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Abstract: Using traditional methods based on detection rules written by human security experts
presents significant challenges for the accurate detection of network threats, which are becoming
increasingly sophisticated. In order to deal with the limitations of traditional methods, network
threat detection techniques utilizing artificial intelligence technologies such as machine learning are
being extensively studied. Research has also been conducted on analyzing various string patterns
in network packet payloads through natural language processing techniques to detect attack intent.
However, due to the nature of packet payloads that contain binary and text data, a new approach is
needed that goes beyond typical natural language processing techniques. In this paper, we study a
token extraction method optimized for payloads using n-gram and byte-pair encoding techniques.
Furthermore, we generate embedding vectors that can understand the context of the packet payload
using algorithms such as Word2Vec and FastText. We also compute the embedding of various header
data associated with packets such as IP addresses and ports. Given these features, we combine a text
1D CNN and a multi-head attention network in a novel fashion. We validated the effectiveness of
our classification technique on the CICIDS2017 open dataset and over half a million data collected
by The Education Cyber Security Center (ECSC), currently operating in South Korea. The proposed
model showed remarkable performance compared to previous studies, achieving highly accurate
classification with an F1-score of 0.998. Our model can also preprocess and classify 150,000 network
threats per minute, helping security agents in the field maximize their time and analyze more complex
attack patterns.

Keywords: network threat classification; multi-head attention; ensemble machine learning; packet
payload processing

1. Introduction

The attack surface is increasing as mobile devices proliferate and interact with various
IoT and cloud platforms [1–3]. The increased attack surface attracts diverse and sophis-
ticated cyber threats that are becoming more challenging to detect. For example, in July
2021, hundreds of sites in the United States were affected by ransomware attacks due to
the exploitation of Kaseya’s IT management solution [4]. In November of the same year,
connected wall pads working as smart home hubs in a Korean apartment complex were
hacked for the first time [5]. Similar to prior incidents where IP cameras were hacked,
multiple households suffered the leakage of a large amount of private information. In De-
cember 2021, there were infamous cases of malware propagation exploiting the Apache
Log4j vulnerability [6]. We demonstrated that once a connected vehicle is infiltrated, erro-
neous control messages can be easily fed into the CAN (Controller Area Network) bus [7].
Tian et al. demonstrated that the deep learning model can be maliciously altered to disturb
various autonomous functions of connected unmanned aerial vehicles [8]. These incidents
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show that cyber threats continue to occur in various ways as the ubiquity of online services,
applications, and mobile devices grows.

Methods such as secure coding, vulnerability diagnosis, intrusion detection systems
(IDS), and firewalls have been applied to prevent cyber attacks. IDS, in particular, employ
techniques for analyzing the contents of network flows or packets to detect and notify
malicious intent from network traffic [9,10]. IDS is commonly equipped with detection
rules written in widely adopted Snort format to define known threats [11]. However,
as cyber attacks evolve, attackers have devised various evasion methods [12]. Rule-based
approaches are effective against known threats. However, detecting new types of unknown
attacks is difficult. To solve this problem, detection rules must be constantly updated
for new attack types. Human security experts require a significant amount of time to
analyze network data to understand the mechanism of reported threats. Also, the quality
of detection rules heavily relies on the level of knowledge and experience of the security
experts who author those rules. Hence, this time-consuming, labor-intensive, and manual
approach to devising detection rules is ineffective, especially in a situation with vast threat
data pouring in.

Many studies have been conducted on detecting attacks by identifying abnormal
characteristics from formatted data blocks called packets transmitted through a network.
A packet typically contains various information, including a payload and a header specify-
ing the IPs and ports of sources and destinations. Recently, many studies have used deep
learning techniques to model packets for attack detection. In particular, the payload of a
packet may contain scripts, queries, or natural language texts for attacks. Recent studies
have applied natural language processing (NLP) techniques based on deep learning to
better understand the textual data in payloads [13,14]. NLP techniques have been applied
in various fields, such as content summarization, translation, and text classification of
spam mail and news articles. Generative AI services for Q&A such as ChatGPT have
recently emerged. However, payload data deals with information such as scripts composed
of structures, unlike ordinary natural language texts. Therefore, we cannot blindly use
pre-trained language models such as BERT [15] and Reoberta [16] to understand the intent
in a given payload.

We have developed new natural language processing techniques applicable specifically
to packet payloads and header data to address the problems mentioned above. We propose
a Conv. 1D Multi-Head Attention Ensemble (CMAE) model that can accurately and instantly
detect network threats. We trained the CMAE model with input features extracted from
payloads and header data in various ways. Specifically, the payload data are tokenized
into n-grams, and the word embeddings are used to learn the contextual information.
Then, the 1D CNN (convolutional neural network) model yields and summarizes features.
The intermediate output of the 1D CNN model is injected into a multi-head attention layer
that computes the attention weights of each payload token to learn the structural features
leading to threats. We also trained the multi-kernel 1D CNN to discover the association
between the payloads, header data, and types of threats. The models trained with payload
and header data are combined with an ensemble method using an averaging layer and a
self-attention layer. The final feature vector is entered into a softmax function that selects
the likely type of threat.

We evaluated our novel method on the CICIDS2017 open dataset [17] and real-world
network datasets collected by the Education Cyber Security Center (ECSC) in South Ko-
rea. Since January 2022, the ECSC has been using our technique to detect and classify
approximately 1.2 million network threats daily.

The contributions of this study can be summarized as follows:

1. We propose a composite neural network structure with a novel attention-based en-
semble layer.

2. This study boasts a highly accurate attack classification capability with a micro F1-
score of 0.998 based on the CICIDS2017 dataset.
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3. We significantly reduce false positives, which avoids diverting the attention of security
analysts from true threats.

4. We combine Text-CNN techniques with a customized Transformer architecture to deal
with payloads containing varying lengths of content.

5. In addition to the simulated public dataset, we tested the effectiveness of our solution
on a large-scale intrusion system currently operating in Korea to monitor threats
against educational institutions in South Korea. This study also discusses the practical
issues observed in the AI-based IDS in production.

6. Besides attack classification, the attention-based mechanism enables the identification
of critical parts within the payload.

7. This study provides a comprehensive performance analysis of different payload
preprocessing methods.

8. The CMAE model can classify 150,000 threats within a minute. With the CMAE model,
the Korean Education Cyber Security Center (ECSC) screens 1.28 million daily threats
occurring across educational institutions nationwide in real time. Since no threat has
gone unnoticed, security has been greatly enhanced.

The rest of this paper is structured as follows. Section 2 discusses the related works;
Section 3 describes the mechanism of our approach; Section 4 presents the evaluation
results; Section 5 discusses the limitations of CMAE-based threat monitoring and directions
for future works; and finally, we present our conclusions in Section 6.

2. Related Works

In this section, we discuss our work in the context of previous studies using detection
rules, machine learning, and NLP techniques.

2.1. Rule-Based Approaches

The most widely adopted practice is composing threat detection rules according to
Snort [18]. Many previous studies have developed rules for detecting network threats.
ATLANTIC [19] utilized flow-based information and detected the threat of malicious
traffic by calculating the entropy deviation of traffic-flow data. In [20], entropy and the
characteristics of multiple traffic were also utilized based on network-flow information.
Ref. [21] developed a flow-based system that detects abnormal activity by applying the chi-
squared technique to IP flow characteristics. Some studies have examined packet payloads.
In PAYL [22], 256 features are extracted for each 1-byte payload. The extracted 1-byte
payload calculates the frequency distribution within the payload flowing through each host
and port and calculates the mean and the standard deviation. Then, it calculates similarity
using the Mahalanobis distance and detects an attack if it exceeds a specific threshold value.
In [23], abnormal network flow showing the Web of Things application logic violation was
detected using the RETE-based rule engine. In [24], the features of a segmented payload
were represented as two-gram tokens. In [25], association rule mining was conducted on
network flows and their features using the FP-growth algorithm to discover abnormal
activities suspected to be port scans, brute-force attacks, and denial-of-service (DoS) attacks.

These rule-based methods have much room for improvement in terms of the accurate
detection of network threats. The process of extracting features is manual and excessively
complex. The criteria for abnormal incidents are based on thresholds set laboriously
through trial and error. The effectiveness of these methods depends on the knowledge of
security experts and has a large variability. These methods inevitably force security experts
to revise the rules whenever new attack patterns emerge.

2.2. The Usage of Machine Learning

Machine learning techniques that can automatically learn data characteristics are
rapidly evolving in various ways to overcome the limitations of traditional methods.
For network threat detection research, machine learning techniques such as support vec-
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tor machine [26], support vector data description in concert with DBSCAN [27], naive
Bayes [28,29], and random forest [30,31], have been utilized.

Recently, deep learning techniques have seen significant advancements in various
fields, as evidenced by numerous studies [32–34]. For network threat detection, in [35],
anomalous traffic was detected using spatio-temporal information modeling based on the
C-LSTM method. Other studies have employed CNNs (convolutional neural networks) to
learn attacks from traffic data converted into images [36,37]. Refs. [38,39] utilized DNNs
(deep neural networks) to detect anomalies in IoT devices and network traffic data. Ref. [40]
used a CNN and an LSTM to learn the threat patterns inside payload data. Various deep
learning techniques have been trained on the CICIDS2017 dataset [41] generated during
simulated network attacks. Yu et al. used a hierarchical packet byte-based CNN to classify
attacks in a PCAP file [42]. In [43], RTIDS was used with a Transformer network to model
the threats captured in the CICIDS datasets.

Class imbalance is a significant issue, as threat data are typically much less abundant
compared to normal data. This issue makes supervised learning methods susceptible
to overfitting and bias problems. Many unsupervised learning-based studies have been
conducted to address this issue. Noteworthy unsupervised learning approaches have
employed autoencoder methods [44,45].

2.3. The Employment of NLP Techniques

Research that employs deep learning from an NLP perspective using payload data is
also relevant to our approach. In [46], word embeddings and LSTM models were applied
using packet-based data. The field information of packet headers was merged into one
sentence for learning. Specifically, information on the packet data version, flags, protocols,
and source and destination IPs and ports was combined to form a single sentence. Given
the input data in sentences, word embeddings were used to extract the meaning of the
packet. An LSTM model was used to learn temporal information between fields in the
packet header. As a result, promising performance was achieved on the ISCX-IDS-2012,
USTC-TFC-2016, Mirai-RGU, and Mirai-CCU datasets.

In TR-IDS [47], word embeddings and Text-CNN were applied using payload data,
and then classification was performed using random forests, along with the extracted
statistical features of the flow data. On the ISCX2012 dataset, TR-IDS classified infiltrations,
brute-force attacks against SSH, DDoS attacks, and HTTP-DoS attacks, with accuracy as
high as 99.13%.

In [48], a block sequence structure was created using packet payload data, and a detec-
tion model was designed based on LSTM and CNN models and a multi-head self-attention
mechanism, achieving accuracy between 97% and 99% in the detection of web attacks.

The above studies show that high accuracy can be achieved when applying deep
learning models from an NLP perspective using payload data. We propose a different
strategy for finding the optimal features in payload data by applying techniques such as
n-gram tokenization, removing unnecessary tokens based on TF-IDF, and word embedding.
We apply a 1D CNN and multi-head attention layers to the payload data. We use separate
multi-kernel 1D CNN models for the payload and header data. Instead of employing
a single model, we combine different models whose output vectors are merged into a
latent attention vector for classifying network threats. This comprehensive deep learning
structure was designed to deal with complex real-world threat patterns not seen in the
typical simulated threat datasets used in previous works. Our ensemble model is now
an integral part of the ECSC, which is in charge of monitoring 1.2 million threat cases
daily from educational institutions in South Korea. Our model classifies threats with an F1-
score of 0.998. Additionally, threats identified with over 99% confidence are automatically
registered as attack incidents so that the burden of security agents can be significantly
relieved. Therefore, the practical value of our solution has been proven in the field.

A comparison of our approach with various existing methodologies is summarized in
Table 1.
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Table 1. Comparison of network threat detection methods.

Research Works
Data Preprocessing Word Embedding Modeling Method

Real Data Tested
Payload Header n-Gram BPE Tf-Idf Word2Vec FastText Text 1D

CNN
Sequential

Models Attention Ensemble

[48] O Block Sequence Construction Block Embedding O O
[49] O O O O O
[46] O Linguistic Embedding O
[47] O O O O O

Our Method O O O O O O O O O O O O
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3. Methodology

In this section, we describe our methodology.

3.1. An Overview of Conv. 1D Multi-Head Attention Ensemble

The modeling structure of our proposed Conv. 1D Multi-Head Attention Ensemble
(CMAE) model is shown in Figure 1. We tokenize the payload and header data and apply
embedding techniques to generate the input data. The CMAE model receives a total of
three inputs for training. The encoded payload data can be processed through a chain of
single-kernel 1D CNN, max-pooling, and multi-head attention layers. The same payload
embedding can be fed into a multi-kernel 1D CNN model and bypass the multi-attention
layers before being combined.

Figure 1. The overall framework for CMAE-based modeling of network threats

The other input data use IP-port pairs that are encoded in two-byte tokens fed into a
separate multi-kernel 1D CNN model.

The output latent vectors from these different models are consolidated in an averaged
vector in the ensemble block. This vector then enters a single-head self-attention layer
to obtain the association between the collective feature elements. The vector of attention
values is passed to the softmax function to generate the final class output.

An explanation of the individual components of the learning structure is provided in
the following subsections.

3.2. Input Data Tokenization

To model packet payload and header data using a neural network, it is necessary
to convert text into numeric vectors. In the first step, we need to tokenize a given text.
A token refers to a grammatical unit of language that can no longer be divided. A text can
be divided into either sentence tokens or word tokens [50].

This study used the following tokenization methods for payload and header data.
First, we tokenized the payload data by dividing it into two-byte units and representing it
in hexadecimal format (‘00’, ‘ec’) [51].

A payload can be represented by 256 tokens when tokenizing in two-byte tokens.
Although the preprocessing speed is fast when tokenizing in two-byte tokens, the subtle
context in a text may not be fully captured due to the limited number of tokens.

User-defined contents with many out-of-vocabulary (OOV) words make payload
tokenizing challenging. Existing libraries such as NLTK [52] have learned contextual in-



Electronics 2023, 12, 4253 7 of 21

formation for commonly used human spoken words. When these pre-trained libraries
without customization are used to encode the payload, the correctness of payload tokeniza-
tion and proper learning of contextual meanings cannot be guaranteed [53]. The OOV
problem can be solved by using subword segmentation methods [54,55]. For example,
the word birthplace can be divided into smaller subwords, birth and place. For subword
segmentation, we used byte-pair encoding (BPE) [56] to tokenize the payload data into
variable-length n-bytes. We used Sentencepiece, an open-source package that implements
the BPE algorithm [57]. However, since the payload data contain many user-defined tokens,
pre-training was conducted from scratch using Sentencepiece. Using the newly trained
model with Sentencepiece, unconventional variable-length n-byte tokens such as ‘cf’, ‘059’,
and ’80100366’ were observed.

The strengths and weaknesses of the tokenization methods discussed here were
identified after the performance evaluation.

3.3. Applying TF-IDF

TF-IDF is a statistical measure that indicates a word’s importance in a particular
document when there are multiple documents [58]. Term Frequency (TF) is a value that
shows how often a particular word appears within a document. However, if the same
word is frequently used in multiple documents, it may be a special character or word
that commonly appears in sentences, such as commas or articles. In such cases, these
characters or words may make it difficult to distinguish between documents. Inverse
Document Frequency (IDF) is the value obtained by taking the reciprocal of the document
frequency. The lower the IDF value, the more frequently the word appears in multiple
documents. TF-IDF is the product of TF and IDF, and as a word becomes less relevant, its
TF-IDF score approaches zero.

We removed the tokens with the lowest TF-IDF scores from the payload after the
BPE-based tokenization was conducted. We found that removing the irrelevant tokens
enhanced the accuracy of threat modeling.

3.4. Token Embedding

In NLP, vectorization refers to the process of quantifying the features of each word.
This process is called word embedding. For example, if a sentence consists of 3000 words and
each word is represented as a 50-dimensional vector through word embedding, a 3000*50
feature matrix is created. This feature matrix makes it possible to identify the similarities
between words and understand contextual features [59,60].

Methods used to represent words as vectors can be divided into sparse representa-
tion [61] and distributed representation [62]. Sparse representation is achieved through
one-hot encoding, where only the value at the predetermined index is set to one, and all
other values are set to zero. The disadvantage of this representation method is that it cannot
detect the similarity between each word.

The solution to the sparsity problem is the distributed representation method, which
vectorizes the semantics of words into a multi-dimensional space. The resulting vector is
called an embedding. Distributed representation assumes that words that appear in similar
contexts have similar meanings. This representation is created by training on a dataset of
several words and distributing the word’s meaning across multiple dimensions.

We applied two embedding algorithms, Word2Vec and FastText, to obtain the embed-
ding of every token in a payload.

Note that an extra padding of default tokens is necessary because the length of each
payload can vary. With the padding, multiple payloads are set to the same size. However,
the padding can cause a side effect of having too many common default tokens appearing
across payloads. The common default tokens can make it difficult to distinguish between
different types of threats in payloads. This problem was later solved using convolution
and max-pooling.
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3.4.1. Using Word2Vec

Word2Vec is an algorithm that uses distributed representation to obtain the embed-
ding vectors, which has shown outstanding performance in classifying words and doc-
uments [63,64]. There are two primary Word2Vec methods: CBOW (Continuous Bag of
Words) and skip-gram [65]. CBOW predicts the middle word from the surrounding words.

In the CBOW method, the word to be predicted is called the center word, and the
words used for prediction are called the context words. Word2Vec learns by sliding through
the words, looking at the surrounding words of the center word, and updating the vector
values of each word. During training, the vector corresponding to a word that does not
appear within the window is updated to become further away from the center word vector.
On the other hand, the vectors corresponding to the surrounding words that appear within
the window are updated to become closer to the center word vector.

Contrary to the CBOW method, the skip-gram method predicts the surrounding words
from the center word. This paper employed the skip-gram method, which is generally
considered better than the CBOW method [65]. We only applied the Word2Vec algorithm
to payloads that had been tokenized into two-byte units. We first randomly initialized a
vector for each two-byte word in our vocabulary. Then, we went through each position t
and defined the center word at that position as c. To identify the context words, we set a
window of size m so that the skip-gram method examined the tokens in position t−m to
t + m. The skip-gram method tried to maximize the log-likelihood J of the context words
given the center word at t in a token sequence θ according to Equation (1).

J(θ) = − 1
T

T

∑
i=1

∑
−m≤j≤m

logP(wt+j|wt; θ) (1)

The skip-gram method uses deep learning to maximize the log-likelihood using
a neural network. We chose log-likelihood because it is easy to compute derivatives
during training.

Instead of raw payload bytes, we took the Word2Vec vector of a payload token to learn
the context and discern attack intentions more accurately.

3.4.2. Using FastText

The Word2Vec algorithm described earlier has several known drawbacks [66]. First,
it does not accurately reflect the morphological characteristics of words. For example,
the words teach, teacher, and teachers are relevant to each other. However, in Word2Vec,
these words are individually embedded. Thus, the semantic relationship between the
embeddings of these words is not adequately captured. Additionally, embedding sparse
words is difficult, and the algorithm cannot handle OOV words. Since Word2Vec constructs
a vocabulary on a word-by-word basis, if a new OOV term is introduced, the entire dataset
must be retrained. The OOV problem can persist as new words continue to emerge.

When the payload is tokenized in two-byte units, the tokens are limited to 256 words
represented in hexadecimal format. Therefore, Word2Vec can be applied without significant
problems with sparse words or OOV terms. If the tokens are divided further using the BPE
algorithm, the number of tokens increases, allowing for more detailed context information
to be extracted. However, the OOV problem may arise. We addressed this issue using a
FastText [67] technique. FastText is a word embedding method developed by Facebook
that extends the Word2Vec model. It embeds words that are combinations of n-grams of
characters. For example, when n = 3, the word apple is vectorized into the six tokens <ap,
app, ppl, ple, le, apple>. Therefore, if the dataset is sufficient, all subwords of every word
can be generated, and the OOV problem can be addressed.

FastText extracted the subwords according to the following steps:

1. Initialize the vocabulary with all two-byte tokens.
2. Calculate the frequency of each byte.
3. Repeat the following steps until the desired vocabulary size is reached:
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(a) Find the most frequent pair of consecutive bytes.
(b) Merge the pair to create a new subword.
(c) Update the frequency counts of all the bytes that contain the merged pair.
(d) Add the new subword unit to the vocabulary.

4. Represent the vocabulary of the subword units.

3.5. Text 1D CNN Model

The embeddings of the payloads pass through convolutional neural networks (CNNs)
for another round of feature extraction. A CNN is a representative deep learning model
for image classification [68]. A CNN consists of convolutional layers and pooling layers.
In the convolutional layers, feature extraction of the image is performed by moving an
nxm-sized matrix called a kernel over the image to extract a feature map from the complex
pixel information. Then, the feature map is downsampled through the pooling operation
to reduce its size. Traditional CNNs have been used for two-dimensional image data.
One-dimensional CNNs can be used for one-dimensional data such as time series and texts.
To extract the features of the payload, we applied a 1D CNN model [69].

An example of using a single-kernel 1D CNN is shown in Figure 2. The single-kernel
1D CNN partially tokenizes a payload into a two-byte format as ‘e4, fd, 4c, a2, 80, c1, b1,
14, ab’. The embedding of this payload is shown as a matrix in Figure 2, where n is the
sentence length and k is the dimension of the embedding vector. A kernel with a size of
2 initially performs convolutional operations on ‘e4, fd’ and subsequently on ‘fd, 4c’. As
the kernel moves down the matrix, it continues to perform convolutional operations until it
reaches the bottom, ultimately generating a vector with eight elements. An optimal kernel
size can be determined experimentally through a hyperparameter tuning process.

Figure 2. Processing a payload through the 1D CNN model.

Once the convolution is completed, various pooling methods can be applied. The most
commonly used is max-pooling. Figure 2 shows the max-pooling process, which selects the
maximum value from the vector returned by the convolution layer whose kernel size was
set to 2.

The 1D CNN structure we used is shown in Figure 3. The input embeddings pass
through two stages of convolution and pooling operations. After the second max-pooling,
positional encoding functions are applied to each element according to Equation (2), where
the scale value n is empirically set to 10,000 [70].

PE(x, 2i) = sin(
x

n2i/d )

PE(x, 2i + 1) = cos(
x

n2i/d )

x: location of a token

n: user-defined scalar

d: dimension of the token embedding

i: column index, 0 ≤ i < d/2

(2)
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Figure 3. One-dimensional CNN connected to a Transformer block with multi-head attention layers.

Each element is assigned a unique vector of positions through the positional encoding
process. The embedding with the positional encoding values is passed to a Transformer
block that implements a multi-head attention mechanism [70]. Alternatively, we used a
1D CNN model with variable-size kernels, as shown in Figure 4, which uses a filter with a
size of 128 and kernels with sizes of 3, 4, and 5. A global max-pooling operation is applied
to each intermediate result filtered with variable kernel sizes. The global max-pooling
results are concatenated and passed to the dense layer before they reach the ensemble
layer, which averages the feature vectors returned by the other models. The multi-kernel
structure captures the association among the various payload parts at different scales.
This multi-perspective feature analysis through the various kernels is comparable to the
mechanism implemented with the multi-head attention layers. The multi-kernel 1D CNN
is worthy of being combined with other models.

Figure 4. Multi-kernel 1D CNN model architecture.

IP and port information in the packet header is also fed into a separate multi-kernel
1D CNN model. An IPv4 address was converted to an IPv6 address, then converted
to hexadecimal format and broken into two-byte tokens. Ports were also divided into
two-byte tokens.

Sometimes, IP and port information alone can be the most salient threat indicator,
regardless of the payload content. Therefore, we assigned a separate inference network for
the IP and port information.

Max-pooling plays a vital role in both single-kernel and multi-kernel CNNs. Not
all payloads are 1500 bytes in length. As mentioned earlier, the default values need to
be padded for payloads shorter than the default length so that the void can be filled.
Having too many common default values across the payloads can make it difficult for our
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model to distinguish between different threat patterns present in the payloads. Ruling out
meaningless values through the max-pooling operation can help CNNs extract only the
essential features.

Max-pooling also speeds up the classification process, as the feature set is compressed
to a concise yet semantically distinct vector. The computational overhead of the subsequent
layers, such as the multi-head attention layers and dense layers, is significantly reduced.
This performance acceleration is needed to ensure the prompt detection of a threat before it
causes substantial damage.

3.6. Multi-Head Attention

Another critical component of our model is the multi-head attention layers to which
the single-kernel 1D CNN is connected, as shown in Figure 3. From an embedding vector
of a payload refined by the 1D CNN, Q, K, and V vectors are created. Each of these vectors
undergoes a linear transformation. Given the transformed vectors, we apply the scaled
dot-product attention function, as defined in Equation (3) [70]. The outcome of this function
shows the attention scores of each part of the input embedding. The parts with high
attention scores are the critical distinguishing points for the given embedding.

Attention = so f tmax(
QKT
√

dk
)V (3)

headi = Attention(QWQ
i KWiQWQ

i ) (4)

MultiHeadAttention = Concat(head1, . . . , headh)WO (5)

Each of the multiple heads uses a different linear transformation. Thus, each head
produces attention scores in a different representation space. The output of each attention
head is combined and multiplied by a weight matrix WO. Multiple attention heads are
computed to unravel as many meaningful relationships between tokens as possible from
different perspectives.

The attention weights in QKT and WO are learned during training.

3.7. The Ensemble Layer

Finally, the information learned through the feature extraction method and multiple
models is passed to the ensemble block, which consists of an averaging layer [71] and an
attention layer [72]. The objective of this unique introduction of the attention layer into
the ensemble block is to extract the semantic features of the aggregate embeddings from
different models.

The attention weight values are passed to the softmax function [73]. The merged
information is classified through a fully connected layer.

4. Evaluation

In this section, we evaluate the performance of our model.

4.1. Datasets

We evaluated the performance of our model using the CICIDS2017 public dataset and
the threat dataset gathered by the ECSC, managed by the Ministry of Education in South
Korea. We aimed to find an optimal classification model through various experiments
using these datasets.

The CICIDS2017 dataset maintained by the Canadian Institute of CyberSecurity for
research purposes consists of benign and malicious network packets. This dataset was
generated through simulated attacks in a manner similar to actual attack incidents [17].
The CICIDS2017 dataset includes various attack packets, such as DoS attacks, port-scan
attacks, distributed denial-of-service (DDoS) attacks, brute-force attacks against FTP and
SSH services, bot attacks, and Web hacking, in addition to normal packets. The CICIDS2017
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dataset is provided in a PCAP file format and contains network flow information such as
IP addresses and ports of sources and destinations. The dataset was generated over five
days between 3 and 7 July 2017. The class distribution in the CICIDS2017 we used is shown
in Table 2. The CICID2017 dataset originally contained 2,830,743 attack instances. How-
ever, we used a refined version of the CICIDS2017 dataset, which excludes packets with
unintentional missing values [74]. The refined CICIDS2017 dataset contains 2,230,983 at-
tack instances.

Table 2. The class distribution of the CICIDS2017 dataset.

Class The Number of Cases

Benign attacks 528,265
DoS attacks 250,720

DDoS attacks 124,111
Port-scan attacks 107,778

Attacks against FTP & SSH 13,231
Bot attacks 1905

Web hacking 1648

We used a real dataset from the ECSC to validate the practicality and generality of
our model. The ECSC in South Korea monitors massive network traffic flowing in and out
of all educational institutions and general hospitals operated by universities. Educational
institutions in South Korea are vulnerable to cyber attacks due to the relatively large number
of publicly accessible resources.

Figure 5 illustrates an overview of the ECSC. TMS (Threat Management System)
appliances are deployed in every educational institution. The ECSC distributes Snort rules
to the TMS appliances and updates them periodically. TMS appliances are the first line
of defense and filter out cyber threats based on the Snort rules. TMS appliances capture
1500 bytes of payload the moment a threat is detected. These payloads are transferred
to the ECSC and stored in ElasticSearch [75]. The CMAE, which is located at the core of
the ECSC, retrieves six months’ worth of threat incidents every week to undertake the
modeling procedure. The fully-trained CMAE model classifies the threats from the TMS
appliances in real time. The classification results of the CMAE are automatically reported
and escalated for an immediate response if the softmax confidence score is above the
configurable threshold, currently set to 99%.

Figure 5. The overview of the ECSC currently running in South Korea.

On average, the ECSC sees 1.28 million threat events each day. Many of these events
have gone unnoticed due to the limited number of security agents at the ECSC. Approx-
imately 60,000 attacks are confirmed annually. Labeling millions of threat instances was
infeasible. Instead of complete enumeration, the ECSC filtered out the threats posing the
highest risks according to NIST SP 800-30 [76]. Duplicate threats were also removed. This
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refinement process narrowed down the original dataset to one using the class distribution
shown in Table 3. The dataset was constructed between September 2021 and February
2022. We cannot publish the ECSC dataset for security reasons, as it contains payloads with
sensitive private information. However, we can show that the ECSC categorizes attacks into
one of six types: intrusion attempts, malware infections, web hacking, transit exploitations,
DoS attacks, and hacking emails. Packets that are falsely identified as a threat by the Snort
rules are labeled as benign packets.

Table 3. The class distribution of the ECSC dataset.

Class The Number of Cases

Benign attacks 428,120
Intrusion attempts 68,616
Malware infections 5541

Hacking emails 397
Transit exploitations 191

Web hacking 135
DDoS attacks 7

For each dataset, we used 30% for the test set and 70% for the training set. Note that
the class distributions were skewed in both datasets. Unlike previous studies, we trained
our model without sampling or balancing the distribution.

4.2. Implementation and Parameter Configuration

We implemented our model using Tensorflow (https://www.tensorflow.org/) and
Keras 2.6. Our model was tested on an NVIDIA DGX-1 with a 2.2 GHz 20-core Intel
Xeon E5-2698 v4 CPU, sixteen 2133 MHz 32GB DDR4 LRDIMM, and eight NVIDIA Tesla
V100-32GB GPUs. The NVIDIA DGX-1 ran on Ubuntu 18.04.5 LTS. We executed our model
in a container with Docker v19.03.14.

Table 4 lists the main parameters used for the experiment. Note that these parameters
were empirically set.

Table 4. Parameters for the CMAE.

Parameter Setting

n-gram two-byte

BPE vocab_size 32,000, max_sentence_length MAX

Word2Vec embedding_size 64, window_size 5, min_count 5, Skip_gram

FastText embedding_size 64, window_size 5, min_count 5, Skip_gram

TF-IDF Twenty least relevant tokens removed

Word embedding size 64

Payload length MAX or 1500 bytes

1D CNN fillter_size (128, 64), kernel_size 3

Multi-kernel 1D CNN fillter_size 128, kernel_size (3,4,5)

Multi-head attention d_model 128, num_heads 2

Dropout 0.2

Loss function binary_crossentropy and categorical_crossentropy

Activation function GELU and softmax

Optimizer
AdaBeliefOptimizer

(learning_rate = 5 × 10−4, epsilon = 1 × 10−16,
weight_decay = 1 × 10−4)

Scheduler ReduceLROnPlateau
(factor = 0.3, patience = 2, min_lr = 1 × 10−5)

Epochs 50

Batch size 32

Early Stopping 5

https://www.tensorflow.org/
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We used two-byte tokens for the n-gram tokenization. For BPE, the GE refers to the
number of words required for training to distinguish the token units. In this paper, we
set 32,000 as the vocabulary size. The payload length was set to the maximum found in
the dataset or the default 1500 bytes. The entire content was embedded when the payload
length was set to the max. However, many packets were smaller than 1500 bytes. Thus,
these packets may require padding of the default values.

The embedding dimension size was set to 64 for both Word2Vec and FastText. The
smallest dimension size without compromising accuracy was 64. With the compact embed-
ding setting, we could reduce the training time. The window size, which determines how
many surrounding words are used to understand the meaning, was set to 5. The minimum
count was set to exclude tokens that appeared fewer than five times in the entire word
frequency. Additionally, we chose the skip-gram method over the CBOW method for
the embedding. Twenty tokens with the least relevancy were removed from payloads
according to the TD-IDF score.

For the 1D CNN model, the filter sizes were set to 128 and 64 and the kernel size was
set to 3. For the multi-kernel 1D CNN, the filter size was set to 128 and the kernel sizes
were set to 3, 4, and 5. The parameters for the multi-head attention were set to 128 for the
entire dimension. The number of attention heads was set to 2. Thus, each 128-dimensional
payload token vector was divided by 2 to obtain 64-dimensional Q, K, and V vectors.
The dropout was set to 0.2 to prevent overfitting. Binary cross-entropy was used as the
loss function for binary classification between normal and malicious data. Categorical
cross-entropy was used for multiclass classification as the loss function. The Gaussian
error linear unit (GELU) function [77] was used as the activation function, and softmax
was applied to the last classification layer. The AdaBeliefOptimizer [78] was used as the
optimization function, and the ReduceLROnPlateau scheduler from Keras was applied
to improve performance. We trained over 50 epochs with a batch size of 32. The early
stoppage was set to 5.

4.3. Evaluation Metric

In this study, performance was evaluated using the F1-score. The precision is the
ratio of true positives to the total number of positive predictions (Equation (6)). The recall
is the ratio of true positives to the total number of actual positives (Equation (7)). The
F1-score is the harmonic mean of the precision and recall (Equation (8)). We computed
class-wise F1-scores.

We used the micro average, as defined in Equation (9), to assess the overall clas-
sification performance. The micro average accounts for the imbalance in data between
classification classes. Therefore, we chose the micro average over the macro average, which
takes the simple average of the F1-scores of all the classification classes:

• TP (true positives): The number of test results that indicate that a threat is classified
into the right type.

• TN (true negatives): The number of test results that correctly indicate that a threat is
not classified into the wrong type.

• FP (false positives): The number of test results that wrongly indicate that a threat is
correctly classified.

• FN (false negatives): The number of test results that wrongly indicate that a threat is
not classified as an incorrect type.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1− Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(8)
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Micro_precision =
TP1 + . . . + TPN

TP1 + FP1 + . . . TPn + FPn

Micro_Recall =
TP1 + . . . + TPN

TP1 + FN1 + . . . TPn + FNn

Micro Average =

2 ∗ Micro_Precision ∗Micro_Recall
Micro_Precision + Micro_Recall

n: class label

(9)

4.4. Performance Assessment

We compared the performance of various previous models and our new model on the
CICIDS 2017 dataset. The performance of the models is summarized in Table 5. The CMAE
outperformed previous state-of-the-art algorithms [41–43]. Both RTIDS and the CMAE
performed better than approaches not employing a Transformer architecture. The attention
mechanism we used was more effective than an approach based mainly on Text-CNN [42]
in terms of capturing the structure of malicious packets. However, we took advantage of
the pooling mechanism to summarize the packet payload before running it through the
attention layer. The combination of Text-CNN, an attention layer, and an ensemble layer
helped achieve a 0.8% higher F1-score compared to RTIDS [43].

Table 6 shows the true negatives and true positives for each attack type in the CI-
CIDS2017 dataset. The true negatives indicate the number of benign cases that were
correctly classified as non-attacks. Prior to the application of the CMAE, these true nega-
tives were misclassified as attacks according to the imperfect Snort rules used by the ECSC.
Therefore, the CMAE can help reduce false positives that divert the attention of security
agents away from genuine threats. Table 6 shows that the CMAE accurately identified all
attack types, with an F1-score above 0.99.

Table 5. Performance of the classification algorithms using payload data.

Algorithm Precision Recall F1-Score

PayloadEmbeddings [41] 0.953 0.953 0.953
PBCNN [42] 0.982 0.983 0.983
RTIDS [43] 0.983 0.987 0.990

CMAE Binary Classification 0.999 0.999 0.999
CMAE Multiclass Classification 0.998 0.998 0.998

Table 6. Micro performance results of the CMAE using CICIDS2017 dataset.

Type of Attack True Negatives True Positives F1-Score

Port-scan attacks 379,549 107,733 0.9924
DDoS attacks 379,549 124,111 0.9984

Bot attacks 379,549 1905 0.9997
Web hacking 166,715 1658 0.9980
DoS attacks 386,906 250,720 0.9992

Attacks against FTP-SSH 392,699 13,233 0.9987

However, some large malware attached to emails or distributed DoS (DDoS) attacks
were misclassified due to lack of context. Large malware can be more effectively distin-
guished with careful analysis of the file format, such as PE (Portable Executable) for files
on Windows or APK for files on Android [79]. Large Transformer models [80] require
identifying malware larger than 1500 bytes. However, we may have to trade speed for
accuracy with the larger Transformer models.

The rate of occurrence of DDoS attacks in the real world, as shown in Table 3, is
relatively low. Due to the small number of samples, learning to identify DDoS events
is challenging. Since DDoS events take place over multiple packets over time, we can
identify them using the values of the attributes such as Flow Bytes/s, Flow Packets/s, PSH
Flags, Fwd URG Flags, Bwd URG Flags, CWE Flag Count, Fwd Avg Bytes/Bulk, Fwd Avg
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Packets/Bulk, Fwd Avg Bulk Rate, Bwd Avg, Bytes/Bulk, Bwd Avg Packets/Bulk, and
Bwd Avg Bulk Rate. However, we did not use these values due to several missing values in
the CICIDS2017 dataset. We can re-address the DDoS issues with more complete network
flow information in the future.

Unlike previous studies, we conducted experiments using all data without sampling
or balancing the data between classes. Table 5 shows a comparison of the classification
performance of each attack type using the CMAE with BPE, TF-IDF, and FastText. We can
confirm that the F1-score for each attack type was over 0.99. Moreover, the CMAE was
resilient to significant data imbalance between threat types.

We also varied the data preprocessing methods and measured the performance of the
binary and multiclass classifications.

According to Table 7, approaches using the BPE and two-byte tokenization methods
achieved similarly high performance. Two-byte tokenization incurred lower computational
overhead. Therefore, two-byte tokenization is more suitable for mission-critical classifi-
cation needs. Two-byte tokenization performed better with a maximum payload length
compared to a length of 1500 bytes. We can attribute this outcome to the CMAE’s ability to
capture the essential characteristics of payloads, even with a smaller vocabulary size.

The classification performance using the ECSC dataset is shown in Table 8. We
used two-byte tokenization and Word2Vec embedding, with the payload length fixed
at 1500 bytes. The CMAE achieved an F1-score of 0.9966 for the binary classification
of payload-only data. The performance of multiclass classification on the payload-only
data mirrored that of binary classification. When the encoding of the headers (IPs and
port) was included in the input data, the F1-score of multiclass classification improved to
0.9980. These results were consistent with those on the CICIDS2017 dataset, where the
CMAE outperformed the state-of-the-art algorithms. Notably, the BPE-based tokenization,
TF-IDF-based token removal, and FastText embedding did not perform well.

Table 7. Performance of the CMAE on the CICIDS2017 dataset without sampling.

Tokenization and Embedding Class Payload Length F1-Score

BPE + TF-IDF + FastText multiclass Max 0.9958
BPE + TF-IDF + FastText binary Max 0.9992
BPE + TF-IDF + FastText binary 1500 0.9912

2byte + Word2Vec multiclass Max 0.9982
2byte + Word2Vec binary Max 0.9997
2byte + Word2Vec binary 1500 0.9907

Table 8. Classification performance using ECSC data.

Input Data Tokenization & Embedding Classification Payload Length F1-Score

Payload two-byte + Word2vec binary 1500 0.9966
Payload two-byte + Word2vec multiclass 1500 0.9965

Payload + IP + port two-byte + Word2vec multiclass 1500 0.9980

We can infer that the ensemble model is robust enough to model payloads with simpler
tokenization and embedding.

5. Discussion

The CMAE is an integral part of the ECSC, functioning as an automated network
threat classification engine. Threats identified with over 99% confidence by the softmax
function are automatically registered as a real attack incident and shared among all cyber
agents managed by the ECSC.

According to the ECSC, simple intrusion attempts comprise the majority of attacks.
Screening these threats with high accuracy has enabled security agents to spend more time
devising countermeasures for more complex and sophisticated threats. Approximately
150,000 threat incidents can be classified within a minute. Therefore, 1.28 million daily
threats can be screened within eight minutes. Prior to the CMAE, a large portion of daily
threats went unnoticed due to a shortage of staff. The ECSC provides enhanced security
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with the total screening of all threat events. The labor costs of manual monitoring can be
significantly reduced, which helps the ECSC deal with the volume of threat data every day.

However, there is much room for improvement in our model. First, regarding bit rates,
the CMAE processes threat data at approximately 30 Mbps when the payload size is set to
1500 bytes. IDS devices deployed in educational institutions in South Korea typically screen
1 Gbps network traffic. To keep up with the line speed and replace the imperfect rule-based
classification engines in the IDS devices, the CMAE needs to use dozens more GPUs, which
is not a cost-effective solution. In reality, the ECSC uses IDS devices as the first response to
threats, and the CMAE works as a secondary classification engine. This security monitoring
chain still helps reduce massive threat data that pass unnoticed due to limited human
resources. However, because it is infeasible for the CMAE to examine the entire packet
upfront in line speed, the threat surveillance system can miss many threats previously
not defined by Snort rules. Quantizing the neural network is an easy way to speed up
the machine learning algorithm. Acceleration using recently emerging neural processing
units can also be considered, as they are known to perform an order of magnitude better
than GPUs.

We have proven the training quality of the CMAE using synthetic and real-world
datasets. However, whether the pre-trained CMAE can perform well on a new premise
with different network data patterns is unclear, even though the CMAE is trained using a
broad spectrum of threat data collected from a thousand IDS devices. Each different site
has to construct its own CMAE training facility, which is far from being cost-effective. More
diverse training data are needed for the pre-trained CMAE to work out of the box. However,
collecting real-world data is extremely difficult due to confidentiality and privacy concerns.

The attention mechanism of the CMAE can help security agents identify the parts of
the network data that pose threats. However, precisely pinpointing the causes is infeasible
due to convolution and max-pooling. As an alternative to the 1D CNN structure, every
token can be learned directly through the self-attention block. However, due to the padding
of many meaningless default values, the system solely based on self-attention suffers from
performance degradation. The kernel structure and striding mechanism need to be revised
to tackle this particular problem with the network payload.

Lastly, network threats can exhibit seasonality. Therefore, a trained CMAE instance can
become obsolete whenever a drift in the threat pattern occurs. Detecting the drift and proac-
tively re-training the CMAE model is crucial to maintaining high classification accuracy.

6. Conclusions

This paper introduced a model that detects network threats based on learning the
patterns in the packet payloads and header data. First, we uniformly divided the payload
data into two-byte units and applied the BPE technique to extract an appropriate set of
words at various n-gram levels. We then extracted embedding vectors for each word using
distributed representation models such as Word2Vec and FastText trained from scratch. We
classified threats using a novel ensemble block that aggregates the feature vectors learned
by various models, including a single-kernel 1D CNN model paired with a multi-head
attention block and multi-kernel 1D CNN models.

To demonstrate the superiority of the proposed ensemble model, we conducted exper-
iments using an open dataset called CICIDS2017. Through this experiment, we adjusted
the hyperparameters of the n-grams, word embedding models, and various deep learning
networks to obtain the optimal classification system. As a result, even though only payload
data were utilized in the CICIDS2017 dataset, it outperformed the state-of-the-art models
with an F1-score of up to 0.9997. We also applied our model to a large-scale security
surveillance center (the ECSC), currently operated by the Ministry of Education in South
Korea. With the real-world ECSC dataset generated by a thousand IDS devices, our model
proved to be effective, achieving an F1-score of 0.998 in classifying threats. Interestingly,
our model was robust, even when the packet was tokenized and embedded more simply.
The convolution and the max-pooling effectively dealt with the meaningless default values
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padded to short payloads. Also, our unique ensemble block with an attention layer helped
preserve the semantic information from the aggregate feature vectors formed by the various
models. Our ensemble model could classify 150,000 threats per minute on an Nvidia V100-
32GB GPU machine, thereby significantly relieving the monitoring workload of security
agents. Despite these benefits, more research needs to be conducted on improving the
generality of the model so that it can work on different premises out of the box. We are also
seeking model compression and hardware acceleration techniques to screen entire packets
for unknown threats at a line speed.
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