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Abstract: The Toeplitz matrix reconstruction methods are capable of resolving coherent signals,
playing a crucial role in the direction-of-arrival (DOA) estimation of acoustic sources. However,
the decoherence processing sacrifices the array aperture and further results in a reduced resolution
capability for the number of identifiable sources. To solve this issue, we propose an enhanced method
using the Khatri–Rao subspace to resolve more coherent sources than that of the existing Toeplitz
matrix reconstruction methods. Firstly, a full set of Toeplitz matrices with full rank is obtained. Then,
the virtual array aperture can be obtained using the Khatri–Rao product of the array response, and
the degree of freedom provided inherently in the virtual array structure is about twice the size of
that of the existing Toeplitz methods. Next, linear processing is further used to achieve complexity
reduction without losing the effective degree of freedom. Finally, the DOA estimation for more
coherent sources can be achieved by combining it with conventional methods. Numerical simulations
verify the superiority of the proposed method.

Keywords: DOA; Khatri–Rao product; coherent signals; virtual array

1. Introduction

The ocean is a vast and largely unexplored frontier, replete with an abundance of
resources within its aquatic realm. This circumstance has engendered an escalating de-
mand for the development of underwater sensing and communication systems, based upon
advanced multimedia information processing technologies. Central to the functionality
of these systems is the process of direction-of-arrival (DOA) estimation, which serves as
the linchpin for source localization, beamforming, and target tracking [1–5]. In practice,
coherent signal sources are usually encountered owing to multipath propagation or var-
ious interference [6,7]. In such cases, the subspace-based methods such as estimation of
signal parameters via invariance techniques (ESPRIT) [8] and multiple signal classification
(MUSIC) [9] will suffer from performance degradation owing to the rank deficiency in the
source covariance matrix. To restore its rank, the methods based on spatial smoothing were
developed to solve this problem [10–15]. However, because of the reduced array aperture
in the overlapped subarrays, a common drawback is that they reduce the ability to identify
the source number that can be resolved.

Methods such as maximum likelihood [16] and subspace fitting [17] have been pro-
posed to resolve coherent sources. The coherent DOA estimation problem can be achieved
via multi-dimensional parameter optimization without using eigenvalue decomposition.
Thus, they are insensitive to signal coherence. However, the optimal solution is obtained
via alternating maximization, which further results in computational burden. Meanwhile,
compressed sensing methods [18–20] have been developed for coherent signal DOA es-
timation. These methods exploit the spatial sparse characteristics of the source signals
and then solve the coherent signal DOA estimation through sparse vector recovery. How-
ever, the optimal solution needs to be implemented interactively, which results in high
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computational complexity. The high-order cumulants methods [21,22] have also been
employed to resolve the coherent signals, which produce better estimation performance
because of the enhanced noise suppression ability. Meanwhile, this process can produce
an extended virtual array that can distinguish more sources. Nonetheless, the high-order
cumulants estimation accuracy usually requires more snapshots and further results in
increased computational complexity.

Recently, the idea of the so-called Toeplitz matrix reconstruction technique with
moderate computational cost was also proposed to obtain the DOA estimation of the
coherent sources [23–26]. The source covariance matrix in the reconstructed Toeplitz matrix
corresponding to its row vector of the array output covariance matrix is a diagonal matrix
with the restored full rank. Then, the DOAs are obtained by combining with conventional
subspace-based methods. In [27], the beamspace-based Toeplitz matrix reconstruction
method based on beamspace processing was proposed for its noise suppression ability.
Furthermore, it performs better estimation in cases of a low SNR regime. However, similar
to spatial smoothing methods, the existing Toeplitz matrix reconstruction methods realize
the signal decorrelation at the cost of reducing the array aperture, which further results in
resolution capability degradation for resolving more source signals.

To address the aforementioned problems, an enhanced coherent DOA estimation
method via Toeplitz matrix reconstruction and Khatri–Rao subspace is designed to resolve
more sources. Firstly, a set of Toeplitz matrices associated with each row vector of the
array output covariance matrix is constructed, and then the reconstructed matrices are
vectored and stacked to achieve the covariance matrix reconstruction of the array output.
Furthermore, the virtual array aperture for the proposed method is about twice as big as
that of the existing Toeplitz matrix methods, which further provides us with the capability
of resolving more sources. Next, linear processing is employed to reduce the dimension,
which leads to a lower computational cost in implementation. Meanwhile, it also achieves
noise-whitening processing. In the end, the estimated DOA of coherent sources can be
obtained via the conventional subspace-based methods. Numerical results also show that
the proposed method can resolve more sources compared to the existing methods.

This paper is structured as follows: Sections 2 and 3 present the signal model and
the existing method, and the hypothesis proposed in this paper is further introduced in
Section 4. In Section 5, several analysis experiments are then presented. Finally, the paper
is concluded in Section 6.

Notation: (.)H represents conjugate transpose, (.)T denotes transpose, (.)* is conjugate.
X, x, and x denote the matrix, vector, and scalar, respectively. E[.] is the expectation
operation. IM denotes M×M identity matrix.

2. Signal Model

Consider a uniform linear array (ULA) that contains N = 2M + 1 sensors with half-
wavelength (d = λ/2) as shown in Figure 1, and P narrowband far-field signals with
distinct directions θi, i = 1, 2, · · · , P are received by the array. Moreover, the complex
envelope for source signals can be denoted as si(t), i = 1, 2, · · · , P at the sensor 0, which is
set as the reference.
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The array output vector y(t) at time t can be written as

y(t) = [y−M(t), . . . , y0(t), · · · , yM(t)]T

= x(t) + n(t)
= As(t) + n(t)

(1)

where the s(t) = [s1(t), · · · , sP(t)]
T denotes P × 1 source vector. The (2M + 1) × P ar-

ray steering matrix is expressed as A = [a(θ1), · · · , a(θP)] with the i-th steering vector

a(θi)= [e−j(2π/λ)Md sin θi , · · · , 1, · · · , ej(2π/λ)Md sin θi
]T

. n(t) = [n−M(t), · · · , nM(t)]T repre-
sents the (2M + 1)× 1 noise vector with Gaussian white characteristics which are assumed
to be uncorrelated to signal sources with zero mean and variance σ2

n .
Based on the assumptions described in (1), the covariance matrix of the array output

R can be expressed as

R = E[y(t)yH(t)]
= AE[s(t)sH(t)]AH + E[n(t)nH(t)]
= ARsAH + σ2

nI(2M+1)

(2)

where Rs = E[s(t)sH(t)] is the P× P source covariance matrix. When performing eigen-
decomposition, the rank loss of the matrix Rs will result in performance degradation in
DOA estimation or even failure [12,13]. Therefore, the key processing for the coherent DOA
estimation when combined with the subspace-based methods is to restore the rank of the
source covariance matrix [25–27].

3. Toeplitz Matrix Reconstruction Method

The Toeplitz matrix reconstruction methods [24–27] exploit a set of Toeplitz matrices
with restored rank associated with row vectors to achieve the matrix reconstruction of the
array output which restores the rank of the source covariance matrix. Thus, the DOAs of
sources can be further obtained when using the subspace-based methods. In a manner akin
to spatial smoothing techniques, the Toeplitz matrix reconstruction process also reduces
the array aperture, resulting in a decrease in resolution for more signals.

Using the result in [26], the reconstructed matrix RYi with full rank corresponding to
the i-th row vector of the array output covariance matrix R is given as

RYi = E
[
RY(t)y∗i (t)

]
= E

[
RX(t)x∗i (t)

]
+ E

[
RN(t)n∗i (t)

]
= RXi + σ2

n
~
I(M+1),i

(3)

RY(t) =


y0(t) y1(t) · · · yM(t)

y−1(t) y0(t) · · · yM−1(t)
...

...
. . .

...
y−M(t) y−M+1(t) · · · y0(t)


= RX(t) + RN(t)

(4)

RX(t) =


x0(t) x1(t) · · · xN(t)

x−1(t) x0(t) · · · xN−1(t)
...

...
. . .

...
x−N(t) x−N+1(t) · · · x0(t)


=

~
AS(t)

~
A

H

(5)
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RN(t) =


n0(t) n1(t) · · · nN(t)

n−1(t) n0(t) · · · nN−1(t)
...

...
. . .

...
n−N(t) n−N+1(t) · · · n0(t)

 (6)

where RY(t) is the reconstructed (M + 1)× (M + 1) Toeplitz matrix via y(t). RX(t) and
RN(t) denotes the reconstructed signal matrix and noise matrix with Toeplitz characteristics,

respectively.
~
A =

[~
a(θ1), · · · ,

~
a(θP)

]
represents the (M + 1) × P array steering matrix

with
~
a(θi) =

[
1, · · · , e−j(2π/λ)Md sin θi

]T
corresponding to the reconstructed matrix RX(t),

and S(t) = diag{s1(t), · · · , sP(t)} is the reconstructed P × P source covariance matrix
containing each signal on its diagonal elements.

Furthermore, the reconstructed correlation matrix based on RX(t) and xi(t) can be
given by [24]

RXi = E[RX(t)x∗i (t)] =
~
AE[S(t)x∗i (t)]

~
A

H
=

~
A

~
Si

~
A

H
(7)

where
~
Si denotes the correlation matrix between S(t) and the obtained signal from the

i-th sensor.
In a similar way, the reconstructed matrix RYi under a noise field can be written as

RYi =
~
AE[S(t)x∗i (t)]

~
A

H
+ σ2

n
~
I(M+1),i =

~
A

~
Si

~
A

H
+ σ2

n
~
I(M+1),i (8)

We can conclude from (3) and (8) that the Toeplitz matrix processing named the
ESPRIT-like method transforms the source matrix Rs described in (1) to a diagonal matrix
~
Si with restored full rank described in (7) to achieve signal decoherence. Then, the coherent
DOAs can be obtained using the conventional subspace-based methods. However, the
matrix reconstruction process reduces the effective aperture of the array since the dimension
of the reconstructed matrix RYi is smaller than that of the original matrix R, which further
reduces the ability to identify the sources that can be resolved.

To avoid only employing partial information of the covariance matrix of the array
output in the ESPRIT-like method, many enhanced methods including the forward and
backward partial Toeplitz matrices reconstruction named FB-PTMR [24] and the multiple
Toeplitz matrices reconstruction called MTOEP [25] were proposed to employ more infor-
mation to achieve the matrix reconstruction. Thus, they can produce a better estimation
of the reconstructed matrix and then improve the DOA estimation performance. The
reconstructed covariance matrix of the array output for the FB-PTMR and MTOEP can be
expressed as

RFP−PTMR =
M

∑
i=0

RYiRH
Yi (9)

RMTOEP =
M

∑
i=−M

RYiRH
Yi (10)

We can observe from (9) and (10) that the improved methods employ a set of Toeplitz
matrices corresponding to several rows to reconstruct the covariance matrix of the array
output through quadratic spatial smoothing. However, similar to the ESPRIT-like method,
the reconstructed covariance matrix of the array output for the FB-PTMR and MTOEP
methods still have the (M + 1)× (M + 1) characteristics. Thus, this will result in a reduced
number of distinguishable signal sources.

4. The Proposed Method

To resolve more source signals, an enhanced DOA estimation method for coherent
sources via Toeplitz matrix reconstruction and Khatri–Rao subspace is proposed. We
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first construct a full set of Toeplitz matrices with restored rank, and then the Khatri–Rao
processing is further employed to achieve the aperture extension of the reconstructed
matrix. Therefore, it improves the ability to resolve more coherent signals than that of the
existing ESPRIT-like method.

4.1. Khatri–Rao Processing Criterion

Firstly, similar to the vectorization process in [28,29], the reconstructed covariance
matrix of the array output shown in (8) can be rewritten as

yi , vec{RYi} = (
~
A
∗
�

~
A)di + vec

{
σ2

n
~
I(M+1),i

}
(11)

where di =
[
E[s1(t)x∗i (t)], · · · , E[sP(t)x∗i (t)]

]T is the P × 1 source vector for the recon-
structed matrix; yi.vec{·} denotes vectorization. � represents the Khatri–Rao product

Then, when stacking Y ,
[
yM, · · · , y0, · · · , y−M

]
, we obtain

Y ,
[
yM, · · · , y0, · · · , y−M

]
= (

~
A
∗
�

~
A)[dM, · · · , d0, · · · , d−M]

+σ2
n

[
vec
{~

I(M+1),M

}
, · · · , vec

{~
I(M+1),0

}
, , vec

{~
I(M+1),−M

}]
= (

~
A
∗
�

~
A)ψ+ σ2

nG

(12)

where
~
A
∗
�

~
A is the virtual array steering response. ψ denotes the P× (2M + 1) signal

matrix. G is the (M + 1)2× (2M+ 1) noise matrix. ψ and G have the following expressions

ψ = [dM, · · · , d0, · · · , d−M]

=


E[s1(t)x∗M(t)] E[s1(t)x∗M−1(t)] · · · E[s1(t)x∗−M(t)]
E[s2(t)x∗M(t)] E[s2(t)x∗M−1(t)] · · · E[s2(t)x∗−M(t)]

...
...

. . .
...

E[sP(t)x∗M(t)] E[sP(t)x∗M−1(t)] · · · E[sP(t)x∗−M(t)]

 (13)
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4.2. The Number of Sources Which Can Be Estimated

It has been proven in [28] that for
~
A ∈ C(M+1)×P as described in (12), the Khatri–Rao

product
~
A
∗
�

~
A is a full-column rank matrix assuming that the source number satisfies

P ≤ 2M + 1. That is

Rank
{

~
A
∗
�

~
A
}

= P (15)

where Rank{·} denotes the standard rank.
Furthermore, using the result in [28], the signal matrix ψ ∈ CP×(2M+1) can maintain a

full rank assuming that the source power distributions over the columns are different and
the source number satisfies P ≤ 2M. The i-th row for the matrixψ in (13) can be written as

ψi =
[
E[si(t)x∗M(t)], E[si(t)x∗M−1(t)], · · · , E[si(t)x∗−M(t)]

]
(16)

Firstly, substituting (1) into (16), we have

ψi =

[
P
∑

l=1
E[si(t)s∗l (t)]e

j(2π/λ)Md sin θl , · · · ,

P
∑

l=1
E[si(t)s∗l (t)]e

−j(2π/λ)Md sin θl

] (17)

Note that as defined in (1), because the source DOAs are distinct (θi 6= θj, i 6= j), the
source power distributions within the vectorψi are different. Meanwhile, by combining the
assumption P ≤ 2M as shown in (16), the reconstructed source matrix ψ is of full-column
rank [28,29], which has the following expression

Rank{ψ} = P (18)

Then, inserting (15) and (18) into (12), we have the following expression [28,29]

Rank{Y} = Rank
{

~
A
∗
�

~
A
}

= P (19)

When performing the singular value decomposition (SVD), we obtain

Y = [Us Un]

[
Σs 0
0 0

][
VH

s
VH

n

]
(20)

where Un ∈ C(M+1)2×((M+1)2−P) is the left singular matrices associated with zero singular
values, and Vn ∈ C(2M+1)×((M+1)2−P) denotes its corresponding right singular matrices.
Meanwhile, Us ∈ C(M+1)2×P and Vs ∈ C(2M+1)×P represent the left and right matrices
corresponding to their nonzero singular values, respectively. Σs ∈ RP×P is a diagonal
matrix that contains nonzero singular values.

According to the array signal processing theory in [1,8,9], we have

R

((
~
A
∗
�

~
A
)⊥)

= R
(

Us
⊥
)
= R(Un) (21)

where R(·) represents the range space.
Finally, the estimated DOAs can be derived as follows

U⊥n

[
~
A
∗
�

~
A
]

k
= U⊥n

(~
a
∗
(θk)⊗

~
a(θk)

)
= 0 (22)

where ⊗ denotes the Kronecker product.
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By employing the conclusions in [28,29], the actual angles θk, k = 1, 2, · · · , P via the
criterion in (22) based on Khatri–Rao processing can be estimated when the number of
source signals P satisfy

P ≤ 2(M + 1)− 2 , 2M (23)

From (8)–(10) and (23), we can conclude that the maximum number of sources that
can be resolved in our proposed method, given by 2M, are greater than that of the existing
Toeplitz matrix, which is M. This is because of the proposed method based on Khatri–Rao
subspace processing, which can extend the array aperture as shown in (12).

4.3. Dimension Reduction

It can be seen in (12) and (22) that the array dimension in our proposed method, given
by (M + 1)2, is greater than the existing Toeplitz-based methods [23–27], that is (M + 1),
which increased the computational burden when it is combined with subspace-based
methods. Furthermore, the noise contribution non-scalar matrix G in (14) needs to be
further processed, which also impacts the computational efficiency. For these problems,
we can solve them by performing linear processing on the reconstructed matrix Y, which
reduces the dimension and further achieves complexity reduction. Meanwhile, the noise is
also whitened during this processing. Therefore, the proposed method does not require
noise elimination, making it less computationally complex.

Firstly, according to the reference [29], the virtual array response matrix
~
A
∗
�

~
A in (12)

can be computed as follows
~
A
∗
�

~
A = GB (24)

where B = [b(θ1), b(θ2), · · · , b(θP)] denotes the (2M + 1)× P dimension-reduced array

steering matrix with b(θi) =
[
e−j(2π/λ)Md sin θi , · · · , 1, · · · , ej(2π/λ)Md sin θi

]T
.

Then, substituting (24) into (12), the reconstructed matrix Y can be rewritten as

Y = GBψ+ σ2
nG (25)

where σ2
n denotes the noise energy.

Next, it can be verified from (14) that the column vectors contained in the matrix G
with full-column rank are orthogonal. Thus, the diagonal matrix W can be further obtained,
which has the following expression [29]

W = GTG = diag{1, 2, · · · , M, M + 1, M, · · · , 2, 1} (26)

By combining (25) and (26), the reconstructed matrix with dimension reduction can be
achieved through a linear operation [29]. We can write that

~
Y = W−1GTY
= W−1GT(GBψ+ σ2

nG)

= W−1GTGBψ+ σ2
nW−1GTG

= Bψ+ σ2
nI(2M+1)

(27)

According to the results from (12) and (27), when performing linear processing, the

reconstructed matrix is transformed from Y ∈ C(M+1)2×(2M+1) into
~
Y ∈ C(2M+1)×(2M+1),

which significantly reduces the complexity burden in implementations without losing
the effective degree. Meanwhile, noise-whiten processing is also achieved, which further
results in better DOA estimation accuracy than that in color-noise cases [30–32].

The auto-correlation and spatial smoothing for the dimension-reduced matrix
~
Y are

employed to improve the noise suppression ability [26,33]. We obtain

~
R =

~
Y

~
Y

H
(28)
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Rproposed =
~
R + J(

~
R)
∗
J (29)

where J is the exchange matrix.
Finally, the DOAs for coherent sources can be estimated via the total least squares

ESPRIT (TLS-ESPRIT) method [34].
The major steps of the proposed method are summarized in Algorithm 1.

Algorithm 1: Pseudocode of the proposed DOA estimation method

Input: Array output vector, y(t).
Output: Estimated signal source DOAs, θd, d = 1, · · · , P.

1: Apply R =
L
∑

l=1
y(t)yH(t) instead of (2) to calculate the output covariance matrix.

2: Construct the Toeplitz matrix RYi, i = −M, · · · , M with full rank corresponding to the i-th
row vector of the covariance matrix R using (3).

3: Perform the Khatri–Rao processing criterion to obtain the reconstructed matrix with aperture
extension Y using (11) and (12).

4: The reconstructed matrix
~
Y with dimension reduction is obtained using (25)–(27).

5: Obtain the reconstructed covariance RProposed with better noise suppression ability using
(28) and (29).

6: Perform TLS-ESPRIT (total least squares ESPRIT) to estimate the DOAs of the signal sources.

For the TLS-ESPRIT method, the computational complexity of our proposed method
mainly lies in the calculation of Y, dimension reduction, and DOA estimation. Thus, we
add these processes to obtain the computational burden. 2M + 1 denotes the number
of elements in the array, L represents the snapshot number, X denotes the smoothing
number of FOSS/FBSS methods, and P represents the number of source signals. The main
computational complexities of these methods are shown in Table 1.

Table 1. Computational complexity analysis.

Algorithm Computational Complexity

FOSS/FBSS O
(
(2M + 1)2L + (2M− X + 2)3 + 3(2M− X + 1)P2 + 2P3

)
FB-PTMR O

(
(2M + 1)2L + (M + 1)4 + (M + 1)3 + 3MP2 + 2P3

)
MTOEP O

(
(2M + 1)2L + (M + 1)3(2M + 1) + (M + 1)3 + 3MP2 + 2P3

)
ESPRIT-like O

(
(2M + 1)2L + (M + 1)3 + 3MP2 + 2P3

)
The proposed

method O
(
(2M + 1)2L + (2M + 1)2(M + 1)2 + (2M + 1)3 + 3(2M + 1)P2 + 2P3

)

Compared with the existing Toeplitz and spatial smoothing methods, our proposed
method exploits the Khatri–Rao processing to achieve the aperture extension of the re-
constructed matrix, which increases the computational burden. However, it can provide
the capability to identify more sources. Meanwhile, the DOA estimation performance is
also improved.

In addition, the proposed method in this paper mainly emphasizes that the array
aperture extension can be achieved by combing with Khatri–Rao subspace processing, and
further provides better DOA estimation accuracy in cases of low SNR when compared
to the existing Toeplitz matrix reconstruction methods. Moreover, the aperture extension
essentially provides us with the ability to resolve more source signals than that of the
existing Toeplitz matrix reconstruction methods. For simplicity of analysis, we select the
ESPRIT-like [23] method as an estimator to reflect the advantages of Khatri–Rao subspace
processing. Thus, when combined with another high resolution-method [26,27,30], it
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will also provide better performance on estimation and resolution. The DOA estimation
performance is also affected by element spacing, array patterns, and mutual coupling [1,2,7].
However, this paper mainly focuses on the advantages of Khatri–Rao subspace processing.
Thus, DOA estimation under these conditions will be the topic of our future research.

5. Simulation Results

Numerical simulations are presented to illustrate the superiority of our proposed
method compared with the spatial smoothing methods including FBSS [11], FOSS [10],
and the Toeplitz reconstruction methods such as MTOEP [25], ESPRIT-like [23], and FB-
PTMR [24] based on the basis of the probability of resolution (POR) and the root-mean-
square error (RMSE). The RMSE and POR of the DOA estimates are defined as

RMSE =

√√√√ 1
WP

P

∑
i=1

W

∑
w=1

(
θ̃i,w − θ

)2
(30)

POR =

(
1

WP

P

∑
i=1

Ni

)
× 100% (31)

where W represents the Monte Carlo trial number, which is set to 2000 in our simulations.
θ̃i,w is the i-th estimated value of θi in the w-th trial. P denotes the source number assumed
to be known or accurately estimated [35–37]. The resolution is considered successful
when the estimated value satisfies

∣∣∣θ̃i,w − θ
∣∣∣≤ 2◦ , and Ni counts the number of successful

resolutions for the i-th signal source.

5.1. Estimated Source Number Verfication

Firstly, we verify the maximum source number that can be resolved for our proposed
method. As shown in Figure 2, the case where (N, P) = (5, 4) is considered. A group of two
coherent sources located at [−40◦,−20◦] and another group contains two coherent sources
received from [10◦, 45◦]. The spacing between the adjacent elements is half-wavelength
(d = λ/2), and the number of snapshots is 200. The noise is zero-mean white Gaussian with
power σ2

n and the SNR varies from −10 dB to 12 dB according to SNR = 10 log(σ−2
n ) [38].
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The existing spatial smoothing and Toeplitz matrix reconstruction methods can not
resolve the coherent sources under this condition. However, our proposed method is still
able to identify the sources because our proposed method exploits the Khatri–Rao subspace
processing that provides an extended virtual array, which is consistent with the analysis in
Section 4. Thus, our proposed method provides the ability to resolve the angle estimation
problem for more signals.

5.2. Estimation Performance versus SNR

We then consider an overdetermined case where (N, P) = (7, 4) and our proposed
method provides the ability to provide better estimation accuracy than other estimators
in different SNRs. The true DOAs are {θ1, θ2, θ3, θ4} = {−20◦,−10◦, 12◦, 24◦}, where
{−20◦,−10◦} is a group of coherent signals and {12◦, 24◦} is another group. The num-
ber for subarrays and snapshots is set to 3 and 100, respectively. The other simulation
conditions are similar to Example 5.1. Moreover, the Cramér–Rao bound (CRB) [39,40] is
also presented.

As observed in the simulation results of Figure 3, our proposed method can still achieve
coherent DOA estimation when compared with the existing methods based on Toeplitz
matrix reconstruction. This is because the array dimension for the Toeplitz methods is less
than the number of sources, while our proposed method, based on Khatri–Rao subspace
processing, employs a virtual array structure to extend the physical array aperture, which
results in resolving more signals. Meanwhile, the Khatri–Rao processing also eliminates
the color noise. This aligns with the theoretical analysis presented in Section 4.
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Figure 3 also shows that when SNR ≤ 6 dB, our proposed method provides better es-
timation performance on accuracy and resolution. Meanwhile, the DOA estimation perfor-
mance is closer to CRB than other methods. Furthermore, the proposed method can produce
a slightly interior RMSE performance at higher SNRs than the FBSS method, but the resolu-
tion probability in our method obviously outperforms the FBSS method. Particularly when
SNR = 0 dB, our proposed algorithm improves estimation accuracy (RMSE ≈ 7◦) and res-
olution probability (POR ≈ 74%) than that of other methods (RMSE ≥ 10◦, POR ≤ 27%).

5.3. Estimation Performance versus Snapshots

The DOA estimation performance concerning the snapshot numbers is also inves-
tigated. The simulation conditions are similar to those in Example 5.2, except that the
snapshot number varies from 32 to 256 and the SNR is fixed at 0 dB.
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Figure 4 illustrates that our proposed method provides good estimation accuracy
over the entire snapshot regime. When compared with the other methods, our proposed
method can realize the array aperture extension using the Khatri–Rao subspace processing.
Thus, our proposed method yields better estimation accuracy and resolution under the
same snapshot number. Figure 4 also shows that the DOA estimation performance for our
proposed method is significantly improved faster than other methods as an increase in
the number of snapshots. This is especially true for a low number of snapshots such as
96; our proposed method can provide better estimation accuracy (RMSE ≈ 7◦) than other
methods (RMS ≥ 11◦). Moreover, the resolution of probability in our proposed method is
about 74%, while those of the others are below 26%.
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5.4. Estimation Performance versus Angular Separation

We tested the estimation performance versus the angular separation. Two groups of
coherent signals are also considered, which are set to {−30◦,−30◦ + ∆θ} and {0◦, 0◦ + ∆θ},
respectively. The angular separation ∆θ varies from 2◦ to 18◦, and the snapshot number is
set to 200. The other conditions are the same as those in Example 5.1.

From the simulation results as shown in Figure 5, we can conclude that our proposed
method provides better estimation performance than that of other estimators across the
entire angular separation regime. Compared to the FOSS and FBSS methods, our proposed
method achieves the extension of the array physical aperture when combined with the
Khatri–Rao subspace processing. Therefore, this will result in better estimation accuracy.
Furthermore, Figure 5 also shows that when the angular separation is enlarged, the RMSEs
of the spatial smoothing methods gradually approach and are still lower than our proposed
method. Meanwhile, the resolution probability of our proposed method is also significantly
improved. In particular, when the angular separation ∆θ = 18◦, the estimation accuracy of
the FBSS is similar to our proposed method, while the resolution probability (POR ≈ 90%)
in our scheme is higher than that of the FBSS method (POR ≈ 53%).
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6. Conclusions

An enhanced ESPRIT-like method that combines Khatri–Rao product processing and
Toeplitz reconstruction was proposed to solve the DOA estimation for coherent sources.
The proposed method firstly constructs the Toeplitz matrix with full rank to achieve
decorrelation. Then, the Khatri–Rao characteristic contained in the array response is
inherently further employed to achieve the array aperture extension, which further provides
the capability to identify more sources that can be resolved by the other methods. The
numerical results confirm the validity of our proposed method. Furthermore, our analysis
also demonstrates that the proposed method can produce better estimates of the DOA in
cases of low snapshots, low SNR regime, and closely spaced sources.
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