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Abstract: A 5G wireless network requires an efficient approach to effectively manage and segment
the resource. A Centralized Radio Access Network (CRAN) is used to handle complex distributed
networks. Specific to network infrastructure, multicast communication is considered in the perfor-
mance of data storage and information-based network connectivity. This paper proposes a modified
Resource Allocation (RA) scheme for effectively handling the RA problem using a learning-based Re-
source Segmentation (RS) technique. It uses a modified Random Forest Algorithm (RFA) with Signal
Interference and Noise Ratio (SINR) and position coordinates to obtain the position coordinates of
end-users. Further, it predicts Modulation and Coding Schemes (MCS) for establishing a connection
between the end-user device and the Remote Radio Head (RRH). The proposed algorithm depends
on the accuracy of positional coordinates for the correctness of the input parameters, such as SINR,
based on the position and orientation of the antenna. The simulation analysis renders the efficiency
of the proposed technique in terms of throughput and energy efficiency.

Keywords: centralized radio access network; base band unit; resource allocation; quality of service;
channel state information; modulation and coding schemes

1. Introduction

Technological advancements have increased the demand for high-speed and reliable
network connections. This includes a better tele-networking facility (voice and video calls),
online video streaming, and data download/upload [1]. 5G (based on a heterogeneous net-
work) is used to cater to such demands in a mobile concept. It is a network- or user-centric
service and is also referred to as a Centralized Radio Access Network (CRAN) [2]. The
number of users is increasing exponentially day to day. Therefore, there is an inevitable
requirement for efficient handling of this massive amount of network traffic while simul-
taneously maintaining high data-transfer rates. This increase in network traffic requires
efficient implementation of a 5G network with high-speed data transfer and low latency [3].
5G is intended to handle 1000 x users in the current generation and decrease a minimum of
10x in latency levels [4]. The increased number of active users increases the difficulty in
coordinating end-user (EU) devices and Remote Radio Heads (RRHs). CRAN is the perfect
architecture to effectively implement in 5G [5].

It consists of RRHs that are made up of a widely distributed antenna system. These
RRHs are placed separately from the Central Processing Unit (CPU). The CPU in this
architecture is a cloud-based unit placed in an isolated environment known as the Base
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Band Unit (BBU) [6,7]. A group of multiple BBUs is known as a BBU pool. Each RRH in
CRAN architecture is connected to BBU by a dedicated optical fiber link. Within a particular
geographical location, a densely distributed network of RRHs is known as an Ultra-Dense
Network (UDN). The use of UDN results in low latency and improved performance [8].

The number of devices that participate in the network is always unpredictable. There-
fore, a shorter frame duration is determined for Long-Term Evolution (LTE) compared
to LTE advanced. Many end-user devices have allocated resources while maintaining
system throughput and sum goodput. The traditional Resource Allocation (RA) technique
uses Channel State Information (CSI). However, Mina et al. mentioned that RA involving
CSI is more expensive in terms of system overhead and resource utilization [9]. The RA
emphasizes information discovery and delivery as an internet-based architecture. It is
referred to as an infrastructure network to make it more secure, as it addresses information
and makes it routable. Several articles have been published to represent CRAN architecture
with different resource allocation approaches, components, and other scenarios [4-8]. An
illustration of the CRAN architecture is presented in Figure 1.
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Figure 1. CRAN architecture.

In this work, we have discussed one of the most challenging RA using position
information among BBUs in the BBU pool. The 5G network aims to provide high-speed
data transfer with low latency. However, the overall increase in the number of active users
put forth a challenge of an effective resource allocation process that is straightforward
when using the traditional RA technique. The conventional RA technique uses CSI-based
information, which requires an extensive overhead, making the process expensive [10].

The main objective is to propose a Resource Segmentation (RS) mechanism for 5G
networks. To deal with this problem, we have developed a solution that considers the
EU’s position estimation for RA among BBU in CRAN. We have focused on minimizing
operational expenses and power consumption. We proposed a modified RA scheme that
efficiently handles the RA problem with a position-based RS technique that uses a modified
Random Forest Algorithm (RFA), Signal Interference and Noise Ratio (SINR), and EU
position coordinates. The improved RA helps enhance the quality of service (QoS) in 5G
wireless networks. This RS technique takes various parameters (such as energy efficiency
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and throughput) as input, then predicts the Modulation and Coding Schemes (MCS). It
establishes a connection between the EU device and the RRH. It mainly focuses on the
CAPital EXpenditure (CAPEX) and OPerational EXpenditure (OPEX) of the 5G network.
In the simulation analysis, the proposed position-based modified RA scheme is improved
throughput, i.e., 2.5 Mbps, through user variation compared to the CSI-based RA scheme
and learning-based scheme. Then, the proposed CRAN has improved energy efficiency of
2.65 (bps/Hz/W) compared to the existing H-CRAN (Heterogeneous-based Cloud Radio
Access Networks), as it takes the value of 2.5 (bps/Hz/W).

This paper is organized as follows. Section 2 presents the developments related to
improvements in the 5G wireless networks. The CRAN-based system architecture and
its RA methodology with modified position coordinates are discussed in Section 3. The
modified RA scheme is discussed in Section 4. Finally, the simulation analysis of the
proposed scheme is presented in Section 5.

2. Related Works

The 4GLTE and Long-Term Evolution Advanced (LTE/A) use packet switching based
on Internet Protocol (IP). LTE’s primary concern is handling fluctuating users within
a geographical area. Network fluctuation is achieved through the channel prediction
based on the acquisition of resources among the users utilizing Machine Learning (ML)-
based Multiple Input Multiple Output (MIMO). It helps to improve CSI accuracy with
data compression and processing delay [11], as well as imperfect CSI with channel rate
adaption [12]. However, this technique is inefficient when applied to 5G networks because
of the enormous traffic load. In their research [13], the authors have proposed the allocation
of resources based on an approximation algorithm connecting end-users with respective
RRH. The approximation algorithm found the approximate number of end-users connected
with a particular RRH. Then, it established a connection between the end-user and RRH and
between RRH and BBU. In [14], the authors have clearly described the resource allocation
scheme with the combination of a new radio and LTE network, which overcomes the
problem of computational complexity and overhead signal in a centralized approach.
Based on the proposed HCCRRA, power consumption and throughput were improved
based on the users’ packet arrival rate variation. Thus, the allocation strategy can be applied
based on varying time scales and congestion control policies in the next generation of 5G
networks [15].

Huan et al. in [16] considered the challenge of millimeter-wave (mmWave) beam-
forming and an optimized time-delay pool based on hybrid beamforming (for single and
multiple user scenarios in 5G CRAN networks). An energy-efficient scheme was designed
based on resource provisioning [17] by considering the network traffic based on resource
demand in the CRAN network. Using a resource provisioning scheme, they considered the
problem of optimizing and managing the resource. The authors formulated the resource
allocation based on the Graph Convolutional Networks (GCNs) [18]. They have proved
that the proposed method gains significant improvement concerning communication com-
plexity in wireless networks [19]. As it is a denser network, more resources are utilized,
increasing the energy efficiency of the process. In [20], the cooperative model is proposed to
integrate transmission and power consumption, which uses proposed resource allocation
based on the water filling model to improve the energy efficiency with the difference in
the end-user.

Similarly, in [21], the authors suggested a resource allocation mechanism that uses
Random Forest Algorithm and a system scheduler to validate the output from the binary
classifier. Although the algorithm performs well in terms of robustness, research and
further development are limited. The authors of [22] proposed using the Random Forest
Algorithm to create a classifier using a supervised machine-learning strategy. The authors
considered using the ID3 decision tree to classify the input parameters used. Moreover, the
SINR was kept constant while allocating resources. However, the value of SINR is subject
to dynamic changes; thus, we may be unable to obtain the optimum resource allocation.
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After investigating various approaches such as RRH tier, High Power Node (HPN)
tier, and HCRAN for resource allocation among BBU in CRAN, the traditional method of
RA uses CSl-based information of the End User (EU) in fifth-generation (5G) network. Due
to an enormous increase in system overhead—approximately 25% of the overall system
capacity—the conventional RA scheme is not optimal for application in CRAN for a 5G
network [23].

The traditional CSI-based RA scheme also fails to provide optimum results when
the system’s total number of users increases. Moreover, the decision tree used in the
prediction of MCS in machine-learning-based RA schemes is ID3, which is inefficient when
learning or test data consist of missing values. ID3 decision trees also fail to address
the solution for overfitting. During machine learning, the data pre-processing and data
classification improve the accuracy of the prediction process [24]. The resource computation
based on a scheduling framework paves the way for managing the resource based on data
reliability [25]. Effective resource segmentation is proposed in [26], which discusses CRAN’s
benefits in managing resource-allocation effectiveness. Then, the proposed strategy paved
the way for applying the existing random forest algorithm concerning RRH with MCS
schemes. The analysis has been carried out for average throughput over the number of
users and scatters density. Various RA-based approaches are summarized in Table 1.

The author suggests using the End User (EU) position estimates to deal with these
challenges. The EU’s position estimates can be supplied as input in our proposed machine-
learning-based supervised learning RA scheme, generating a C4.5 decision tree to allocate
MCS to the EU [27]. Therefore, the authors take this opportunity to propose an efficient RA
scheme for implementation in the CRAN system for the 5G network. Thus, our proposed
strategy states the objective of effective resource allocation through a modified random
forest algorithm to integrate a decision tree [28,29].

Table 1. Existing works based on resource allocation.

S.N.

Paper Title

Proposed Methodology Research Gap and Future Work

A H-CRAN model based on
resource-aware power consumption

Energy-efficient 5G cloud RAN with
virtual BBU server consolidation and
base station sleeping [13]

RBF-SVM-Based Resource Allocation
Scheme for
5G CRAN Networks [14]

Optical true time delay pool-based
hybrid beam former enabling
centralized beamforming control in
millimetre-wave C-RAN systems [16]

Deep-Reinforcement-Learning-Based
Resource Allocation for Content
Distribution in Fog Radio Access

Networks [30]

Training Resource Allocation for
User-centric Base
Station Cooperation Networks [31]

performs a dynamic centralized RRH
switch OFF mechanism based on
small cells as it helps to minimize the
probability of outage and
energy consumption.
A learning-based Radial Basis
Function (RBF) support vector
machine (SVM) is proposed for
allocating the resource, as it estimates
the user’s position based on the
resource block and size of the packets.
An optical true time delay pool-based
hybrid beamforming (OTTDP-HBF)
scheme is enabled with centralized
beamforming with computational
processing in the control unit.

A deep reinforcement learning
(DRL)-based resource allocation
scheme is proposed to improve the
distribution of content and address
the problem of resource allocation in
the radio access network
A graph-theoretic approach based on
a user-centric cooperative network to
minimize the overhead of data
training for large-scale network

Offloading tasks can be performed to
save energy in cloud computing
based on the mobile environment

Various classifier algorithms can be
applied to analyze throughput and
classification parameters.

Different pre-coding schemes for
single-user and multi-user scenarios
are analyzed based on
spectral efficiency.

Offloading schemes based on the
cooperative network can be
performed on routing decisions based
on a network resource.

Resource allocation problem. The
proposed approach can be applied to
orthogonality via time/frequency.
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3. System Architecture

The key idea of the proposed architecture is to deploy CRAN based on resource
segmentation for 5G networks, which considers the problem of end-users pure-position
estimates as the basis for resource allocation among BBU. Here, the CRAN architecture and
its essential components are discussed initially. Then, the resource allocation process is
based on BBU with proper connection establishment between the EU and RRH to estimate
the SNIR and transmission power. The position is calculated based on RRH user entry in
CRAN on a per-frame basis.

3.1. General Trivia and Assumptions

CRAN is a unified architecture for use in a 5G network. Some of the essential compo-
nents for the same are represented in Figure 2.

Figure 2. Modified C-RAN Architecture.

1.  Base Band Unit (BBU) consists of an isolated cloud-based CPU. The CPU is responsible
for baseband processing. Each BBU is capable of handling one or more RRRHs at the
same time.

2. RRHis an isolated unit of the remotely distributed antenna system. The combination
of multiple RRHs is referred to as UDN. Each RRH is connected to a BBU with the
help of a dedicated optical fiber link.

3. Nrepresents the EU device. Each EU is connected with an RRH through a wireless
communication channel.

4.  RRH and EU devices contain transmission and receiving antennas, with A_Tx rep-
resented as the transmission antenna and A_Rx described as the receiving antenna.
CRAN allows the antenna system to be installed over any high-rise structure such as
a building, streetlight, etc.

5. CRAN functions in Time Division Duplex (TDD) and Orthogonal Frequency Division
Multiplexing (OFDM).

6. Itis assumed that only one EU is connected to the RRH at a given time.

3.2. Resource Allocation in CRAN

The CRAN system consists of BBU as the cloud-based central processing unit. This
unit provides the entire baseband processing required whenever the system detects a new
EU, as mentioned in Figure 3. During the resource allocation process, first, the EU is
assigned to an RRH on a per-frame basis. Following the assignment of EUs assigned to the

RRHs, an assignment matrix is generated for the same, represented as w'.
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Figure 3. Resource Segmentation among BBU and RRH.

For an established connection between EU and RRH at a given time t, transmission
depends on the interference of the transmission medium. For a combination of given RRH
and EU at time t, SINR is given by using Equation (2) in (1),

TP
SNIRy = ———¢ T (1)
o+ T8 TP

S#p

where TP;,q represents the total power of the signal received by EU g, from the ph RRH,
at time frame t, TPgrq depicts the total power of the signal received by EU g, from the sth

RRH, at the time frame t, and o2 defines the total power of noise. Therefore, the total signal
power received TP}, , is given by

TP . = TPy,-| T, .-Cm! _-R! ? )
P4a P |"pq P49 7P4
TPyp indicates the amount of transmit power provided per RRH, and Cm;,q represents
the channel matrix (CM) for time frame t between RRH and EU,,. Each component of the
channel matrix shows a channel impulse. The channel impulse [32] is the aggregate of all
the impulses generated from multiple parts between Aty and Agy and is given as

— 127tbm (t)

M
Kogar(t, @) =) kmgrar(t)-e” A -8(x— aparar(t)) 3)

M represents the number of multiple path components; ky, ag a1 (t) represents the
impulse response from m™ multipath, also consisting of the path loss. Wavelength is
represented by A, and by, is used for total distance by multiple path m at time frame t.
5 (oc — O 2R AT (t)) is used for the delta function, which represents the evolution of response
from channel impulse following different multiple path delays oty ag at (t)-
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3.3. Estimation of Position Coordinates

When a new user enters the CRAN system, it is assigned to an RRH. This assignment
is based on position estimates. A module which is a known system overhead module is
required to obtain either of the two parameters. Consider the time frame representation,
as in [33], where the total frame duration t; is 1ms and consists of S = 2 sub-frames, each
with the duration tg,},. The initial units of each sub-frame were used to estimate location
coordinates and the unit of time frame represented by narrowband beacons was the basis
for position estimation. Wideband beacons were used to estimate position estimates based
on information in traditional resource-allocation techniques. The total number of units
needed to evaluate the position depended upon the total number of EU in the system.
Unused units in a particular time frame can be used for data traversal in the transmission
channel [34].

Based on the above-discussed parameters, the percentage overhead required to
estimate position on a per-frame basis was calculated using

SYpos f subc,pos
SYtotal : fsubc.total

SOpos = (4)
where, SYpos represents the number of OFDM symbols used for position estimation of
EU in the CRAN system, fsupe pos Tepresents the total number of sub-carriers used to find
the position, and SY a1 and fqype total Tepresent the total number of OFDM symbols and
sub-carriers available in the time frame t;. Following the calculation of SOpos, it was taken
as the input value for adding a new RRH to handle the traffic demand of one MBS network.

4. Proposed Scheme

In this section, we discuss our proposed scheme, a supervised learning-based RA
scheme that uses position estimates of the EU to predict the Modulation and Coding
Scheme (MCS). Based on the C4.5 decision tree [35], the efficient link between EU and RRH
for high-speed data transfer has been proposed for meeting the challenges mentioned in
the problem statement, as represented in Figure 4. The proposed scheme for RA is based
on the Random Forest Algorithm (RFA). This algorithm helped with the creation of a forest
of random binary decision trees with each solution for some given input parameters. RFA
is dependent on the training dataset to generate binary decision trees. The training dataset
T4 was made up of two parts: an input feature vector and output values, with the RFA
taking inputs from the input feature vector. Thus, it developed C4.5 binary trees y; with
depth y4, which are capable of handling missing data and overfitting problems.

EU_x
‘ Intef Beam 1 ID ’ ‘ Intef Beam 2 ID ’
Rec_Filter ID
A

‘ MCS2 ‘ ‘ MCS2 ‘ ‘ MCS2 ’ ‘ MCS2 ’ ‘ MCS2 ‘

Figure 4. Position estimation of EU based on MCS.
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The input feature vector consists of the following elements:

Rx — Receive filter value for a particular EU to RRH assignment at time t.

Tx — Transmit filter value for a particular EU to RRH assignment at time t.

SINR — The value of interference and noise ratio.

PE!, — As shown in Figure 4, the value of position estimates obtained from the time
frame beacons.

e ITBy — The value of interfering transmit beam for assignment of n'" EU to q'" RRH.

The proposed machine-learning-based model was trained with the help of real-time
data instances obtained from various telecom service providers. The data consisting of
actual EU to RRH assignment details and their transmit beam, receive filter, and MCS
values were fed into the system for practical training. Following the training of the system,
test data were used to test the model’s credibility. After rigorous training and testing, the
model was finally used to predict MCS for a given EU to RRH assignment. Figure 3 depicts
an example of a C4.5 random binary decision tree which is a part of a generated Random
forest, and the C4.5 decision tree generation is represented in Algorithm 1.

Algorithm 1. Modified C4.5

Input: Dataset Ds;
Output: Decision Tree DT, Error Rate of Node N;

1.  Begin

2. Construct Tree Node T with Root Node RT
3. Then, Root RT — classifies the dataset

4. If Node T — Attributes {1,2, ... n})

5. RT1 — RT + Branch B;

6. Return RT1;

7. Elseif (Node T — Empty)

8. BranchB = N;

9. Assign N as Class D;

10. Return N;

11.  Elseif (Node T — Same category D)

12. Leafnode=N;

13. Mark N as class C;

14. Return N;

15. Else

16. Add a new branch added to the node T;
17. For(i=1ton)

18. {

19. Calculating the Attribute Information Gain;
20. }

21. Ta — Attribute Testing;

22. Highest Information Gain — Ta * N;

23. //Tree Splitting for each Tree T

24. If (T is Empty)

25. Leaf Node — Child Node N;

26. Else

27.  Decision Tree DT — Child Node N;

28.  Calculate the Error Rate of Node N;//Missing Rate
29. Return N;

30. End

C4.5 decision trees have been used to predict MCS from input parameters. A C4.5 tree
was seen as better than the conventional Iterative Dichotomiser 3 (ID3) tree due to its
ability to handle missing data values. It also works well to overfit values. The binary
tree has a depth y4 = 3, as shown in Figure 3. Further, a tree could be traversed for
the optimal solution. Leaf nodes in the binary decision tree represent various MCSs to
enable the establishment of the EU and RRH. A rigorous search technique was used to
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determine input parameters for constructing training data. As soon as the training is
complete, the testing phase begins. The random forest algorithm is one of the most efficient
algorithms used to generate multiclass classifiers, as represented in Algorithm 2. Following
the obtainment of predicted MCS value from the random binary tree, it calculated the sum
goodput using,

1 B emcsf( n (Trfl) 'dmCSE( n
Zen = ( T, ) s )

In Equation (5), g’ , represents the sum goodput, e,, est, (<) Tepresents the total block
error rate, and d,,. represents the payload for a specific value of MCS.

Equation (5) considers the factors required to calculate the sum of the goodput, specifi-
cally to establish the connection between EU and RRH and the predicted value of MCS.
Table 2 provides details of the percentage contribution and the data type of input parameter

attributes in the input feature vector.

Table 2. Contribution value and data type of input attributes.

Variable Name Data Type Range Variable Value
SIR Integer 1-7 8.7
End User_x Float 270.5-283.5 10.3
End User_y Float 65-205 14.9
Transmit Beam Integer 1-28 14.3
Receive Filter Integer 1-7 15.5
Interference Beam 1 Integer 1-28 13.4
Interference Beam 2 Integer 1-28 10.8
Interference Beam 3 Integer 1-28 12.1

Algorithm 2. Modified Random Forest

Input: Decision Tree DT Data sets;
Output: Random binary tree

Begin

Select T — ST;//To grow the number of trees
Initialize S — Bagging data;

ForS=1toT

Training Data TD — construct the sample Sa in S of size N;
Developing Random Forest Ra to S

Repeat steps 4 to 6;

Terminate till the node minimum value is attained.
Assign variable at random Vr from S variables in
Node T;

Select the best split tree from Vr;

Divide node N into two leaf nodes;

Random binary tree

End

O PN TN

— =
_ O

=
LS N

Interference beams 1, 2, and 3 interfere with various EU transmit beams. EU_x and
EU_y are the position coordinates of the EU as calculated from the narrowband beacons of
the time frame. The receive filter and transmit beam represent these elements’ percentage
necessity in the input feature vector.

5. Simulation Analysis

This section briefly describes the methodology used to support the author’s proposed
scheme for effectively segmenting resources among BBU in centralized radio access net-
works. All the simulations for this model were conducted on ns2. The simulation uses
100 RRH with a transmission power of 25 dBm and a packet size of 1000 bits for the CRAN
network. The transmission range assigned in the network of 500m, and used to analyze the
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channel state information, OFDMA_QPSK_1_2, is used as the modulation type. During
the traffic demand, 6.4 Mbps~200 Mbps data were used with the network bandwidth of
20 MHz.

The proposed scheme also intends to evaluate the performance of the random forest
algorithm as in Algorithm 2. In this performance analysis, resource allocation parameters,
i.e., energy efficiency and QoS guarantee, were evaluated based on the proposed system.
Based on the simulation configuration, we evaluated the performance of the proposed
system as represented in Table 3.

Table 3. Simulation Configuration.

Parameters Value
Transmission Range 500 m
Packet Size 1000 bits
Modulation Type OFDMA_QPSK_1_2
User distribution Uniform
Total bandwidth 20 MHz
Traffic Demand 6.4 Mbps~200 Mbps
Number of RRH 100
RRH .ma.ax1mum 25 dBm
Transmission power
Antenna gain for RRH 6 dB

5.1. Analysis of Channel Estimation

Before deploying the random forest, it is necessary to check the integrity of the dataset
for training purposes. The trained model’s test dataset was given as input to check its
accuracy. Training accuracy was judged based on validation by test data. Research has
already been conducted to evaluate the effectiveness of the Random Forest Algorithm. An
OFDM system based on pilot channel estimation adds the pilot into the OFDM symbols of
the subcarrier in the uniform interval of time. The channel estimation over the Least Square
(LS) is estimated to calculate Minimum Mean-Square Error(MMSE) with a signal-to-noise
ratio (SNR).

hisi (n) = hi(n) +@;(n), 0 <n <N (6)

where

hirs; (n) — Time-domain Noise over ;(1)

hi(n) — Time-domain estimated channel impulse response

There is a limitation of channel correlation elimination while deploying the linear
MMSE. This technique helps to estimate the pilot frequencies at the channel and intercalate
them. The OFDM channel estimation provides the data symbols at the periodic time
interval using pilot-based channel estimation, as all the data sub-carriers are used as pilots.
The advantage of this channel estimation is that there is no error. The channel estimation is
performed based on fast and slow fading.

Channel estimation techniques help to enhance the performance of the Orthogonal
Frequency Division Multiplexing (OFDM) system in terms of Symbol Error Rate (SER), and
thus, the channel estimation accuracy improves. Compared to the traditional technique,
the performance of the proposed model can be seen in the graph shown in Figure 5. The
proposed algorithm has helped to increase the average network throughput compared to
the currently used learning-based and CSI-based systems for the same number of active
EUs. The network throughput showed consistently high overall value ranges for the same
number of users compared to the CSI-based system. At first, the graph does not show a
vast difference between the two series. However, many system performances were seen
with an increase in the number of users in the system. The graph shows the appreciable
difference between the three series until users increase to a specific value. Following this,
both series decrease on the average network throughput value. The algorithm proposed by
the authors can be considered an improvement over the convolutional strategy.
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Figure 5. Average network throughput based on the number of users.

The average network throughput was analyzed by considering the position coordi-
nates based on the modified RA scheme discussed in Section 4 and represented in Figure 5.
The coordinate position information generated was based on all RRH with the comparison
of existing learning-based and CSI-based RA schemes.

Figure 6 shows the inference of the network throughput values and the overhead
generated for each RA scheme. Analysis shows the CSI-based RA scheme having an
average of 2.45 Mbps throughput compared to the learning-based RA scheme. However,
the proposed position-based modified RA scheme has 2.5 Mbps throughput, improving the
value compared to the CSI-based RA scheme. With the high network density, a profound
change was seen in the scatter density based on the obstacles, analogous to the graph
shown in Figure 6. This depicts the average network throughput for the increasing number
of users, showing the average network throughput for various values of scatter density
along the x-axis. This graph also shows the authors’ proposed scheme outperforming the
conventional technique, which uses CSI. The average network throughput in both graphs
does not show any predictable trend. However, the performance of the position-based
scheme was seen as better than that of the traditional CSI-based RA scheme.

Figure 7 shows the analysis of the average network throughput based on the variation
in the number of samples. Generally, the CSI-based RA scheme has better network through-
put and improved variation compared to the learning-based RA scheme. The authors
proposed a position-based modified RA scheme that averages 2.46 Mbps network through-
put compared to the CSI-based Ra scheme with 2.44 Mbps. For the simulation, we used
3,00,000 samples for the performance evaluation, and the result shows that the proposed
scheme has better throughput than the learning-based and CSI-based RA schemes.

5.2. Analysis of Energy Efficiency

Section 5.2 analyzes the performance of UE coordination to guarantee the Quality
of Service (QoS) based on energy efficiency. The RA scheme has been proposed, and an
analysis of the connection between the UEs and RRHs was conducted based on MCS using
the proposed RS technique. This RS technique integrates the random forest along with the
C4.5 algorithm multiple binary decision trees.
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Figure 8 presents an analysis showing the proposed enhanced C-RAN compared
with the other two methods. The proposed improved C-RAN scheme achieves up to
2.38 bps/Hz/W, which provides better energy efficiency than the RRH Tier, C-H-CRAN.
The authors have analyzed the UE system coordination by calculating the energy efficiency
based on the SNIR threshold value, with variations from 0 to 16, as shown in Figure 9.
The proposed Enhanced C-RAN has an energy efficiency of 2.65 (bps/Hz/W) compared
to H-CRAN, which takes the value of 2.5 (bps/Hz/W). Despite the increase in the limit
of the SNIR value, the proposed enhanced C-RAN value decreases to 2.58 (bps/Hz/W).
It provides higher energy efficiency than existing techniques such as RRH Tier C-RAN,
H-CRAN, and office-based RRH tier, i.e., RRH tier-based structure is established for the
office community.
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5.3. Analysis of throughput with Iteration Variation

Figure 10 shows the calculation of average throughput based on the variation in the
iteration from 2 to 10. The authors have fixed the uniform transmission power for all the
RRH to evaluate the network throughput and the maximum transmission power to 0.5 W.
based on the variation in the number of iterations. The proposed enhanced C-RAN has the
constant value of 2.38 (nats/symbol) compared to other existing techniques such as RRH

Tier, C-RAN, H-CRAN, and improved network throughput.

5.4. Analysis of Resource Allocation Based on the Distribution Function

The Cumulative Distribution Function (CDF) value is determined based on the eval-
uation of the data rate accessed by user equipment based on resource block = 1000, and
efficiency is analyzed based on the threshold of 2 Mbps, 0.5 Mbps and 4 Mbps. The pro-
posed learning-based CRAN outperforms the existing approaches, such as H-CRAN and

Cloud-RAN, as in Table 4.
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Table 4. CDF-based data rate by accessing resource allocation.
S. No. Cumulative Distribution Function (CDF)
Methods Cloud-RAN H-CRAN Proposed Learning-Based CRAN
0 0.0 0.0 0.0
1 0.432 0.132 0.125
2 0.865 0.400 0.312
3 0.985 0.765 0.745
4 1.000 0.950 0.912

6. Conclusions

Recent advancements in the IT sector have created an unprecedented demand for
reliable network connections. High-speed data transfer has become the primary need of
almost every internet user. However, considering a massive number of IoT for deploying
an efficient resource allocation is a required strategy. The conventional resource allocation
strategy uses a CSI-based scheme for resource allocation in LTE and LTEA. However, the
vast increase in the volume of EU’s has brought about the need for employment of next-
generation 5G networks. Resource allocation in 5G using conventional methodology is not
efficient enough.

For the same reason, we have proposed a resource allocation scheme based on super-
vised machine learning, and RA helps enhance the security in 5G Wireless Networks. This
strategy uses the Random Forest Algorithm to generate a multiclass prediction system or
classifier. The scheme proposed by the authors uses pure position-based estimates of the
EU’s to predict the MCS. The random Forest Algorithm creates a forest of C4.5 random
binary trees. Leaf nodes of these trees represent the value of MCS for use in a particular EU
to RRH assignment. Suppose that in the tree, there is a possibility that more than one value
of MCS is predicted for the EU-RRH connection for the same input parameters. In that case,
the model of all the MCS values is considered. The model evaluation section shows that
the proposed scheme’s performance works better than the traditional resource allocation
technique using CSI-based information. As throughput and energy efficiency parameters
are considered, the proposed model performs better, and those parameters are QoS metrics,
reflecting the improvement in the QoS.

Figures 5 and 6 clearly show that the author’s proposed algorithm performs better for
a dynamic EU load. However, after the number of users increases to a specific value, the
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performance of both algorithms starts to deteriorate. Therefore, the proposed strategy may
not be the best for resource allocation. However, it portrays another approach to resource
allocation among BBUs in centralized radio access networks. In the future, advanced
learning methods can be associated with CRAN in 5G networks as it takes improved
network overall performance.
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