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Abstract: In this work, we propose a blockchain-based solution for securing robot-to-robot com-
munication for a task with a high socioeconomic impact—information gathering. The objective
of the robots is to gather maximal information about an unknown ambient phenomenon such as
soil humidity distribution in a field. More specifically, we use the proof-of-work (PoW) consensus
protocol for the robots to securely coordinate while rejecting tampered data injected by a malicious
entity. As the blockchain-based PoW protocol has a large energy footprint, we next employ an
algorithmically-engineered energy-efficient version of PoW. Results show that our proposed energy-
efficient PoW-based protocol can reduce energy consumption by 14% while easily scaling up to
10 robots.

Keywords: multi-robot system; blockchain; security; energy

1. Introduction

Mobile robots are becoming a standard for information gathering from large geo-
graphic areas. Applications of this include data collection about the state of the crop for
precision agriculture, current data sampling for ocean monitoring, and hotspot detection for
search and rescue, among others [1–3]. In a classical information-gathering task, the robot
is equipped with an information collection sensor, e.g., an NDVI camera, and a soil acidity
measurement sensor, among others. The robot goes to k locations in the environment
and uses its sensor to measure values at those locations. Given the robot has a limited
onboard battery power supply, the robot cannot go to all the locations in the environment.
Similarly, if the geographic area is large, one robot might not be enough, and multiple (n)
robots need to be deployed that will coordinate among themselves while covering n · k
locations. The objective is to infer the sensor measurements in the remaining unvisited
locations conditioned on these collected n · k measurements. This is possible if the sensor
measurements are correlated. For example, if one location l1 = (x1, y1) has the presence
of weeds, then another location l2 = (x2, y2) will have high probabilities of having weeds
if ‖l1 − l2‖ < d, where d is a positive constant. The robots should collect these measure-
ments while coordinating (e.g., via communication) with each other during the collection
process to decide the best places to collect the measurements from. These measurements
are then used by the end users, e.g., farmers, to make more informed decisions about
their applications.

Although this seems like an attractive toolkit for automated information gathering,
this approach has some challenges as well. First, the optimal information gathering with
n robots is shown to be NP-hard [4,5]. Secondly, these robots are often accumulated
from untrusted sources for deployment. Therefore, like other cyber-physical systems,
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these robots are vulnerable to cyber-attacks. Examples include denial of service, jamming,
and data tampering attacks, among others. In this paper, we focus on one of these attacks,
namely data integrity attacks. In these attacks, one or more malicious entities inject tampered
or falsified information into the network. This might cause an irrecoverable negative
socioeconomic impact. An example of this would be spraying herbicides on good crops
and not on weeds, which would kill the crops. Currently, there is no standard for robot
security, and the way to go is the hardware or software-based security mechanism. In this
paper, we take the software route—we employ a blockchain-based proof-of-work (PoW)
consensus protocol to secure the sensed data by the robots from being tampered with.

Standard blockchain-based schemes for crypto-currencies do not readily apply to
multi-robot applications, since the robot network topology changes over time as the robots
move around in the environment. Furthermore, one or more robots might be completely
out of communication with the rest of the group for a considerable amount of time before
regaining connectivity. Therefore, there is a need for a tailor-made blockchain-based PoW
protocol to solve the multi-robot information-gathering problem. On the other hand, these
security mechanisms are known to be power-hungry, and therefore, the robots might
become non-operational if they run these security protocols on top of their prescribed
sensing and computation routines. To this end, we employ an algorithmically-engineered
blockchain-based PoW that reduces the energy requirement while guaranteeing the same
level of security as the original protocol. This energy-efficient PoW version, which is
premised upon an energy-optimized implementation of the SHA-256 encryption algorithm,
has recently been published by us; the reader is referred to [6] for full details.

In this paper, we have tested our proposed energy-efficient blockchain-enabled multi-
robot information-gathering technique with up to 10 simulated robots using MATLAB and
Python 3. Experimental results show that robots can save up to 14% energy consumption
with our energy-optimized version of SHA-256 used in place of the standard SHA-256.
We further extrapolate our findings to more real-world scenarios involving a multi-robot
system. We acknowledge that adding a layer of blockchain-based security protocol adds to
the run times for decision-making and overall mission execution. However, it is a necessary
step to make the data exchanged among the robots tamper-proof. Our results show that the
amount of added time for this depends on the connectivity mechanism and the difficulty
of the PoW consensus mechanism, among other factors. Figure 1 illustrates a sample
multi-robot secure information-gathering scenario.

A preliminary version of this work appeared in ICRA 2022 [7]. We have extended
the conference paper version mainly by employing an energy-efficient PoW protocol on
the robots, whereas our conference paper assumed that the robots only have access to
the traditional PoW protocol. Energy consumption of blockchain has been a major issue
limiting its usage. While our preliminary results [7] show how blockchain can be useful
in the context of robotics systems, the current work further complements it by making
blockchain energy-efficient. The primary contributions of this paper are as follows:

1. This is the first study that integrates blockchain-based data security techniques against
data tampering attempts into a multi-robot information-gathering framework under
continuous, periodic, and opportunistic connectivity.

2. We employ an energy-efficient version of the blockchain-based proof-of-work (PoW)
consensus protocol that is up to 14% more efficient than the original PoW implementa-
tion in terms of energy consumption.

3. Our proposed techniques in this paper study the security aspects in the multi-robot
information-gathering problem setup from the novel perspectives of model estimation
error, data vulnerability and its impact, and energy efficiency.
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Figure 1. Illustration of a multi-robot information-gathering scenario. The links between the robots
indicate the availability of communication. If all the links are present at every time, then the robots
have continuous connectivity (CC). If all the links become available (or if the links create a connected
network via a different topology) periodically, the robots then follow periodic connectivity (PC).
On the other hand, if the white or the orange link is available, but there is no guarantee that all
of them are available at any time, then we have opportunistic connectivity (OC). We want these
communication protocols among the robots to be secure as well as energy-efficient.

The remainder of the paper is organized as the following. First, in Section 2, we discuss
the state of the art in multi-robot information-gathering and security aspects in robotics,
while comparing and contrasting our work in this paper against them. In Section 3, we
summarize the information-gathering problem (i.e., models and assumptions) using the
notation appearing later in the paper. Section 4 discusses the proposed secure communica-
tion algorithms and their energy-efficient versions are presented in Section 5. In Section 6,
we present and discuss our experimental results and, finally, we conclude in Section 7.

2. Literature Review

Mobile robots can be used to autonomously gather meaningful information based on
which future actions can be taken. Due to its sheer practical significance, the domain of
information sensing using autonomous mobile robots has recently received considerable
attention [1,8–16]. In this problem setup, the goal of the robot(s) is to plan paths of lengths
k such that the maximum amount of information can be collected from the environment.
The goal locations might or might not be decided in the beginning. In this paper, we study a
setting that is more suited for lifelong monitoring—the robots are not given any specific goal
locations. Instead, they can finish their exploration anywhere in the environment [9,12,17].
Unlike coverage path planning, where the robots have to go through all the locations in



Electronics 2023, 12, 4239 4 of 21

the environment, here, the robots’ goal would be to infer the sensor measurements at the
locations that they have not visited and collected information from. It is also popular
in the literature to assume that the robots have been given pre-defined goal locations,
and their goal in that setting would be to plan k-length paths from the start to the goal
locations while maximizing the amount of collected information [5,18–20]. Gaussian
process (GP) regression is the most used information modeling and inference tool in
information-gathering studies [21]. Following GP, information theoretic measures such
as entropy or mutual information can be used to send the robots to the most informative
locations in the environment [5,22,23]. Similar to our setting in this paper, many prior
studies have started with dividing the environment into n sub-regions so that n robots
can be uniquely assigned to them [5,22–24]. If the different parts of the environment have
different information measures, the robots can communicate their findings, e.g., share their
GP models and/or their sensor observations so far to “fuse” their inference models. This
has been shown to perform better than using no such coordination [2,12]. For fusing the
models, Gaussian mixture models with the Expectation Maximization algorithm [25] can
be employed [2,12].

Advancements in multi-agent deep reinforcement learning (DRL) and its applications
in robotics have also been applied to the problem of information gathering [26]. One of
the first such works is by Said et al. [17], who used recurrent neural networks along with
GP for information modeling with up to 10 robots. They have used a mean-field DRL [27]
technique to effectively reduce the n-robot learning problem to a 2-agent learning problem.
Wei and Zheng [28] proposed an independent learning technique with credit assignment to
solve this notoriously difficult problem. Pan, Manjanna, and Hsieh [29] recently proposed a
policy gradient-based DRL for multi-robot information sampling. Unlike the prior studies,
they do not use GP as the underlying information inference tool. Viseras and Garcia [30]
also proposed a DRL-based information-gathering technique for a multi-robot team that
can exploit existing accurate information models.

Although communication is a costly operation in terms of energy consumption and
robots’ communication ranges (via WiFi, for example) are limited, most of the studies
assume that the robots can maintain a continuously connected network among themselves
so that data sharing is always possible. On the other hand, Dutta, Ghosh, and Kreidl [1]
previously showed the computation-intensive nature of such maintenance algorithms.
Maintaining periodic connectivity brings up another challenge: reconnection planning with
a group of n mobile robots, even in a tree-like environment, is an NP-hard problem [31].
Under these circumstances, opportunistic connectivity is the go-to option. In this case,
the robots are not required to maintain communication with others, but if two or more
robots are within each other’s communication ranges, they will form an ad hoc network to
share data as required. Opportunistic connectivity has been shown to be effective in multi-
robot tasks [9,10,32]. For a survey of available connectivity models and their applications
in multi-robot systems, the reader is referred to [33].

The information collected by the robots might be sensitive, and therefore, protecting
the integrity of such data is of the utmost importance. However, there is no standard
security protocol for multi-robot coordination, although communication attacks have been
approached from the point of view of fault diagnosis (e.g., [34–36]). One of the first works
on blockchain-based PoW for protecting the data shared among the robots is by [37],
where a swarm of robots is controlled using blockchain-based smart contracts. In our
prior work [38], we also used PoW-based tamper-proof technology for multiple robots
to collect information. Both of these studies assume a connected robot, unlike this paper,
where other connectivity strategies such as periodic and opportunistic are also tested
while the blockchain-based security protocol is enabled. PoW is one of the most popular
consensus protocols in cryptocurrencies [39]. However, it is known to be significantly
resource-intensive [40–42]. This poses a challenge in robotics, as the robots run on a
limited onboard power supply. Proof-of-stake (PoS), another blockchain-based consensus
protocol, has recently been shown to consume only a fraction of the energy required by
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PoW (https://bit.ly/3zlq3aS). Which consensus protocol suits a multi-robot application
the best has yet to be explored. For more information on consensus protocols, refer to [43].

3. Problem Setup

We have a set of n homogeneous robots R = r1, r2, · · · , rn that explore a shared
environment. The environment is discretized into a planar graph Gp = {V, E}, where the
node set V represents the information collection locations, and the connections among them
are denoted by the edge set E. Each robot ri has its unique sub-region for exploration, Vi,
and Vi ∩ Vj = ∅. We have pre-calculated Vi using K-medoids clustering [44]. An example
is shown in Figure 2a. ri is equipped with an on-board sensor which allows it to sense and
collect information (e.g., radiation detector). The robots’ observations are modeled to be
noisy. A robot ri starts from a node v0

i ∈ Vi. The path or sequence of nodes (v0
i , v1

i , v2
i , . . .)

that each robot ri follows determines the sensed locations of the ambient environment Z ;
specifically, we denote by vt

i the node that robot ri enters at time step t and by Z(vk
i ) the

associated (scalar, real-valued) measurement received by robot ri.
We use a Gaussian process (GP) to model the uncertain environment and noisy mea-

surement process. Let X denote a Gaussian random vector of length |V| with prior mean
vector µ and covariance matrix Σ, where µ and Σ represent the (minimum mean-square-
error) prediction over node set V and its corresponding uncertainty, respectively [21].
For any given GP = (µ, Σ), the volumetric measure of uncertainty is calculated by an
information-theoretic metric, (differential) entropy, which is formally defined as H(X) =
1
2 log |Σ|+ |V|

2 log(2πe), where |Σ| denotes the covariance matrix’s determinant, while |V|
denotes the vertex set’s cardinality. It is a standard assumption in kernel-based parame-
terizations of GPs that the correlation between two nodes is inversely proportional to the
distances between them [4,10,21]. We exploit this property when computing entropy by
approximating the computationally intensive matrix determinant |Σ| by the product of
the per-node variances (σ2

v ) along the diagonal of Σ. In turn, the associated entropy H(X)
decomposes additively across the nodes, with each per-node term given by:

H(Xv) =
1
2

log
(

2πeσ2
v

)
. (1)

These per-node entropies, with their sum (via the Hadamard inequality) serving as the
upper bound for the true global entropy H(X), drive the robots towards opportune locations
for information collection. In each move cycle, the information value of past measurements
is reflected in these entropies by virtue of optimal updates to the underlying GP statistics
during each sensing cycle.
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problem. Wei and Zheng [28] have proposed an independent learning technique with credit
assignment to solve this notoriously difficult problem. Pan, Manjanna, and Hsieh [29]
have recently proposed a policy gradient-based DRL for multi-robot information sampling.
Unlike the prior studies, they do not use GP as the underlying information inference tool.
Viseras and Garcia [30] also proposed a DRL-based information gathering technique for a
multi-robot team that can exploit existing accurate information models.

Although communication is a costly operation in terms of energy consumption and
robots’ communication ranges (via WiFi, for example) are limited, most of the studies
assume that the robots can maintain a continuously connected network among themselves
so that data sharing is always possible. On the other hand, Dutta, Ghosh, and Kreidl [1]
have previously shown the compute-intensive nature of such maintenance algorithms.
Maintaining periodic connectivity brings up another challenge—re-connection planning
with a group of n mobile robots even in a tree-like environment is an NP-hard prob-
lem [31]. Under these circumstances, opportunistic connectivity is the go-to option—in
this, the robots are not required to maintain communication with others, but if two or more
robots are within each other’s communication ranges, they will form an ad-hoc network to
share data as required. Opportunistic connectivity has shown to be effective in multi-robot
tasks [9,10,32]. For a survey of available connectivity models and their applications in
multi-robot systems, the reader is referred to [33].

The collected information by the robots might be sensitive, and therefore, protecting
the integrity of such data is of utmost importance. However, there is no standard secu-
rity protocol for multi-robot coordination, although communication attacks have been
approached from the point of view of fault diagnosis (e.g., [34–36]). One of the first works
on Blockchain-based PoW for protecting the shared data among the robots is due to [37]
where a swarm of robots is controlled using Blockchain-based smart contracts. In our prior
work [38], we have also used PoW-based tamper-proof technology for multiple robots
to collect information. Both these studies assume a connected robot, unlike this paper
where other connectivity strategies such as periodic and opportunistic are also tested
while Blockchain-based security protocol is enabled. PoW is one of the most popular
consensus protocols in cryptocurrencies [39]. However, it is known to be significantly
resource-intensive [40–42]. This poses a challenge in robotics as the robots run on a lim-
ited onboard power supply. Proof-of-Stake (PoS), another Blockchain-based consensus
protocol, has recently been shown to consume only a fraction of the energy required by
PoW https://bit.ly/3zlq3aS. It is still to be explored which consensus protocol suits a
multi-robot application the best. For more information on consensus protocols, refer to [43].
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Figure 2. (a) A 50× 50 grid environment is divided into eight non-overlapping sub-regions (shown
using different colors) using K-medoids clustering. The centroids of these regions (‘x’) are the robots’
initial positions. (b) An example of the final average final variance map calculated by four robots in a
14× 14 environment using a greedy strategy is shown where the initial variance of the information
model was 0.14. This shows the quality of the inference strategy.

Figure 2. (a) A 50× 50 grid environment is divided into eight non-overlapping sub-regions (shown
using different colors) using K-medoids clustering. The centroids of these regions (‘x’) are the robots’
initial positions. (b) An example of the final average variance map calculated by four robots in a
14× 14 environment using a greedy strategy is shown, where the initial variance of the information
model was 0.14. This shows the quality of the inference strategy.
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Let us first summarize the sequential sense/move cycle of multi-robot information
gathering in the context of initial time step 0. Assume each robot starts with a common
initial GP model, called GP = (µ, Σ), and then takes measurement Z(v0

i ) at its start node
v0

i ∈ V. Such prior statistics are typically derived pre-deployment from a training dataset
and transferred onto each robot ri before it is deployed to start node v0

i . We also assume
the measurements are subject to additive white Gaussian noise ε ∈ N (0, σn), in which case
the updated local GP for robot ri is given by the posterior statistics:

Σ0
i = Σ− ΣCv0

i
′[Cv0

i ΣCv0
i
′
+ σ2

n

]−1
Cv0

i Σ

µ0
i = µ + Σ0

i Cv0
i
′[Z(v0

i )− Cv0
i µ
]
,

(2)

where Cv0
i denotes the length-|V| row vector of all zeros except for a one in component v0

i ,
and Cv0

i
′ is its matrix transpose. During periodic or opportunistic connectivity, the posterior

statistics will sometimes evolve on a batch of measurements, which is easily accommodated
by appropriate augmentation of the output matrix C(·); the reader is referred to [10] for
more details. As the sensing step concludes, and each robot now possesses its updated
GP statistics GP0

i = (µ0
i , Σ0

i ) via Equation (2), the per-node rewards using Equation (1) are
calculated. In a greedy fashion, robot ri then chooses the next adjacent node v∗i ∈ Vi that
provides the (approximation of) maximum entropy:

v∗i = arg max
v∈adj(v0

i )
H(v|GP0

i )) s.t. v ∈ Vi. (3)

In the absence of inter-robot communication, each robot repeats the above sense-and-
move cycle until it runs out of the given budget B. Such information-gathering strategies,
interleaving GP-based sensor measurement processing with greedy entropy-based move-
ment decisions, are well-studied in the literature and in certain conditions yield perfor-
mance even provably bounded within constant factors of optimal [4,5,45]. In scenarios
permitting inter-robot communication, connected robots during any cycle may also share
actual measurements and/or GP statistics through which better-coordinated movement
decisions become theoretically possible. Distributed multi-robot information gathering
remains the subject of active research, with important considerations including questions
of who talks to whom, how often, and how much, as well as how to integrate whatever in-
formation does get shared to ideally guarantee improved collective performance. The next
section summarizes prior work in this area in the context of the blockchain-based security
measures that the rest of this paper seeks to make more energy efficient.

4. Secure Communication Algorithms

Under periodic connectivity (PC) assumptions, the robots will form a connected net-
work after every F cycle, where F refers to the coordination frequency [3,13]. (The reader
seeking more details on how to reconnect the robots periodically is referred to [3,31].)
Observe that the case of F = 1 recovers the standard continuous connectivity (CC) assump-
tions. Opportunistic connectivity (OC) is distinctly different because the robots are not
guaranteed to form connected communication networks; instead, the robots communicate
only if and when at least two robots are within each other’s communication ranges. Note
that, for connectivity discussions, we consider continuous connectivity (CC) as the baseline
and, therefore, we first discuss blockchain’s proof-of-work (PoW) consensus for CC and
discuss PC and OC thereafter.

4.1. Proof-of-Work (PoW) Consensus Protocol in CC

In an insecure version, each robot receives information from other robots and updates
its local GP model using Equation (2) [1] (Algorithm 1). A malicious entity can attack this
data-sharing system via data-tampering attempts [46,47]. To prevent other robots from
incorporating such fake data for their future decision-making, we have used a blockchain-
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based security protocol. Blockchain is a tamper-resistant digital ledger that the robots
maintain in a distributed fashion [43]. In a blockchain, the data are stored in discrete units,
called blocks, that are linked (chained) to each other by having the hash of one block as
part of the data of the next block. Similar to [38], each robot ri maintains a local blockchain
Ci. Each block bidx ∈ Ci contains five primary components < D, T, idx, N, Hlast >, where D
denotes the collected measurement(s), T represents the current timestamp, idx is the index
of the block, N is an integer called nonce, and Hlast represents the previous block bidx−1’s
hash.

Algorithm 1: Energy-efficient blockchain-enabled information gathering

1 v∗i ← ri’s next location;
2 while budget ≥ 0 do
3 Go to v∗i and gather information;
4 Create a block with these;
5 Share this block with the other robots (either periodically with PC or every cycle with

CC or OC);
6 Receive blocks from other robots if applicable;
7 Decide whether the received information can be added to the local blockchain using the

energy-efficient PoW (Algorithm 2);
8 Update the local GP with the new data using Equation (2) and recalculate entropy using

Equation (1);
9 Decide v∗i using Equation (3);

Algorithm 2 presents the pseudocode of the PoW algorithm. After ri measures Z(v∗i )
at v∗i , it puts them in D. The nonce is initially set to zero. The robot creates a block with it
and finds its corresponding hash. To mine this block, ri checks whether the hash has the
required difficulty or not. In our implementation, a difficulty is first determined by counting
the number of leading or trailing zeros in a block’s hash value. Finding the hash value
becomes harder the more zeros there are. The nonce is initialized to 0 and raised by 1 inside
of a for loop—this is utilized to find this hash value. The loop terminates when the correct
nonce is determined, i.e., the number of zeros matches the number of zeros in the hash
value of the nonce variable. SHA-256 is used to calculate the hash value. A maximum loop
number (MAX_STEPS, line 3 of Algorithm 2) is set. If the correct nonce cannot be identified
by the maximum loop number, the nonce is reset to 0, and the software throws an error.
Mining is the process of obtaining a correct nonce whose hash value satisfies the desired
difficulty level. The specific details of different parameters are discussed next.

Algorithm 2: Proof-of-work (PoW) algorithm
Data: Block b, Nonce N, Difficulty d
Result: b.hash, N

1 N← 0;
2 diff← f ill(“0”, d); /* #0s correspond to difficulty */
3 while MAX_STEPS not reached do
4 b.hash← Find the hash using SHA-256;
5 if diff is matched then
6 break ; /* Found desired hash */
7 else
8 if i = 2256 then
9 N← 0 ; /* Nonce N is reset */

10 break;

11 Increment N by 1 and retry;
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Once this mining process is over, the block is placed into ri’s local blockchain Ci.
With CC, the robots share their newly created blocks with each other after every cycle
of sense and measurement. The robots replace their local blockchains with the received
blockchains if the blocks are validated and, as a result, at the end of each coordination cycle,
every robot will have other robots’ valid new blocks along with their existing blocks in their
local blockchains [38] (Algorithm 2). Note that the verification of the hash is straightforward.
A robot looks at the nonce in a particular block, finds its corresponding hash, and checks
whether the hash has the desired difficulty level. If not, the block is rejected; otherwise,
it is validated. Therefore, increasing the difficulty reduces the probability of it being
compromised, while the time and energy required by the robots increase significantly.

4.2. PoW Consensus Protocol in PC and OC

With PC, ri creates D with the last F measurements. As the robots coordinate peri-
odically, they do not get a chance to share their collected information every cycle. There-
fore, each block will contain F measurements in PC, whereas it contains only one in CC.
The other components in the block are calculated in the same way as in CC. Having a larger
block size has one advantage—the robots do not need to share information in every cycle,
and therefore, the communication and mining overheads are significantly less. On the other
hand, in a bandwidth-limited environment, sharing a larger block might be prohibitive.
Furthermore, as the robots are not aware of others’ collected data, the quality of their
informative paths might be sub-par compared to CC.

With OC, when two or more robots R̄ ⊆ R come within each other’s communication
ranges, they share their local blockchains, and the coordination happens in the same way as
in CC. Each robot ri ∈ R̄’s local blockchain contains its observed data and any valid data it
has received earlier from rj ∈ R. As the robots are collecting data from disjoint sub-regions
in the environment, they might have mutually exclusive local blockchains. This might lead
to orphan blocks. An orphan block is a block that was mined and placed in the blockchain at
some point. However, over time, a new blockchain was generated that did not include this
block, leaving it abandoned. Orphan blocks only exist in OC. For example, suppose robot
ri has a local blockchain containing the following blocks {a, b, c, d}, and robot rj has a local
blockchain of {a, b, c, e, f , g}. Next, these two robots come within C distance. Following
our algorithm, ri will accept the longer blockchain of rj, causing block d to be abandoned,
namely, an orphan block. While block d, in particular, will no longer be used, the data
within it will be extracted and put back into a memory buffer known as unconfirmed
data that ri maintains in OC for such scenarios. Note that this is not the same as block d;
the data D are the same, but the previous hash, the timestamp, and the nonce will all be
different. Also, block d was still a valid block but was left out of the blockchain simply due
to asynchronous coordination in OC and not because of malicious data. Although the data
in block d are preserved, the block itself will stay orphaned, meaning the mining effort put
into it is lost. Using our proposed algorithm, the robots will not lose any collected data.
For proof of this statement, please see [7] (Lemma 2).

5. Optimizing Energy Consumption of the Robotics System

The blockchain-based solution for the integrity problem in robotics communication
comes with the cost of energy consumption. Due to its distributed, decentralized, integrity-
preserving, and auditable features, blockchain technology has recently been recognized as
a crucial tool for solving network and cybersecurity issues [48–51]. Unfortunately, when
applied, the blockchain’s intricate workflow uses a lot of electricity (energy), defeating the
purpose of many real-world applications while making it difficult to meet the demands of
low-energy robotics applications. For instance, energy use in Bitcoin, a typical blockchain
application, will soon exceed 7.67 GW annually, which is close to Austria’s annual en-
ergy consumption (8.2 GW) [52]. Recent techniques for reducing energy consumption in
blockchain include developing new blockchain-based system software [53–55], operating
systems [56,57], hypervisors [16,58], and hardware [59,60]. While these approaches have
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yielded significant improvements in reducing energy consumption levels in blockchain,
to the best of our knowledge, the solutions do not approach the problem from an algorith-
mic perspective. In this work, we employ an energy-efficient version of PoW proposed
in [6], albeit re-engineered for robotic networks. An illustration is shown in Figure 3.

Proof of Work

The 
Energy-Optimal 

SHA256 is applied 
to Proof of Work 

(PoW)

Energy Complexity 
Model

The Energy 
Complexity Model 
is based on DDR 

Architecture

SHA256

SHA256 is 
engineered based on 

the Energy 
Complexity Model to 

lower energy 
consumption

Robotics Network

Blockchain with the 
energy optimized PoW 

is applied to the 
Robotics Network

Figure 3. Our approach toward having an energy-optimized PoW for multi-robot communication [6].

Figure 3 summarizes our flow of actions. The energy complexity model (ECM) [61]
yields the maximum savings in energy consumption (since it is the only process running on
which ECM is applied) when applied to SHA-256. The energy-optimized SHA-256 when
applied to PoW yields a lesser decrement in energy consumption levels. This is because the
PoW algorithm’s computations other than SHA-256 add to the overall energy overhead.
This is further evident when incorporated into the blockchain-based robotics network [7].

5.1. The Energy Complexity Model (ECM)

The energy complexity model (ECM), which has been applied to SHA-256 in this work,
uses as its reference architecture the Double Data Rate Synchronous Dynamic Random
Access Memory (DDR SDRAM). As illustrated in Figure 4, the main memory of DDR is
divided into banks containing a fixed number of chunks. Although DDR specifications use
the term block, we prefer the term chunk in the context of SHA-256 to avoid ambiguity. Data
are distributed in chunks in each bank. Every bank also has a unique chunk known as the
sense amplifier. Every data access requires bringing the chunk containing the desired data
inside the sense amplifier of the appropriate bank. The current chunk must be returned to
its bank before a fresh one can be brought in for the next access, since each sense amplifier
can only contain one chunk at a time. As each bank has its sense amplifier, only one chunk
of each bank can be accessed at once; however, chunks from various banks can be accessed
simultaneously. Therefore, for a P bank DDR memory, we can always access P chunks.
In the DDR3 version of the DDR architecture, the sensing amplifier is referred to as the
per-bank cache.
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Figure 4. Block diagram of an internal DDR SDRAM memory chip.
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A given DDR3 SDRAM’s P banks are identified by the ECM as M1, M2, . . . , MP. Each
bank Mi contains a cache Ci and several chunks of sizenB (in bytes). Figure 5 shows an
example with P = 4 banks and only 4 chunks per bank. The chunks were given labels
with the values 1, 2, . . . , 16. The access patterns (1, 2, 3, 4) or (5, 6, 7, 8) are examples of
totally serial execution given the restriction in DDR that only one chunk may be placed
inside a certain cache Ci at any one time, whereas (1, 5, 9, 13) or (3, 8, 10, 13) are examples
of completely parallel execution.

1
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4

C1

5

6

7

8

C2

9

10

11

12

C3

13

14

15

16

C4

3 41 2

4
1

3
2

2-WAY PAGE TABLE

a b c
4-WAY PAGE TABLE

d

c d

a b

(a) (b)

Figure 5. (a) An example of ECM for DDR3 with P = 4 banks; (b) Memory layout for different
parallelization levels with P = 4.

Technically, according to a [61]-derived formula, the amount of energy used by an
algorithm A with the execution time τ for a P bank DDR3 architecture with B bytes per
chunk is provided by:

E(A) = τ + (P× B)/I. (4)

The so-called parallelization index, represented by I, is effectively the number of parallel block
accesses done by A across different memory banks for every P block access made overall.
ECM states that an algorithm’s potential for energy savings is inversely proportional to the
extent to which it can be built to parallelize memory accesses.

5.2. Engineering SHA-256 Algorithm Using ECM

In this work, the underlying PoW hash algorithm SHA-256 has been engineered to
use less energy by basing it on ECM. Initially, we describe how any algorithm A can
be parallelized using ECM. Next, we show how SHA-256, the PoW’s underlying hash
algorithm, is designed for parallelization via ECM.

5.2.1. Parallelizing an Arbitrary Algorithm A
The most frequent memory access sequence made by algorithm A during execution

for a particular input is first noted. The vector created by this access sequence is then
designed to have the required amount of parallelism by constructing a logical mapping
over memory blocks that house the data that A has accessed. The physical location of the
input (chunks) in the memory is fixed and is managed by the DDR memory controller.
However, for various levels of parallelization, the order of access over chunks varies. Each
time, a separate page table vector, or V, is framed to perform a different level of access
parallelization over physical chunks. The order of access among chunks is defined by V
(Figure 5b).

The page table vector V contains the pattern (1, 2, 3, 4, . . .) for 1-way access and
(1, 5, 9, 13, . . .) for 4-way access. The pattern of the page table vector V is then mapped to
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the input’s original physical places using a function. The function to construct an ordering
among the chunks is presented in [6] (Algorithm 2). Based on how we wish to access the
chunks (P-way would signify full parallel access), the ordering is determined. By selecting
chunks with jumps, the page table is filled. Jumps of P are chosen for P-way access to
guarantee that consecutive chunk accesses are in P distinct banks. In accordance with the
aforementioned example, jumps of 1 ensure that 4 successive chunk accesses occur in the
same bank (bank 1 of Figure 5) for P = 1. In contrast, jumps of 4 ensure that 4 successive
chunk accesses lie in 4 different banks for P = 4 (banks 1 through 4 of Figure 5).

5.2.2. Parallelizing SHA-256

As seen in Figure 6a, the SHA-256 algorithm divides the input into fixed-size message
blocks that are then delivered sequentially to different compression methods. This block
sequence is recognized in accordance with the SHA-256 algorithm’s access pattern, which
we subject to engineering using the ECM. The SHA-256 input vector (Figure 6a) is pre-
processed into a different vector by using [6] (Algorithm 2). After that, the mapping is kept
in a page table to be used in later hash computations.
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BLOCK

n
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BLOCK
n+1

CF1

H
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CF2 CFn CFn
+1
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

BLOCKS OF THE INPUT MESSAGE

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

REALLOCATION OF BLOCKS
AFTER APPLYING ALGORITHM 2

(a) (b)

Figure 6. (a) An illustration of the original SHA-256 algorithm; (b) Access pattern re-engineering
of blocks.

In Figure 6b, part of this procedure for 16 blocks and a parallelization index (jump)
of 4 is displayed. The result of engineering the SHA-256 algorithm based on ECM is
shown in Figure 7a. Note that the complexity of SHA-256 does not change because of this
engineering [6] (Theorem 1). The parallelization index is set to I = 8, and an 8-bank DDR3
SDRAM is utilized in our experimentation. This basically means that we established a
virtual mapping using the methods given in [61] to make sure that each set of 8 consecutive
block access in SHA-256 occurs across all 8 banks.
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BLOCK
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Figure 7. (a) An illustration of ECM-enhanced SHA−256; (b) The scalar information field used in
the experiments.

5.3. Incorporating Energy-Optimized SHA-256 into PoW & Using Energy-Efficient PoW

Algorithm 2 employs SHA-256 in line 4 for PoW. Applying [6] (Algorithm 2) pre-
processes the input vector in line 4 of the Algorithm 2, which is the concatenation of the
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string (b.Params) and the nonce (line 4 of Algorithm 2). This is how the energy-optimized
SHA-256 is used in our work, which is indicated by the green SHA-256 call in line 4. This
energy-efficient PoW is then incorporated in this work for the robotics network for the
cases of continuous (Section 4.1), periodic, and opportunistic connectivity (Section 4.2),
respectively. To summarize, Algorithm 1 is executed in this work with the energy-efficient
PoW algorithm for experiments wherever applicable.

6. Experiments
6.1. Setup and Results: Without Considering Energy Model

The parameters used in our experiments are listed in Table 1. The adversarial robot
can inject fake data randomly sampled between [−10,+10] in place of the original sensor
measurement. The exact information field used in this paper is presented in Figure 7b.

Table 1. Parameters used in our experiments and their values.

Parameter Value

Language MATLAB and Python
Environment Grid
Actions 8
Budget 20
Noise in sensing N (0, 0.25)
GP kernel Exponential

Baselines No Attack (no malicious data tampering) and Insecure (no
security protocol in place)

for energy-efficient PoW

RAM architecture DDR3
Energy measurement software pyRAPL [62]
OS Linux Mint
Processor Intel i5-2410M, 64-bit
C compiler gcc 8.3.1

To first illustrate the effect of injecting fake data into a robotic information-gathering
system and the impact of our secure technique to nullify that, we choose the mean-square-
error (MSE) metric, which indicates how accurate the predicted information model is,
to analyze the consequences of data integrity assaults on multi-robot information sampling.
Figures 8 and 9a present the findings. The PC and OC results versus the results for CC [38]
are also shown.

The PC version of MSE consistently outperforms the insecure version when statistically
compared to its results. Similar to CC, the blockchain-based proposed solution will not be
able to prevent efforts at data manipulation if the difficulty is set to a low value such as 1.
The probability that the hash satisfies the difficulty 1 condition is 1

16 , which is relatively low,
and as a result, the malicious robot can occasionally tamper with global data sharing. This
is because there are 16 possible hash values per digit, and only one digit is an acceptable
value for the prefix (0). The robots performed better—i.e., the final MSE was lower—when
they communicated more frequently (for example, F = 2 is better than F = 5 when we
compare the PC results with varying F ). Although this trend was constant, it is noteworthy
that big differences in MSE were infrequently the result. We think that the reason there
is such a modest variation in MSE outcomes across frequencies is that the robots that
coordinate more frequently have more opportunities to modify their exploration plans
(see Figure 9a for reference). Because of the aforementioned factor, it is often true that the
connection model performs better in terms of MSE the closer it is to the CC. Be aware that
this increases computing time, which we shall address in more detail later in the section.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Single attacker: MSE comparison (the lower the better) among various connectivity models
used: (a,d) CC with n = 10 and 6; (b,e) OC with n = 10 and 6; and (d,f) PC with n = 10 and 6.

Similar to CC and PC, the OC model almost always outperforms the insecure version
statistically, with the exception of a few occasions where it performs less well (with difficulty
1) for the previously mentioned reasons. We have discovered that the MSE is lower with
a bigger C compared to a smaller C. With different communication ranges, the MSE
varies significantly. For instance, when the difficulty is 4 and n is set to 4, the final MSE
value is 0.33 with C = 4 and 0.14 with C = 12. In almost every experiment, C = 12
performed statistically significantly better than C = 4. The MSEs with a range of 8 look
more comparable to the range 4 than C = 12 with 2 robots. Because a third robot can still
communicate with two robots that are out of range if there is one in range of the other
two, communication range becomes less important as more robots are present. Therefore,
the difference between having a range of 8 and 12 was significantly greater (up to 5.5 times
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when n increases from 4 to 8 with difficulty 4). The robots needed less run time since they
had less new data for PoW if they often interacted.

PC consistently beat CC in terms of algorithm run time (Figure 9b–d). Furthermore,
when robots coordinate less frequently with PC, the run time is shorter. For instance,
the run times for PC with F = 2 and 5 are, respectively, 34.04 and 15.50 s, and the run time
for CC is 59.76 s for the same n = 10 and difficulty 4.

On the other side, OC consistently outperformed CC but fell short of PC. Additionally,
while OC typically performed better with a wider range, this is not always the case. This is
due to the fact that, on some occasions, the time saved through coordinating less frequently
was offset by the time required to redo PoW for the orphaned blocks.

(a) (b)

(c) (d)

Figure 9. Single attacker: (a) comparison of MSE values among all the connectivity models with
n = 8; run time comparison (the lower the better) between our proposed secure techniques and the
implemented benchmark algorithms: (b) CC; (c) PC; and (d) OC.

6.2. Setup and Results: Considering the Energy Model

The specific parametric details for the energy-efficient PoW implementations are listed
in Table 1. Remember that the ECM needs hardware with DDR RAMs.

6.2.1. Numeric Results

In our experiments, we performed three different lines of comparison for energy
consumption.

1. We had the SHA-256 operation in PoW in our system implemented in two different
programming languages, C and Python, for comparison. Furthermore, the energy-
optimized SHA-256 was implemented only in C. Therefore, we had three different
implementations for energy consumption comparison: (1) the standard implementa-
tion of SHA-256 using Python [P]; (2) the standard implementation of SHA-256 using
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C [S-C]; and (3) the engineered SHA-256 based on ECM for energy optimization using
C [O-C].

2. We set three different difficulty levels for PoW (2, 3, and 4). Each difficulty level
accounts for the number of leading 0s the generated hash needs to have to satisfy the
condition in Algorithm 2. Next is the proof-of-work complexity index. As implied
by Algorithm 2, a higher difficulty level accounts for more resource intensiveness
in execution.

3. We have also accounted for energy consumption (and optimization) for the three
kinds of connectivity of robots, as illustrated in Figure 1. Robots have a continuous
connection (CC) when all linkages are present at all times. Robots will then adhere to
periodic connectivity (PC) if all links periodically become available (or if links connect
to a network via a different topology). Opportunistic connectivity (OC) is what we
have in contrast if either the white or orange link in Figure 1 is available, but there is
no assurance that they will all be at any given time.

Figure 10 respectively compares the energy consumption of the robotics system using
an energy-optimized and standard implementation of SHA-256 in the PoW algorithm.
As mentioned before, we also add a standard Python implementation of SHA-256 in our
experiments and measurements. The energy measurements of the Python implementation
provide insights into how expensive Python is energy-wise compared to C for the same
SHA-256 implementation. We have not engineered the Python implementation of SHA-256
for energy optimization. The energy-optimized version of SHA-256 consistently accounts
for lower energy consumption as compared to the standard implementation of SHA-256
in C across Figure 10. The standard Python implementation of SHA-256, as expected,
accounts for higher energy consumption than the standard C implementation of SHA-256.
The only anomaly observed is in the opportunistic connectivity cases of Figure 10b,c. This
can be explained by the randomness involved in opportunistic connectivity. The energy
consumption in the case of opportunistic connectivity can be biased in experiments caused
by the randomness involved.

CC PC OC
PoW Difficulty Level = 2

0

25000

50000

75000

100000

125000

150000

175000

En
er

gy
 in

 
Jo

ul
es

E-C
S-C
P

CC PC OC
PoW Difficulty Level = 3

0

25000

50000

75000

100000

125000

150000

175000

En
er

gy
 in

 
Jo

ul
es

E-C
S-C
P

(a) (b)

CC PC OC
PoW Difficulty Level = 4

0

25000

50000

75000

100000

125000

150000

175000

En
er

gy
 in

 
Jo

ul
es

E-C
S-C
P

(c)

Figure 10. (a) C2, (b) C3, (c) C4 (with 1-sigma standard deviation over 500 trials).
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Figure 11a summarizes the average energy savings across difficulty levels 2, 3, and 4
for different connectivity modes (CC, PC, and OC) in comparing the standard and energy-
optimized versions of SHA-256 in C (the Python implementation has not been taken into
account in Figure 11a). We observe energy savings up to 14% (in the case of CC with
difficulty level 4). Section 6.2.2 provides an approximate estimation of energy savings in
different similar real-world systems based on Figure 11a.
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Figure 11. (a) Average energy savings (over 500 trials); (b) block diagram of energy consumption
sources for unmanned devices.

6.2.2. Energy Savings Extrapolation over Real-World Systems

McNulty et al. in [63] establish the energy consumption for unmanned vehicle devices
(UVD) to be divided into three subsystems: (1) navigation, (2) sensing, and (3) locomotion,
as shown in Figure 11b. In our work, the communications module is part of the naviga-
tion subsystem. The total energy consumption of an unmanned device can therefore be
expressed by ET = EL + EP + EN , where ET stands for the total energy consumption, and
EL, EP, and EN stand for the energy consumed, respectively, by the locomotion, sensing,
and navigation subsystems. Furthermore, EN = Egps + Ecomm, where Egps stands for en-
ergy consumed by the global positioning system and Ecomm for the energy consumed by
communications. Finally, Ecomm = Etrx + Esec, where Etrx stands for energy consumed by
the transmission/reception process, and Esec stands for energy consumed by the security
tools implemented. Esec will be equal to 0J for a system with no security. On the other hand,
Esec adds to the total energy consumption for security applications implemented within
the system.

We provide an estimation of the distance a robot can cover in a full battery cycle for
different kinds of robots in Table 2. In Table 2, the maximum distance a robot can cover
(Dmax) is for the case in which it has no security (Esec = 0 J). The other two columns,
DO-SHA and DE-SHA, estimate the distances covered when robots are implemented over
the blockchain network using, respectively, the standard SHA and the energy-optimized
SHA for PoW.

We used the following parameters from the robots’ specification to estimate the amount
of energy consumption per unit distance covered (we use the terms robot and UVD with the
same meaning interchangeably in this section): (1) battery power capacity (BWh) expressed
in watts per hour, (2) current output amp expressed in milli-amperes, (3) operating voltage
vol expressed in volts, and (4) the maximum distance autonomy (Dmax) expressed in meters.
The total battery energy (TE) is calculated as [64]: TE = amp× vol × 3600. The energy a
robot consumes to cover the unit distance (1 m), Eunit, is given by Eunit =

TE
Dmax

. If we have
security measures implemented for the robots (as a blockchain in our work), the distance
covered by each robot over a full battery cycle will be less than Dmax due to the energy
consumed by security applications (Esec). Let us call the distance a robot can go with
security in place Dsec. Clearly, Dsec < Dmax. The total distance cost, Dcost, which is the
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distance that might have been covered with the energy consumed by security applications,
can be estimated as Dcost =

Esec
Eunit

. Finally, Dsec = Dmax − Dcost.
In Table 2, we estimate Dsec when using the standard SHA-256, (DO-SHA) and the

energy-optimized SHA-256 (DE-SHA) for the blockchain. To estimate Esec in our work,
since the blockchain is used as a security mechanism, we consider the energy consumption
per block generated. A block is generated and added each time a robot communicates
with another robot. A block generation and insertion in the blockchain involves a full
cycle of Merkle tree generation and a subsequent PoW execution. Let us denote the
energy consumption of each block operation (generation and insertion) by Eblock. In [65],
the authors estimated Eblock to be, respectively, 2800 J and 2500 J for an input size of 256 B
when standard SHA-256 and energy-optimized SHA-256 were used for the operation.
Therefore, Esec in our work can be estimated as a function of the number of block operations
(Bnum) performed by robots during communication: Esec = Eblock × Bnum. Bnum for a
specific robot depends on the number of times that the robot communicates (i.e., exchanges
information) with other robots throughout Dmax. In Table 2, we assume each robot to
communicate once every 5 m. That is how Esec has been calculated for the two cases
(standard SHA-256 and energy-optimized SHA-256) and, in turn, the respective values of
distances traveled by each robot during these two cases (DO-SHA and DE-SHA) have been
estimated for the different kinds of robots listed in the table.

Table 2. Distance comparison for various types of hardware available for multi-robot implementation
and research.

Type Name Dmax DO-SH A DE-SH A

Aerial DJI3 14,000 13,492 13,546
Aerial Anafi Ai 32,640 27,101 27,695
Aerial Bebop 3 9900 7359 7631
Aerial Matrice RTK 75,900 51,008 53,675

Ground TurtleBot4 7200 4960 5200
Ground Jackal 28,800 27,725 27,840
Ground Husky 10,800 10,498 10,530
Ground TurtleBot Waffle Pi 1872 1773 1784

As depicted in Table 2, the use of blockchain as a solution to integrity problems in
multi-robot communication is costly in terms of energy consumption and in terms of
the distance covered by robots per battery cycle. The use of the energy-efficient SHA-256
in blockchain reduces the cost of energy while keeping the same level of security as the
standard SHA-256.

7. Conclusions

In this paper, we study the problem of data collection from an unknown environment
using a group of mobile robots. As opposed to traditional assumptions in this domain, our
robots are vulnerable to cyber-attacks. In particular, we study data-tampering attempts,
which can lead to unwanted actions taken by human operators. We have proposed a
proof-of-work-based consensus protocol that has the foundation of a blockchain to secure
the data shared among the robots. Although we have applied the proposed securing
mechanism to a multi-robot information-gathering application, we believe our proposed
technique can be used for numerous other applications where multi-robot communication
is required for meaningful coordination. Furthermore, we have employed an energy-
efficiency technique to reduce the energy footprint of PoW. Results show that our proposed
security technique scales up to 10 robots while reducing the energy consumption of the
employed PoW protocol by up to 14%. Unsurprisingly, our results show that adding a
blockchain-based security mechanism adds to the overall execution time. This additional
time is mostly notable in the case of continuous connectivity, and is least notable in the
case of opportunistic. Although this added time is up to three-fold, this is necessary for
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secure multi-robot coordination. Furthermore, we found that, even with 10 robots and a
difficulty level of 4, the execution time was less than one minute—a relatively moderate
number. This study proves that this is a promising direction of research in securing multi-
robot coordination.

In the future, we plan to explore other avenues of data security that do not necessarily
rely on blockchains to investigate whether it is possible to develop a more energy-efficient
protocol while ensuring the security of the collected information. This will lead to further
solutions to robotic communication problems with viable security and efficiency in terms
of time and energy. We will also explore techniques leading to the detection of tampered
data, such as in the case where intruders introduce tampered data before storing it in
the blockchain, e.g., through sensor hardware tampering. Additionally, the current work
generically simulates real-world robotics networks. Future research directions include
implementing the blockchain network on real-world robotics networks to validate the
simulation results presented in this paper.
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