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Abstract: Imbalanced data are ubiquitous in many real-world applications, and they have drawn
a significant amount of attention in the field of data mining. A variety of methods have been
proposed for imbalanced data classification, and data sampling methods are more prevalent due
to their independence from classification algorithms. However, due to the increasing number
of sampling methods, there is no consensus about which sampling method performs best, and
contradictory conclusions have been obtained. Therefore, in the present study, we conducted an
extensive comparison of 16 different sampling methods with four popular classification algorithms,
using 75 imbalanced binary datasets from several different application domains. In addition, four
widely-used measures were employed to evaluate the corresponding classification performance.
The experimental results showed that none of the employed sampling methods performed the best
and stably across all the used classification algorithms and evaluation measures. Furthermore, we
also found that the performance of the different sampling methods was usually affected by the
classification algorithms employed. Therefore, it is important for practitioners and researchers to
simultaneously select appropriate sampling methods and classification algorithms, for handling the
imbalanced data problems at hand.

Keywords: imbalanced data; sampling methods; classification

1. Introduction

Over the last two decades, imbalanced data classification has drawn wide-spread
attention in both the academic and industry communities [1,2]. To date, a large number
of real-world classification tasks have been reported to suffer from imbalanced data, such
as customer churn prediction [3], software defect prediction [4], wafer defect pattern
identification [5] and financial fraud detection [6]. In particular, imbalanced data refers to
a dataset with one or some of the classes having a much larger number of instances than
others, and in which the rarest class is usually called the minority class. Many traditional
classification algorithms often show poor performance on imbalanced data, as they ignore
the interesting minority class, due to maximizing the overall classification accuracy [7].

Many different kinds of method have been proposed to tackle the class imbalance
problem, such as data sampling methods [8,9], cost-sensitive learning [10,11], and ensemble
learning [12,13]. Among these, sampling methods are more popular and prevalent, due to
their independence from classification algorithms [14]. Undersampling and oversampling
are two different strategies of sampling methods. In particular, undersampling focuses
on eliminating majority instances, and due to a reduction in training samples, the model
construction efficiency can be improved. However, oversampling allows increasing the
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minority instances to rebalance the imbalanced data, and the model construction efficiency
may decrease with more training samples.

However, there is not a consensus in the research community about which is the
best sampling method [15,16], as each sampling method has pros and cons. As stated by
Loyola et al. [16], no sampling methods can clearly obtain the best results, as there are
certain factors which do not allow us to answer this question, including vastly different
intrinsic data characteristics and various application domains. We argue that contradic-
tory conclusions on the dominance of different sampling methods may lead to the use of
discrepant experimental setups, including various imbalanced datasets, diverse classifi-
cation algorithms, and different performance measures. Therefore, in the present study,
we intend to provide a comprehensive comparison of different sampling methods under
the circumstance of a large number of imbalanced datasets, as well as several widely-used
classification algorithms and performance metrics.

To be specific, 16 different sampling methods, including seven oversampling methods
and nine undersampling methods, have been carefully selected with four different criteria
for the experimental study. In addition, 75 original binary datasets from four different ap-
plication domains are used for the comparison study, including from physical sciences, life
sciences, business, and software engineering. Moreover, we use four popular classification
algorithms (Naive Bayes, KNN, C4.5, and Random Forest) and four widely-used perfor-
mance measures (TPR, AUC, F-Measure, and G-Mean) in the experiment. The following
three research questions are studied in detail:

RQ1: How effective are the employed sampling methods?

Most of the employed sampling methods can improve the classification performance
of a naive classification algorithm, and thus they are effective in dealing with imbalanced
data. In addition, the newly proposed and complex sampling methods may not perform
better than the simple and classical sampling methods.

RQ2: How stable are the employed sampling methods?

None of the 16 employed sampling methods show stable classification results across
all four classification algorithms and four evaluation measures used, which indicates that
the selection of baseline sampling methods for validating the performance of new sampling
methods is rather difficult.

RQ3: Is the performance of sampling methods affected by the learners?

Different sampling methods may behave very differently when employing different
classification algorithms for building classification models. Therefore, we suggest that
the sampling methods and classification algorithms should be taken into consideration
simultaneously when handling the imbalanced data.

The main contributions of our work are summarized as follows: (1) We provide a
comprehensive comparison of 16 sampling methods on 75 original imbalanced datasets,
using four popular classification algorithms and four widely-used performance measures.
(2) The experimental results demonstrated the effectiveness yet instability of the employed
sampling methods. Furthermore, different sampling methods may behave very differently
with different classification algorithms. (3) We advocate that researchers pay more attention
to the selection of appropriate sampling methods for imbalanced data, while considering
the classification algorithms used.

The reminder of this paper is organized as follows: Section 2 provides a detailed
review of different sampling methods. The sampling methods employed in present study
and the specific design of our experiment are described in Section 3. In Section 4, we
introduce the corresponding experimental results and discussions. Finally, a brief summary
of the present study and future work is presented in Section 5.

2. Related Work

In the field of machine learning, traditional classification algorithms usually assume
that the training data employed to build classification models are balanced. However, this
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is not always the case in practical applications, where one class might be represented by
a large number of examples, while the other is represented by only a few [17–19], which
is known as the imbalanced data classification problem [1,2]. To date, a variety of studies
have focused on proposing a number of different methods to solve the class imbalance
problem, such as sampling methods [16,20], cost-sensitive learning [21,22], and ensemble
learning methods [12,23]. Among these, sampling methods are the more prevalent, as they
are independent of the classification algorithms employed [14]. To be specific, sampling
methods alter the distribution of the original data, either by increasing the minority class
instances (oversampling) or by eliminating majority class instances (undersampling).

Oversampling methods balance the training data distribution by increasing the num-
ber of minority class instances [24–27]. As the most frequently used oversampling method,
random oversampling (ROS) increases the minority class instances by random duplication
of existing minority class instances. However, ROS usually suffers from overfitting, due to
massive replication, and Chawla et al. [28] proposed a popular oversampling approach,
SMOTE, for avoiding the overfitting problem. In SMOTE, minority class instances are
created based on the neighbor instances, rather than copying existing instances. However,
there are still some disadvantages with SMOTE and a number of SMOTE variations have
been proposed in the past decade [29]. For example, focusing on the decision bound-
ary, borderline-SMOTE (BSMOTE) was proposed to make an improvement of SMOTE by
oversampling the minority class instances near the borderline [30]. He et al. [31] focused
on the hard to classify minority instances and presented an adaptive synthetic sampling
approach (ADASYN). In addition, MWMOTE was proposed by Sukarna et al. [32], which
identifies hard-to-learn informative minority class samples and assigns corresponding
weights, according to the nearest majority class samples. Recently, the k-means cluster-
ing method was combined with SMOTE (KSMOTE [9]) to avoid the generation of noise
instances, which effectively overcame the imbalance between and within classes. In addi-
tion, there are also other oversampling methods focusing on solving the class imbalance
problem. MAHAKIL [33] was proposed, to employ the chromosomal theory of inheritance
to alleviate the class imbalance issue in software defect prediction. RACOG is a proba-
bilistic oversampling technique, combining the joint probability distribution and Gibbs
sampling [24]. Yan et al. [34] proposed a novel optimal transport-based oversampling
method. In light of expanding class boundaries possibly influencing classification perfor-
mance, RWO-Sampling [35] creates synthetic samples through randomly walking from the
real data.

Undersampling methods rebalance imbalanced data by removing majority class in-
stances, until the desired ratio is obtained [36–39], which can suffer from the problem of
discarding potentially useful data. Random undersampling (RUS) is the most simple and
representative undersampling approach, randomly eliminating instances from the major-
ity class. Two popular data cleaning techniques, including condensed nearest neighbor
(CNN) [40] and edited nearest neighbor (ENN) [41] have been used to remove majority
instances by employing a nearest-neighbor-based classification algorithm. Moreover, Lau-
rikkala [42] proposed the method of the neighborhood cleaning rule (NCL) by modifying
ENN. Kubat et al. [43] propose one-sided selection (OSS), to undersample datasets by
combining CNN and Tomek links [44]. Recently, clustering methods combined with un-
dersampling have received attention from researchers [36,45,46]. In particular, a specific
clustering method was first applied to different data, such as the total training data [45],
the minority class instances [36], and the majority class instances [37,46]. Then, based
on the results of clustering, different strategies have been adopted to delete the majority
class instances to obtain relatively balanced training data. Furthermore, there are also
other kinds of undersampling methods based on different learning algorithms, such as
evolutionary algorithms [47], metric learning [48], and reinforcement learning [38].

A variety of studies have been conducted to compare the classification performance of
different sampling methods, and some prior studies [15,49–52] showed inconsistent results
regarding which kind of sampling method is best. Batista et al. [8] studied the behavior of
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several sampling methods, and their experimental results showed that oversampling meth-
ods provided a better classification performance than undersampling methods in terms of
AUC. What is more, they found that ROS was very competitive for more complex oversam-
pling methods, such as SMOTE. Moreover, Hulse et al. [53] also experimentally determined
that ROS and RUS usually perform better than the complex sampling methods, by using
11 learning algorithms with 35 real-world benchmark datasets. However, based on the
contrast pattern classifier, SMOTE was the best oversampling method, while Tomek was the
best undersampling method [16]. Furthermore, Bennin et al. [54] concluded that RUS and
BSMOTE were more stable across several performance measures and prediction models.

To summarize, we found that the performance of different sampling methods in
the existing studies has not reached a clear consensus. The use of different datasets
may have resulted in such contradictory conclusions, as different sampling methods may
be more suitable according to the internal characteristics of real-world datasets [55,56].
Furthermore, the classification algorithms and performance measures employed are also
two important factors that may have had a great impact on the classification performance
of the different sampling methods [3,57,58]. Such contradictory conclusions make it hard
to derive practical guidelines for whether, and which, class rebalancing techniques should
be applied in the context of different application domains. Therefore, in the present study,
we performed a more extensive experimental comparison of sampling methods, with
the use of 75 imbalanced binary datasets from four different application domains. To be
specific, 16 popular sampling methods, four well-known classification algorithms, and four
widely-used performance measures were investigated in the present study.

3. Experimental Study

In this section, the overall experimental design is provided, including the evaluated
sampling methods, employed datasets, evaluation measures, experimental setup, and
research questions. In particular, Sections 3.1 and 3.2, respectively, give a short overview
of the employed sampling methods and experimental datasets. Then, we present some
evaluation measures in Section 3.3, which are typically employed to assess the performance
of sampling methods with a specific classification algorithm. Finally, the experimental
setup and research questions are separately provided in detail in Sections 3.4 and 3.5.

3.1. Sampling Methods

In the present study, we employed the following criteria to select the sampling meth-
ods: (i) The simplest sampling methods, namely ROS and RUS; (ii) The classical sampling
methods that have been widely used as baseline methods for comparison [8,16,54], such as
SMOTE [28] and OSS [43]; (iii) The sampling methods that are proposed in recent years,
yet with a certain number of citations, such as KSMOTE [9] and CentersNN [46].

Therefore, a total of 16 popular sampling methods were selected for conducting the
following experiment, including seven oversampling methods and nine undersampling
methods. The selected sampling methods are briefly introduced in the following. For more
details about these sampling methods, please refer to the corresponding literature.

3.1.1. Oversampling Methods

Oversampling methods balance skewed datasets by increasing minority instances
with a specific strategy. There are seven common oversampling methods in the present
study, and a description of these methods is given below.

• ROS: ROS increases the number of minority instances by randomly replicating mi-
nority instances. In particular, for a given dataset, a instance from the minority
class is randomly selected and then a copy of the selected instance is added to the
dataset. By these means, the originally skewed dataset is balanced to the desired level
with ROS;

• SMOTE [28]: SMOTE is a method for generating new minority class instances based on
k-nearest neighbors, which aims to solve the overfitting problem in ROS. In particular,
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one minority class instance is randomly selected and corresponding k nearest neighbor
instances with the same class label are found. Then, the synthetic instance is randomly
generated along the line segment, which joins the selected instance and its individual
neighbor instance;

• BSMOTE [30]: BSMOTE makes a modification of SMOTE by focusing on the dangerous
and borderline instances. It first finds the dangerous minority class instances that have
more majority class instances as neighbors than minority class neighbors. The danger-
ous minority class instances are regarded as the borderline minority instances, and
then they are fed into the SMOTE method for generating synthetic minority instances
in the neighborhood of the borderline minority instances;

• ADASYN [31]: ADASYN is another modification of the SMOTE method and focuses
on the hard to classify minority class instances. First, the learning difficulty of each
minority instance is calculated as the ratio of instances belonging to the majority
class in its neighborhood. Then, ADASYN assigns weights to the minority class
instances, according to their level of learning difficulty. Finally, the weight distribution
is employed to automatically generate the number of synthetic instances that need to
be created with SMOTE method for all minority data;

• SLSMOTE [59]: Based on SMOTE, SLSMOTE assigns each minority class instance a
safe level, before generating synthetic instances, which are calculated based on the
number of minority class instances in the corresponding k nearest neighbor instances.
In SLSMOTE, all synthetic instances are generated in safe regions, as each synthetic
instance is positioned closer to the largest safe level;

• MWMOTE [32]: Based on the weaknesses of SMOTE, BSMOTE and ADASYN, MW-
MOTE first identifies the hard-to-learn informative minority class instances, which are
then assigned weights according to their Euclidean distance from the nearest majority
class instance. Then, a clustering method is employed to cluster these weighted infor-
mative minority class instances, and finally new minority class instances are generated
inside each individual cluster;

• KSMOTE [9]: KSMOTE first clusters the data with k-means clustering method and then
picks out the clusters with a number of minority class instances greater than majority
class instances.For each selected cluster, the number of generated instances is obtained
according to the sampling weight computed based on its minority density, and SMOTE
is then applied to achieve the target ratio of minority and majority instances.

3.1.2. Undersampling Methods

Undersampling methods aim to decrease the majority instances to balance skewed
datasets. The nine selected undersampling methods are briefly introduced as follows:

• RUS: RUS decreases the number of majority instances in a given dataset by deleting
majority instances at random; namely, randomly selecting a majority class instances
and removing them until the given dataset reaches the specified imbalance ratio;

• CNN [40]: CNN aims to find a subset that can correctly classify the original dataset
using the 1-nearest neighbor method. For the purpose of deleting majority instances,
all minority instances and a randomly selected majority instance are merged into
an initial subset. Then, other majority instances are classified based on the 1-nearest
neighbor method with the initial subset. The misclassified majority instances are put
into a subset for obtaining the final training data;

• ENN [41]: ENN is a kind of data cleaning technique that can be used as a undersam-
pling method [60]. In ENN, the KNN technique with K = 3 is first employed to classify
each majority class instance in the original data using all the remaining instances.
Finally, those misclassified majority class instances are removed from the original data
and all residual instances are regarded training data;

• Tomek [44]: Tomek is also a data cleaning technique employed as a undersampling
method. When the distance between a majority instance and a minority instance is
smaller than the distances between any other instances and each of the two instances,
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such a pair of instances is called a tomek link.When employing Tomek as a under-
sampling method, the majority instances belonging to all tomek links are deleted, to
rebalance the original data;

• OSS [43]: For the purpose of removing redundant and noisy majority class instances,
OSS combines the CNN and Tomek methods. To be specific, OSS first employs a
CNN to remove redundant majority class instances and thus obtains a subset that can
represent the original data. Then, the Tomek method is applied to the obtained subset,
to delete the noisy majority class instances;

• NCL [42]: NCL makes improvements on ENN, as it deals with not only the majority
class instances but also the minority class instances. In particular, for a majority
class instance, it will be deleted from the original data if most of its neighbors are
minority class instances (namely ENN). However, for a minority class instance, all the
its neighbors belonging to the majority class are removed;

• NearMiss2 [61]: NearMiss2 applies the simple KNN approach to resolve the imbal-
anced class distribution, aiming to pick out majority class instances that are close to
all minority class instances. In particular, in this method, majority class instances are
selected based on their average distance to the three farthest minority class instances;

• USBC [45]: USBC first clusters all the training instances into certain clusters using the
k-means clustering method. Based on the idea that each cluster seems to have distinct
characteristics, USBC selects a suitable number of majority class instances from each
cluster by considering the imbalanced ratio of the corresponding cluster. In other
words, a cluster with more majority class instances will be sampled more;

• CentersNN [46]: CentersNN is another undersampling method based on the clustering
technique. Differently from USBC, CentersNN uses the k-means method for the
majority class instances, in which the number of clusters is set as the number of the
minority class. Finally, the nearest neighbors of all the cluster centers are picked out to
combine with all the minority class instances as the final training data.

3.2. Datasets

In the experiment, 75 imbalanced binary datasets from four different application
domains were used, including physical sciences, business, life sciences, and software
engineering. Differently from the previous studies [14,16,37] that used artificial datasets
created from multi-class data (e.g., KEEL datasets [62]), all the datasets employed were
originally binary. Table 1 provides a statistical summary of the datasets from the UCI
repository employed, including the number of minority instances (# Minority), the number
of total instances (# Total), and the imbalance ratio (IR) (IR = The number o f majority instances

The number o f minority instances ).

Table 1. Statistical summary of the employed datasets.

ID Data #Min #Total IR ID Data #Min #Total IR

1 cylinder 228 540 1.37 39 PC3 132 1073 7.13
2 htru 1639 17,898 9.92 40 PC4 176 1276 6.25
3 ionosphere 126 351 1.79 41 PC5 459 1679 2.66
4 ozone1hr 73 2536 33.74 42 ant1.7 166 724 3.36
5 ozone8hr 160 2534 14.84 43 arc 25 213 7.52
6 sonar 97 208 1.14 44 camel1.0 13 327 24.15
7 bankruptcy1 271 7027 24.93 45 camel1.6 181 878 3.85
8 bankruptcy2 400 10,173 24.43 46 ivy2.0 40 345 7.63
9 bankruptcy3 495 10,503 20.22 47 jedit3.2 90 268 1.98

10 bankruptcy4 515 9792 18.01 48 jedit4.2 48 363 6.56
11 bankruptcy5 410 5910 13.41 49 log4j1.1 37 109 1.95
12 credit-a 307 690 1.25 50 lucene2.0 90 191 1.12
13 creditC 6636 30,000 3.52 51 poi2.0 35 282 7.06
14 credit-g 300 1000 2.33 52 prop1 1536 8011 4.22
15 market 5289 45,211 7.55 53 prop6 32 377 10.78
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Table 1. Cont.

ID Data #Min #Total IR ID Data #Min #Total IR

16 alizadeh 87 303 2.48 54 redaktor 25 169 5.76
17 breast-c 85 286 2.36 55 synapse1.0 16 153 8.56
18 breast-w 241 699 1.9 56 synapse1.2 86 245 1.85
19 coimbra 52 116 1.23 57 tomcat 77 796 9.34
20 colic 136 368 1.71 58 velocity1.6 76 211 1.78
21 haberman 81 306 2.78 59 xalan2.4 110 694 5.31
22 heart 120 270 1.25 60 xercesInit 65 146 1.25
23 hepatitis 32 155 3.84 61 xerces1.3 68 362 4.32
24 ilpd 167 583 2.49 62 Clam_fit 93 1597 16.17
25 liver 145 345 1.38 63 Clam_test 56 8723 154.77
26 pima 268 768 1.87 64 eCos_fit 110 630 4.73
27 retinopathy 540 1151 1.13 65 eCos_test 67 3480 50.94
28 sick 231 3772 15.33 66 NetBSD_fit 546 6781 11.42
29 thoracic 70 470 5.71 67 NetBSD_test 295 10,960 36.15
30 CM1 42 327 6.79 68 OpenBSD_fit 275 1706 5.2
31 JM1 1612 7720 3.79 69 OpenBSD_test 158 5964 36.75
32 KC1 294 1162 2.95 70 OpenCms_fit 193 1727 7.95
33 KC3 36 194 4.39 71 OpenCms_test 93 2821 29.33
34 MC1 36 1847 50.31 72 Samba_fit 184 1623 7.82
35 MC2 44 125 1.84 73 Samba_test 223 2559 10.48
36 MW1 25 251 9.04 74 Scilab_fit 233 2636 10.31
37 PC1 55 696 11.65 75 Scilab_test 238 1248 4.24
38 PC2 16 734 44.88

To be specific, 29 datasets from three domains of physical sciences (1–6), business (7–15)
and life sciences (16–29) were freely extracted from the UCI repository [63]. In addition,
46 software engineering datasets were extracted from three different repositories for the task
of software defect prediction [64–66], including NASA [67] (30–41), PROMISE [68] (42–61),
and OSS [51] (62–75). The performance of software defect prediction has been hindered by
the imbalanced nature of software defect data, in which the non-defective modules always
outnumber the defective [69,70]. The main difference among the three repositories is that
they gather different source code metrics as features in the final defect datasets.

3.3. Evaluation Measures

Different imbalanced data handling methods may show diverse behaviors with var-
ious evaluation measures [3], indicating that the performance of sampling methods is
affected by the evaluation metrics employed.Guo et al. [2] reported the top-five most
widely used evaluation measures for imbalanced data learning, including AUC, accuracy,
G-Mean, F-Measure, and TPR (true positive rate). However, accuracy is ineffective in
the imbalanced learning scenario, as it has been shown to be biased towards the majority
class [1]. Therefore, TPR, AUC, F-Measure, and G-Mean were individually employed as
the performance metrics in the present study. We obtained these four evaluation measures
based on the confusion matrix shown in Table 2.

Table 2. Confusion Matrix.

Predicted Positive Predicted Negative

Actual Positive TP FN
Actual Negative FP TN

In Table 2, TP (true positive) represents the number of positive instances correctly
classified as positive and FP (false positive) is the number of negative instances wrongly
classified as positive. Moreover, TN (true negative) stands for the number of negative
instances correctly classified as negative and FN (false negative) is the number of positive



Electronics 2023, 12, 4232 8 of 21

instances wrongly classified as negative. Based on the confusion matrix, TPR, AUC, F-
Measure, and G-Mean were obtained as follows:

• TPR: TPR measures the proportion of correctly classified positive instances, which is
also called recall or sensitivity. The equation for TPR is as follows:

TPR =
TP

TP + FN
(1)

• AUC: AUC is obtained by calculating the area under the ROC curve, in which the
horizontal axis is the FPR (false positive rate) and the vertical axis is the TPR. Further-
more, AUC ranges from 0 to 1 with a larger AUC value indicating a better classifica-
tion performance;

• F-Measure: F-Measure computes the harmonic mean between precision and recall
(namely TPR), and the equation of F-Measure is shown as follows:

F−Measure =
2× Precision× Recall

Precision + Recall
(2)

where
Precision =

TP
TP + FP

(3)

• G-Mean: G-Mean was proposed as a compromise between TPR and TNR (true nega-
tive rate), and the corresponding calculation is shown as follows:

G−Mean =
√

TPR× TNR (4)

where
TNR =

TN
TN + FP

(5)

3.4. Experimental Setup

In the present study, an experimental study was conducted using a 10-fold cross-
validation strategy. That is, each dataset was divided into ten folds, and each fold had
a similar number of instances. Then, for each fold, a learning algorithm was trained on
the remaining nine folds and then tested on the current fold. Furthermore, it should be
noted that some of the sampling methods allowed resampling to any desired ratio, such as
RUS and SMOTE. In the current study, we tried to obtain a level of balance in the training
data near to a 50:50 distribution, as suggested in [54]. Moreover, we also evaluated the
classification algorithms directly applied to the original binary data without any sampling
methods, which will be represented as the “None” method in the following discussion.

In addition, four different types of classification algorithm were selected, including
naive Bayes (NB), k-nearest neighbors (KNN), C4.5, and random forest (RF). In particular,
NB is based on the Bayes theory, and KNN is a kind of lazy learning method. Moreover,
C4.5 is an implementation of the decision tree algorithm, while RF is an ensemble learning
method based on C4.5. These four classification algorithms were implemented in the open
source machine learning tool Weka [71], which has been widely used in imbalanced data
classification, as well as other data mining tasks. Note that classification performance can
be affected by the hyperparameters of classification algorithms, which is beyond the scope
of the present study; thus, the default hyperparameters in the Weka software were used in
our present study for all the four classification algorithms, except KNN. Whereby, K was
set to 5 for the KNN classification algorithm.

3.5. Research Questions

The present study concentrated on the following three questions:
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RQ1: How effective are the employed sampling methods?

In previous studies, a conclusion of the sampling methods performing better than
the “None” method may have been widely confirmed. However, we questioned whether
such a conclusion may be limited by the number of employed datasets, classification
algorithms, and evaluation measures. For example, Zhu et al. [3] empirically determined
that the applied evaluation metrics had a great impact on the performance of techniques.
Therefore, in the present study, we first researched the effectiveness of the employed
sampling methods by comparing them with “None” across all the employed datasets,
learners, and performance metrics.

RQ2: How stable are the employed sampling methods?

Each sampling method has its pros and cons. As stated by Loyola et al. [16], no
sampling method can clearly obtain the best results, as there are some factors which do not
allow us to answer this question, including vastly different intrinsic data characteristics and
various application domains. Therefore, there is no consensus in the research community
about which is the best sampling method for all datasets. However, some sampling methods
may perform relatively stably and may be selected as baseline methods for future studies.
Therefore, with this question we intended to investigate the stability of the employed
sampling methods.

RQ3: Is the performance of the sampling methods affected by the learners?

Imbalanced datasets are often first preprocessed using sampling methods and then fed
to different classification algorithms (learners) to build classification models. Sun et al. [4]
empirically showed that different learners may benefit differently from their proposed
method of handling imbalanced data. Therefore, in the present study, we focused on inves-
tigating whether the selection of different learners may have an impact on the sampling
methods with a specific performance measure.

4. Results and Discussion
4.1. Results of RQ1

In this section, we investigated the effectiveness of the employed sampling methods by
individually comparing them with the None method. In particular, for each classification
algorithm, the percentage performance improvement of each sampling method over None
was first calculated in terms of each evaluation measure employed. Then, a boxplot was
used to present the distribution of the percentage improvement for the 75 imbalanced
datasets studied. To be specific, Figures 1–4 show the corresponding boxplots of the
percentage performance improvement for the classification algorithms NB, C4.5, KNN, and
RF, respectively. Note that in each boxplot, for a specific sampling method, the percentage
improvements of all the four evaluation metrics are summarized in an individual boxplot.

Figure 1 provides the boxplots of percentage performance improvement for the 16 sam-
pling methods over None with the classification algorithm NB. From Figure 1, it can be
observed that for 12 of the employed 16 sampling methods, the median was (i) larger than
zero (SMOTE, BSMOTE, ADASYN, SLSMOTE, MWMOTE, RUS, ENN, NCL, and USBC)
or (ii) closer to the lower quartile if the mean was nearly equal to 0 (ROS, Tomek, and
CentersNN). This indicates that for these 12 sampling methods, they usually performed
better than None on most of the employed datasets. However, for the remaining four
sampling methods of KSMOTE, CNN, OSS, and NearMiss2, there were still some datasets
on which the four sampling methods performed better than None.

The boxplots of the percentage performance improvement for sampling methods
over None with C4.5 is demonstrated in Figure 2. We can observe from Figure 2 that,
except KSMOTE, the 15 sampling methods usually performed better than None, as their
corresponding median values are larger than zero. In addition, for KSMOTE, the median is
close to zero, and this indicates that nearly half of the employed datasets may benefit from
KSMOTE when using C4.5 as the classification algorithm.
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Figure 1. The percentage improvement of the sampling methods over None for NB.

Figure 2. The percentage improvement of the sampling methods over None for C4.5.

We present boxplots of the percentage performance improvement for the sampling
methods over None with the lazy learning algorithm KNN in Figure 3. To be specific,
Figure 3 shows that among all the employed 16 sampling methods, 13 methods usually ob-
tained a better classification performance than None, as their corresponding median values are
larger than zero. For the remaining three sampling methods ROS, KSMOTE, and NearMiss2,
KNN was affected little with ROS and KSMOTE, while NearMiss2 performed worse than
None on most of the employed datasets when using KNN as the classification algorithm.

Figure 4 shows boxplots of the percentage performance improvement for all sampling
methods over None with the ensemble learner RF. From Figure 4, it can be observed
that all of the used sampling methods obtained median values larger than zero, which
means that these 16 sampling methods usually performed better than None with RF as the
classification algorithm.

To conclude, we found that (i) most of the employed sampling methods usually performed
better than None on most of the employed datasets; (ii) the newly proposed and complex
sampling methods may not perform better than the simple and classical sampling methods,
such as KSMOTE [9] vs. SMOTE [28]. Therefore, these sampling methods are effective for
dealing with imbalanced data, and for specific imbalanced data, we argue that the selection of
appropriate sampling methods may be more practical than designing a new sampling method.
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Figure 3. The percentage improvement of the sampling methods over None for KNN.

Figure 4. The percentage improvement of the sampling methods over None for RF.

4.2. Results of RQ2

In this section, we intend to provide a detailed analysis of the stability of the employed
sampling methods when handling imbalanced data with various characteristics. To this
end, for each of the employed datasets, the 16 sampling methods are first ranked according
to their performance indicators within each individual classification algorithm. Then, the
average rank and variance of rank are calculated, respectively. Finally, for each employed
classification algorithm and performance measure, the average rank and variance are
summarized in a scatter diagram, in which the horizontal axis represents the average rank,
while the vertical axis is used to stand for variance of rank. Note that, in each diagram,
a scatter located in the lower left quarter indicates that the corresponding sampling method
was better, as it obtained a higher rank and lower variance. For simplicity, the sampling
methods whose average rank and variance were both ranked as the top-three among all
the employed sampling methods were regarded as stable. In the following, Figures 5–8
provide detailed scatter diagrams for each employed learner, respectively.

Figure 5 shows four scatter diagrams of the average rank vs. variance of rank for the
classification algorithm NB, each corresponding to an individual performance measure.
From Figure 5, it can be observed that when using AUC as the performance measure, Tomek
and ENN were stable. Furthermore, SLSMOTE was stable when employing F-Measure and
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G-Mean as the evaluation measures. However, for the measure TPR, no sampling method
was stable within the current analysis setting.

Figure 5. The scatter diagram of average rank vs. variance for NB.

We provide a scatter diagram for each performance measure when using C4.5 in Figure 6.
As shown in Figure 6, USBC was stable for TPR and SLSMOTE was stable for F-Measure.
However, for the two remaining performance measures, no sampling methods could obtain
both the top-three average rank and variance of rank, which indicates that no sampling
methods were stable for the C4.5 classification algorithm in terms of AUC and G-Mean.

When using KNN for imbalanced data classification, the corresponding scatter dia-
grams were as presented in Figure 7. From Figure 7, it can be observed that when using TPR
to evaluate the classification performance for imbalanced data, USBC was stable. However,
for the other three measures, no sampling methods were stable according to the current
analysis setting, namely a stable sampling method should rank in top three of both the
average rank and variance of rank.

Figure 8 demonstrates four scatter diagrams for the employed evaluation measures
with RF as the classification algorithm. We can observe from Figure 8 that USBC was stable
for TPR, MWMOTE was stable for AUC and F-Measure, and RUS and CentersNN were
stable for G-Mean.

To conclude from the previous analysis, none of the employed sampling methods
showed stable results across all the used classification algorithms and evaluation measures,
which indicates the instability of the employed sampling methods. Therefore, when aiming
at proposing a new sampling method for solving the imbalanced data problem, the selec-
tion of baseline sampling methods for comparative study is rather difficult. As a result,
an unreasonable selection of sampling methods may give rise to inaccurate conclusions
from the newly proposed sampling method. Therefore, we again advocate that the selec-
tion of appropriate sampling methods for the real-life imbalanced data problem may be
more practical.
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’
Figure 6. Scatter diagram of average rank vs. variance for C4.5.

Figure 7. Scatter diagram of average rank vs. variance for KNN.
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Figure 8. Scatter diagram of average rank vs. variance for RF.

4.3. Results of RQ3

In order to study the effect of different classification algorithms on the sampling
methods, we first used the Friedman test [72] to compare the employed sampling methods
over multiple datasets. To be specific, for each classification algorithm with an individual
evaluation measure, a Friedman test with a significance level of 0.05 was conducted.
As a result, the corresponding p-values are all less than 0.05, which indicates that the
performance differences among the employed methods were not random and therefore
confirms that the differences of the corresponding performance measures were significant.
After that, as suggested by Demsar [73], a Nemenyi test [74] at a significance level α = 0.05
was conducted, to show which particular methods performed significantly better.

Figures 9–12 provide detailed Nemenyi test results with a significance level of 0.05
for each individual performance measure. Note that in each figure, four sub-figures are
included and each represents the corresponding Nemenyi test results for each classification
algorithm employed. In addition, each sub-figure plots the employed methods against
average performance ranks, where all methods are sorted according to their ranks. The ‘∗’
denotes the respective average rank of each method and the line segment to the right of
each method represents its critical difference, which means the methods whose ‘∗’ is at the
right end of the line were outperformed significantly. The critical difference is highlighted
by a vertical dotted line in two cases. The left vertical line is associated with the best
method, and all methods to the right of this line performed significantly worse than this
method. The right vertical line is associated with the worst method, and all methods to the
left of this line performed significantly better than it.

Figure 9 provides the Nemenyi test results at a 0.05 significance level with TPR as the
performance measure. We can observe from Figure 9 that the different sampling methods
usually ranked differently with different classification algorithms. For example, ADASYN
and BSMOTE obtained a higher ranking for NB, while having a lower ranking for the
other three classification algorithms. In Figure 9, USBC obtained the best TPR performance
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rank among all four employed classification algorithms. In particular, USBC performed
significantly better than eight sampling methods for NB and the 12 different sampling
methods for the other three classification algorithms. In addition, KSMOTE performed
worst with three classification algorithms, including NB, C4.5, and RF. To be specific, 12
sampling methods performed significantly better than KSMOTE for NB and RF, while
for C4.5 the number was 14. Moreover, ROS performed the worst for the classification
algorithm KNN, with 13 sampling methods outperforming ROS significantly.
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Figure 9. The results of the Nemenyi test at a 0.05 significance level for TPR.

Figure 10 presents the detailed Nemenyi test results at a 0.05 significance level for
AUC. It can be observed from Figure 10 that the different sampling methods may rank dif-
ferently when using different classification algorithms for model construction. For example,
MWMOTE ranked second for KNN and RF, while it ranked among the last three for C4.5.
In Figure 10, NearMiss2 obtained the worst AUC performance for all four employed classi-
fication algorithms. Specifically, for the three classification algorithms C4.5, KNN and RF,
all the other sampling methods employed performed significantly better than NearMiss2.
However, for NB, 13 of the 15 employed sampling methods significantly outperformed
NearMiss2. In addition, NCL obtained the best rank for NB and RF, while RUS performed
best for C4.5 and KNN. In particular, for NB and RF, NCL performed significantly better
than 6 different sampling methods. However, for RUS, it performed significantly better
than 11 sampling methods for C4.5 and 6 sampling methods for KNN.

In Figure 11, the corresponding Nemenyi test results with a 0.05 significance level for
the F-Measure are provided in detail for each employed classification algorithm. It can be
observed from Figure 11 that NCL ranked first for the three classification algorithms, while
MWMOTE performed best for the remaining classification algorithm. To be specific, NCL
performed significantly better than 14 sampling methods for C4.5, 13 sampling methods
for KNN, and 8 sampling methods for RF. However, for NB, MWMOTE only significantly
outperformed five sampling methods. Furthermore, for all the classification algorithms
employed, NearMiss2 always obtained the worst F-Measure performance. Almost all
the other 13 employed sampling methods performed significantly better than NearMiss2,
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except for OSS with KNN. What is more, the corresponding ranks of the different sampling
methods usually varied with different classification algorithms.
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Figure 10. The results of the Nemenyi test at a 0.05 significance level for AUC.
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Figure 11. The results of the Nemenyi test at a 0.05 significance level for F-Measure.

Figure 12 shows the results of the Nemenyi test at a 0.05 significance level with G-
Mean as the classification performance measure. We can observe from Figure 12 that RUS
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obtained the first rank for the two classification algorithms KNN and RF, which significantly
outperformed 12 and 13 sampling methods, respectively. However, MWMOTE and Center-
sNN performed best for NB and C4.5, respectively. To be specific, MWMOTE performed
significantly better than seven sampling methods for NB, while CentersNN performs signif-
icantly better than 13 sampling methods for C4.5. Furthermore, for the three classification
algorithms NB, C4.5, and RF, NearMiss2 obtained the worst G-Mean performance and at
least 12 sampling methods performed significantly better than NearMiss2. For KNN, ROS
was the worst, with 12 sampling methods performing significantly better than ROS. As a
matter of fact, in Figure 12, the corresponding ranks of the different sampling methods
generally vary with the different classification algorithms.
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Figure 12. The results of the Nemenyi test at a 0.05 significance level for G-Mean.

In summary, when employing different machine learning algorithms for learning imbal-
anced data, different sampling methods may behave very differently. In Sections 4.1 and 4.2,
the selection of appropriate sampling methods was shown to be very important for specific
imbalanced data. Therefore, combining with the conclusion of the present section, it is
suggested that sampling methods should be considered simultaneously with the used
classification algorithms.

5. Conclusions

In present study, we present an extensive experimental comparison of different sam-
pling methods for imbalanced data classification. In the experiment, 75 originally imbal-
anced binary datasets from four different application domains were employed. In particular,
these 75 datasets originated from the following four application domains: physical sciences,
life sciences, business, and software engineering. In addition, seven oversampling meth-
ods and nine undersampling methods were selected for comparison according to several
designed criteria. Moreover, four popular classification algorithms and four widely-used
performance measures were used in the current experiment.

We first researched the effectiveness and stability of the employed sampling methods.
The corresponding experimental results showed that most sampling methods were effective
in tackling the imbalanced data problem. However, we unexpectedly found that some
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new and complex sampling methods may not perform better than the simple and classi-
cal sampling methods. Furthermore, none of the employed sampling methods showed
consistently stable results across all the used classification algorithms and evaluation mea-
sures. Thereafter, the impact of different classification algorithms was studied, and the
corresponding experimental results demonstrated that different sampling methods may
behave very differently when employing different machine learning algorithms to build
classification models.

Summarizing from previous findings, we advocate that, rather than proposing new
sampling methods to handle imbalanced data, researchers should pay more attention
to selecting applicable sampling methods for given imbalanced data, while taking into
consideration the used classification algorithms. For such problems, there may be two
feasible solutions. One is to research recommended sampling methods for a specific
classification algorithm according to the meta features of datasets. The other is to research
how to integrate the selection of appropriate sampling methods into automated machine
learning for imbalanced data.

There are still some shortcomings in the current research. For example, the generaliza-
tion of the obtained conclusions may have been affected by the limited datasets, sampling
methods, classification algorithms, and performance measures. Moreover, in the present
study, we only paid attention to the classification performance of the different sampling
methods, while ignoring the corresponding efficiency. What is more, our present study
focused on the traditional classification scenes, with a major assumption that training
and test data are in the same feature space and follow the same distribution. However,
in many real-word applications, this assumption may not hold, and transfer learning [75]
has emerged as a new learning framework to address this problem. Therefore, in the
future, we intend to employ further datasets from different fields and more classification
algorithms, sampling methods, and performance measures to improve the generalization of
the conclusions of the present study. In addition, we plan to research the effect of different
sampling methods on efficiency and validate whether the sampling methods have similar
effects with transfer learning.
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