Table 3 in PMSM_AXI row. The
maximal operating frequency of the input-output system assures a wide margin of clocking
to the requested operating frequency of 100 MHz. The AXI interconnect system equipped
with diagnostic ports requires 27.6% of total LUT resources and 13.1% of the total flip-flops
number. The maximal frequency drop is less than 0.37%. There is observed minimal
influence of integrating the controller and attaching the AXI interface to it.

5. Conclusions

Presented in the paper implementation of the PMSM controller allows for precise
controlling of the inverter and collecting current shaft position and winding currents. This
was achieved by developing a dedicated input-output system that synchronizes all opera-
tions. There has been used fixed-point arithmetic in place of floating point implementation
which is resources and time demanding in hardware implementation. Along with precise
control, there is offered significant loosening of time requirements and implementation
simplification for control computation using a programmatic platform. The control can
be executed in a relatively long time window of the elementary cycle of the controller
operation. Computed results that are delivered at any time of the processing window
are precisely applied at desired moments of the computation window. This allows for
eliminating the time uncertainty caused by variable execution time of a program and long
access times to input-output system caused by multiple layers of AXI interconnection
system.
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The hardware interface also implements all signal transformations that are inde-
pendent of the high-level control algorithm. This pre and post-processing are efficiently
calculated using scheduling and mapping methods that enable the use of DSP48 processing
cores and RAMB32 dual port memory. Appropriate selection of algorithm implementation
and careful operation scheduling allows for reduce of general-purpose logic resource re-
quirements and achieves high computation throughput. Developed controller architecture
can be applied in a wide range of power electronic applications utilizing inverter driving
combined with high-level algorithmic control. Further works concentrating on control
application development and testing our PMSM motor stand and advanced control of
power inverters applications.
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