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Abstract: The pharmaceutical industry is facing significant economic challenges due to measures
aimed at containing healthcare costs and evolving healthcare regulations. In this context, pharmaceu-
tical laboratories seek to extend the lifespan of their machinery, particularly fluid bed dryers, which
play a crucial role in the drug production process. Older fluid bed dryers, lacking advanced sensors
for real-time temperature optimization, rely on fixed-time deterministic approaches controlled by
operators. To address these limitations, a groundbreaking approach taking into account Exploration
Data Analysis (EDA) and a Catboost machine-learning model is presented. This research aims to
analyze and enhance a drug production process on a large scale, showcasing how Al algorithms
can revolutionize the manufacturing industry. The Catboost model effectively reduces preheating
phase time, resulting in significant energy savings. By continuously monitoring critical parameters,
a paradigm shift from the conventional fixed-time models is achieved. It has been shown that the
model is able to predict on average a reduction of 50.45% of the preheating process duration and up
to 59.68% in some cases. Likewise, the energy consumption of the fluid bed dryer for the preheating
process could be reduced on average by 50.48% and up to 59.76%, which would result on average in
around 3.120 kWh energy consumption savings per year.

Keywords: energy consumption; IoT-based power control systems; machine learning; optimization
using sensor data; predictive control; pharmaceutical technology; process modeling; exploratory
data analysis

1. Introduction

The entire pharmaceutical manufacturing process comprises multiple stages, including
dispensing, granulation, drying, compression, and coating [1], as depicted in the diagram

below in Figure 1.
Fluid bed drying technology is widely employed in pharmaceutical manufacturing

due to its high efficiency in drying granules obtained through wet granulation [2]. However,
the primary challenge associated with using a fluid bed dryer lies in the time and energy it
consumes to complete the process. The drying process entails three phases: (i) preheating
the machine without introducing any product, (ii) drying the product, and (iii) cooling the
machine for product cooling. Costs are incurred in all three phases, encompassing the time
taken by the machines and the energy required for heating and air circulation. Additionally,
the budget is impacted by the number of operators involved in handling the machine [3].
The fluid bed drying of wet granules obtained through high shear granulation involves
a combination of moisture diffusion from the solid material, facilitated by hot air, and the
entrainment of this moisture through forced convection. The success of this process relies
on the uniform fluidization of the granules by hot air, ensuring efficient mass and energy
transfer. The drying time can be reduced by increasing the temperature and intake airflow.
However, each parameter must be carefully tailored for the specific granule type. The inlet
air temperature is adjusted based on the temperature signal recorded by the air sensor in
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contact with the fluidized product, ensuring it does not exceed the critical temperature for
pharmaceutical stability. Inlet air humidity is kept within a narrow dew-point range to
achieve batch-to-batch reproducibility. Thus, under optimized conditions of temperature,
humidity, and airflow entering the machine, drying takes less time and generates a high-
quality product. Temperature, pressure, and flow sensors monitor the changes throughout
the process [4,5].
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Figure 1. Pharmaceutical manufacturing process.

‘ Drying

The financial landscape, ongoing measures implemented by authorities to control
healthcare expenses, and recent changes in healthcare regulations significantly impact
pharmaceutical laboratories and manufacturers of medical products. Due to the consid-
erable cost of fluid bed dryers and other machinery used in medicine production, there
is a concerted effort to maximize the lifespan of these machines [6]. In particular, older
fluid bed dryers lack sensors that can indicate when the machine has reached the optimal
temperature for any of the three phases (preheating, drying, and cooling). Deterministic
methods are usually employed, meaning fixed times are used for each process phase, and
the machine’s operator is responsible for managing these times. Moreover, during the
drying process, the operator halts the machine after a specific duration to obtain a product
sample and measure humidity levels, thereby checking whether any critical machine param-
eters need adjustments (such as inlet air temperature or airflow). The primary aim of this
study is to propose a Catboost machine-learning model that can reduce the time needed for
the preheating phase, therefore reducing overall energy consumption, and to demonstrate
a methodology for utilizing exploratory data analysis in the analysis and optimization of
a drug production process on a large scale. The experiments were performed on a fluid bed
dyer located in a pharmaceutical manufacturing plant in Spain. The methodology used to
develop the model can be implemented in a wide range of equipment that does not possess
state-of-the-art sensor technology. Our study embraces a groundbreaking approach that in-
volves real-time monitoring of crucial manufacturing equipment parameters, representing
a paradigm shift from the conventional model. The paper is organized as follows: Section 2
presents the related work on applying artificial intelligence algorithms to improve methods
and processes in the manufacturing industry; Section 3 details the proposed methodology;
Section 4 presents the experiment set up, including a description of the fluid bed dryer and
the data collection; Section 5 presents the results in terms of energy savings for the fluid
bed dryer preheating process after applying EDA and Catboost machine learning model;
finally, Section 6 gives the main conclusions.

2. Related Work

The most significant hurdle in employing a fluid bed dryer lies in mitigating the
substantial time and energy consumption associated with completing the process. Follow-
ing the electric energy crises of the 1970s [7], electricity consumption became a topic of
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discussion. Furthermore, it has been established that global electric energy use is quickly
expanding [8], specifically in the pharmaceutical industry, which is a growing field nowa-
days. As a result, every pharmaceutical company seeks to utilize as little electric energy
as possible in many sectors, such as manufacturing fields, packing industrial processes,
and transportation to different hospitals or medical stores [9]. Utilizing advanced analytics
techniques, such as machine learning, enables us to anticipate the electricity consumption
in diverse pharmaceutical manufacturing processes, allowing us to tailor strategies to
specific domains [10]. The accurate prediction of electricity usage holds paramount impor-
tance for decision makers and policymakers within the pharmaceutical industry, given the
energy-intensive nature of its machinery. In the context of increasingly dynamic electricity
markets, where prices are subject to fluctuation, understanding and forecasting electricity
usage becomes even more critical. The ability to predict electricity costs can significantly
impact the bottom line for pharmaceutical manufacturers. Comprehending the expected
electric energy consumption empowers us to envision enhancements in pharmaceutical
manufacturing processes, aiming to reduce electricity usage. This predictive capability,
whether in the short or long term, equips us with insights into energy-saving opportunities
and strategies for optimizing current energy consumption, thus mitigating the potential
impacts of rising electricity prices. With many variables, estimating energy usage is a
problematic manufacturing task [11]. Machine learning models are currently employed in
various fields, since they are beneficial. Machine learning operates similarly to a function
that nicely maps the input data to the output. Machine-learning models can give high-
accuracy predictions for energy usage in the pharmaceutical process or the heating process
in the manufacturing process. As a result, pharmaceutical companies can use them to
enact energy-saving initiatives in different manufacturing domains. For example, machine
learning algorithms can forecast how much electric energy is utilized in a dryer machine in
manufacturing [12]. They can also be used to forecast the future-energy consumption, such
as power or organic gas [13]. Numerous studies have showcased the wide applicability
of machine learning techniques in the pharmaceutical industry [14-18]. For instance, [19]
conducted a comprehensive investigation into the implementation of Artificial Neural
Networks (ANNSs) for the development and formulation of pharmaceutical products us-
ing a Quality by Design approach for tablet formulations. By leveraging historical data,
the researchers were able to gain valuable insights into the intricate interactions between
formulation variables and drug specifications. The study’s conclusions emphasized the
efficiency of neural networks and genetic algorithms in optimizing formulations, ultimately
leading to reduced energy consumption.

3. Proposed Methodology

Figure 2, from left to right, shows the overall approach for data modeling and simulat-
ing. First, a business need and objective have to be clearly agreed—in the present work, the
modeling and optimization of the drying process—due to the high energetic cost and the
evaluation that significant savings can be obtained. Next, the right data have to be captured
in order to satisfy the business objective. This is followed by data exploration/processing,
modeling and finally evaluation of the results [20]. Note that this can, in practice, become
a cyclic processing iterating back from the result evaluation phase to the data collection
phase, or even back to re-evaluate the business need.

e Define business problem: The initial phase of the machine learning workflow in-
volves defining the business problem. The duration of this step varies, ranging from
several days to a few weeks, depending on the complexity of the problem and its
specific application. During this stage, data scientists collaborate with subject matter
experts (SMEs) to gain a comprehensive understanding of the problem. This involves
conducting interviews with key stakeholders, gathering pertinent information, and
establishing overall project goals. In the case at hand, our objective is to minimize the
energy consumption in the fluid bed dryer.
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e  Obtain the data: Once the understanding of the problem is achieved, it is about
obtaining the information identified and available for solving the business problem.
In our case, the data obtained from the fluid bed dryer will be used directly.

e  Explore the data: The next step in the process is exploration data analysis (EDA),
which involves analyzing the raw data. The primary objective of EDA is to delve into
the data, evaluate its quality, identify any missing values, examine feature distributions,
assess correlations, and so on.

e  Create the model: Model creation encompasses various tasks, including dividing
the data into training and testing sets, handling missing values, training multiple
models, fine-tuning hyperparameters, consolidating models, evaluating performance
metrics, and ultimately selecting the optimal model for deployment to forecast our
target variable. In our specific scenario, we aimed to predict the duration required
for the preheating process in order to minimize energy consumption. In this paper,
Catboost machine learning model for optimizing fluid bed dryer energy consumption
is used.

== Define Business Problem

* Problem to be solved

e Get the data

* Check avaliable data

e EXplore the data

e Data cleasing and preparation

e  Create the model

e Define best algorithm

Figure 2. Overall procedure for data analysis and modeling.

Catboost Algorithm Application

Catboost Regression represents a relatively recent and purportedly potent machine
learning algorithm, offering several advantages [21]. In essence, machine learning al-
gorithms are commonly utilized to discern intricate patterns within extensive datasets,
enabling predictions of future behaviors. Catboost specifically leverages gradient boosting
for decision trees. In both regression and classification scenarios, gradient boosting serves
as a machine learning technique that constructs a prediction model by combining multiple
“weak prediction models”, typically decision trees [22]. The fundamental concept revolves
around applying steepest descent steps to a minimization problem, known as functional
gradient descent. The gradient boosting process progressively generates a series of approxi-
mations Ft: Rm—R, witht =0, 1, .., in a step-by-step manner. Each Ft is derived additively
from the previous approximation Ft~!, following the formula: Ft = Ft~! + ocht, where «
represents a step size and function ht: Rm—R, referred to as a base predictor, is selected
from a family of functions H to minimize the expected loss ht. Catboost, in particular,
implements gradient boosting using binary decision trees as the function k(x), defined as

i
h(x) =} bjlirer;)
=
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In Catboost’s implementation, the regions R; represent the disjoint leaves of the
decision tree, and b;l R;} denotes the jth binary variable corresponding to attribute x. One
notable advancement of Catboost is its ability to process mixed data types simultaneously
for model construction. It can handle both categorical inputs (converted to numbers) and
numerical inputs effectively. Additionally, two of its strong features are (i) the default hyper-
parameters, which require minimal tuning and perform well across various data scenarios,
and (ii) its built-in mechanism for auto-correction, which helps prevent overfitting. When
applying Catboost to the data, certain measures were taken to address concerns about
model size and memory consumption by setting specific meta-parameters:

RAM limit—a limit value was set to restrict memory usage.
Max_ctr_complexity—it was assigned a value of 1 or 2 to control the complexity of
interactions. The default value is 4.

e  Model_size_reg—a larger value was assigned to penalize heavy combinations.

It is worth noting that memory usage currently remains a significant limitation of
Catboost. Catboost demands that all data be immediately accessible in memory for quick
random sampling, unlike stochastic gradient and neural network models. An additional
critical concern is the sensitivity of Catboost to hyper-parameters and the significance of
conducting hyper-parameter tuning. These factors can be influenced by the Big Data envi-
ronment, such as the Apache Spark distributed framework [23]. Further details regarding
hyper-parameter tuning will be provided later in the study. When dealing with extremely
large datasets, an approach to address this challenge involves fitting the Catboost model
to a representative sample using the Catboost Python API. Subsequently, the model can
be applied to the larger dataset using Apache Spark or Hadoop with the aid of Catboost’s
Java API. This methodology enables the efficient processing of massive datasets within the
distributed computing environment.

4. Methodology Applied to Fluid Bed Dryer
4.1. Fluid Bed Dryer

The fluid bed drying machine utilized in this study is the Fielder Aeromatic MP,
located within a pharmaceutical manufacturing plant in Spain, as depicted in Figure 3.
This machine is equipped with 56 sensors controlled by Programmable Logic Controller
(PLC), and the SCADA (Supervisory Control And Data Acquisition) system, which enables
operators to monitor and adjust essential parameters, such as the inlet air temperature
and air flow. Three critical parameters significantly impact the efficiency of the drying
process and, consequently, can influence the final product’s quality. These parameters are
temperature, humidity, and air flow. In theory, a higher inlet air temperature and flow
rate lead to a shorter drying time. However, it is essential to configure each of these three
parameters correctly, depending on the specific product type, to prevent quality issues
and degradation of the final product post-drying. Notably, it is crucial to ensure that the
inlet air temperature does not exceed the critical temperature of the product to be dried,
as surpassing this threshold could jeopardize its quality and pharmaceutical properties.
Careful monitoring and regulation of these parameters are vital to maintaining product
integrity and achieving desired outcomes during the drying process.

In this process, the operator utilizes SCADA to monitor the increase in outlet air
temperature during the product drying phase. It is essential to note that when the product
is completely dried, the outlet air temperature aligns closely with the inlet air temperature.
At this critical point, the operation must be halted promptly to avoid jeopardizing the
product’s quality and prevent the unnecessary consumption of time and energy, leading
to increased process costs. As the fluid bed drying machine lacks sensors to indicate the
optimal temperatures for different drying phases (preheating, drying, and cooling), human
operators typically rely on fixed time durations for these phases. However, the preheating
phase may vary in time depending on the operator’s experience with the machine. During
the preheating phase, the fluid bed dryer contains no drug product; instead, it receives
hot air for machine preheating. Once preheating is complete, operators introduce the drug
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product to initiate the drying phase. During drying, operators take samples to analyze
various chemical parameters. After drying, the cooling process commences. Once all
three phases are finished, the fluid bed dryer undergoes cleaning before a new batch is
processed. Overall, continuous monitoring of the outlet air temperature through SCADA is
crucial to ensure the preheating process is controlled effectively and prevent unnecessary
energy consumption.

Figure 3. Fluid bed dryer Fielder Aeromatic.

4.2. Data Collection

For this study, a fluid bed dryer machine was used, which is presently operational in
a real pharmaceutical plant belonging to a multinational company in Spain. This machine
typically handles one to two batches of pharmaceutical drug granules each day, with each
batch comprising approximately 150 kg of drug mixed with 25 kg of alcohol and 10 kg
of another excipient before entering the fluid bed dryer. The fluid bed dryer is equipped
with 56 sensors that measure several parameters, including inlet/outlet air temperature,
air flow (m3/h), motor rotation speed (rpm), air pressure (Pa), and others. Each sensor
records data at a minute-by-minute interval. A dataset covering a year and a half of data
has been accumulated, comprising more than 700,000 readings for each of the 56 signals.
Data collection was accomplished through a Programmable Logic Controller (PLC) and
stored in a SCADA system. These datasets served as the foundation for our subsequent
analysis and optimization of the fluid bed drying process. Table 1 shows a sample from
the fluid bed dryer sensors, including a description for each signal, the minimum and
maximum value and their units of measure.

Some of these sensors are involved in different processes, such as granulation (column
PMA), drying (column TSG) or cleaning (column CIP). For the exploration phase, be the
sensors involved just in the drying process were selected (column TSG), but, as it will be
explained in next section, for the data modeling, all of these were selected, to simulate
a real situation where it would not able to differentiate which sensor belongs to which
phase. Figure 4 illustrates the SCADA interface utilized by operators to interact with the
machine, providing functionalities such as starting/stopping the controller and displaying
indicators for the inlet air temperature, inlet air flow, and more. To conduct our analysis, the
data from SCADA was exported into a tabular format comprising over 700,000 rows and
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56 columns, containing the recorded information from the various sensors and parameters
of the fluid bed dryer. This comprehensive dataset was the basis for our further exploration

and optimization of the fluid bed drying process.

Table 1. Fluid Bed Dryer sensors.

Item TagName (Symbol) Description Min Max Units PMA TSG CIP

1 FS3_GEA_EIS1200_ME Impeller power [Kw] 0 300 Kw X

2 FS3_GEA_EOP_GP Current EOP in GP 0 1000 None X

3 FS3_GEA_EOP_MP Current EOP in MP 0 1000 None X

4 FS3_GEA_FIC1217_ME Liquid flow rate in GP [c]/min] 0 833 cl/min X

5 FS3_GEA_FIC1217_XS Liquid flow setpoint in GP [c]/min] 0 833 cl/min X

6 FS3_GEA_FIC200_ME Air flow [m3/h] 0 4500 m3/h X

7 FS3_GEA_FIC200_XS Air flow setpoint [m3/h] 0 4500 m3/h X

8 FS3_GEA_FIC701_ME Spray liquid flow in MP [cl/min] 0 667 cl/min X

9 FS3_GEA_FIC701_XS Spray liquid flow rate setpoint in MP [cl/min] 0 667 cl/min X

10 FS3_GEA_LI940_ME Cleaning water tank level [L] 0 500 L X
11 FS3_GEA_MIS213_ME Inlet air humidity [g/Kg] 0 250 g/Kg X

12 FS3_GEA_NFGP No. Current phase in execution in GP 0 1000 None X

13 FS3_GEA_NFMP No. Current phase in execution in MP 0 1000 None X

14 FS3_GEA_NFW No. Current cleaning phase in execution 0 1000 None X
15 FS3_GEA_NW No. Current cleaning in execution 0 1000 None X
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Figure 4. Fluid bed dryer SCADA.
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On the SCADA screen, the status of the station in detail can be seen, including the
values of the sensors and valves, for example the temperature or pressure, and in the upper
right, it shows the state of the fluid bed dryer, what process it is carrying out and what state
each of them is in (granulating, drying or cleaning). For example, when steam is added
to the fluid bed dryer to control the humidity of the air that is introduced into the dryer,
if the humidity is very low, more steam is added to increase it. The air that is introduced
into the dryer allows us to control both the temperature and its humidity. The pressure
of the dryer is indicative of the clogging of the filters: if there is a big difference between
the internal pressure and the output pressure, it means that it has dirty filters, and you
need to clean them. The SCADA records and monitors the operating status of the fluid
bed dryer in its operating modes and states and the duration of these and the registers of
the analog parameters involved. Taking into account the drying process and how the fluid
bed machine works, four sensors were selected for the exploration analysis. The signals
recorded by the different sensors in the fluid bed dryer were as follows:

e Fan motor: this signal indicates whether the fluid bed dryer is currently running (ON)
or turned off (OFF).

e Air flow: This signal represents the quantity of air flowing into the fluid bed dryer,
measured in cubic meters per hour (m3/h). The machine operator configures this
parameter. Monitoring the air flow helps distinguish between the preheating and
drying phases, as both processes require air to be completed.

e Inlet air temperature: this signal indicates the initial temperature of the air entering
the fluid bed dryer, and it is set by the machine operator at the start of the process.

e Outlet air temperature: this signal indicates the temperature of the air leaving the fluid
bed dryer.

During the operation of the fluid bed dryer and the commencement of the hot air inlet
process, it is essential to consider the heat absorbed by the machine to reach the preheating
temperature. The temperature difference between the outlet air temperature and the inlet
air temperature helps determine the amount of heat absorbed by the fluid bed dryer. When
the machine reaches a point where it cannot absorb more heat, the inlet air temperature
will become similar to the outlet air temperature. To better understand the behavior of the
process, the temperature difference of the air inlet and outlet of the machine was utilized,
denoted as TAp, which is defined in Equation (1):

TAp = TAs — TA.. (1)

where TA; represents the outlet air temperature, TA, represents the inlet air temperature,
and TAp represents the temperature difference.

5. Experimental Results
5.1. Exploratory Data Analysis

The dataset used for machine learning analyses is the same that was used for the
exploratory data analysis. It includes various parameters related to the fluid bed dryer’s
operation, such as the inlet and outlet air temperatures, airflow rate, and the phase number
the machine is in (preheating, drying, or cooling). Information from over 200 batches of
dried drug product, covering a span of 18 months of production, was also accessible for
analysis. The variables used in the current study were the following:

e  The phase indicator takes values 1, 2, or 3, representing the current phase of the fluid
bed dryer. Phase 1 indicates preheating, Phase 2 is the drying phase, and Phase 3
indicates cooling after the drying process.

e  The inlet air temperature sensor represents the temperature at which the air enters the
machine during any of the three phases (preheating, drying, or cooling).

e  The outlet air temperature signal corresponds to the temperature at which the air
leaves the machine.

e  The inlet airflow sensor indicates the volume of air supplied by the machine’s fan.
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e  The fan motor signal is useful for determining when the machine is active during any

of the three phases, indicating the fan motor’s movement.

In the next step of the analysis, random days will be selected to observe the behavior
of the machine signals during the preheating, drying, and cooling processes for each batch
of pharmaceutical product processed. The primary goal of this exploration is to identify
trends and gain a better understanding of fluid bed dryer processes, with the objective
of identifying opportunities for improvement. Figure 5 visually depicts the behavior of
the signals on different days, representing a full day of fluid bed dryer operation. The
x-axis represents the elapsed time for one day of fluid bed dryer operation (1440 min,
corresponding to 24 h), while the y-axis indicates the difference in temperature between
the machine’s inlet and outlet air. The blue dots indicate the preheating process, the orange
dots represent the drying process, and the green dots represent the cooling process.
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Figure 5. Plot of the drying steps.

Figure 6 shows a sample of 4 different days taken randomly, where it can be observed
that some days, the fluid bed dryer processed one batch, and other days two batches, with
an average of around 350 min per batch. In the figure dated 2 December 2019, there are
two batches that were processed, and if looking at the blue dots, it can be seen that the
preheating process lasted much longer in the two batches, compared to the duration of the
preheating process; for example, on 7 October 2018, the blue dots were much smaller and
the temperature difference, the y-axis, did not exceed 10 degrees. It can also be observed
that the duration of the drying process, the orange dots, was more or less homogeneous,
and lasted approximately the same for all the days and all the batches (x-axis); as well as
this, the temperature differences were approximately similar (y-axis). As a conclusion, it is
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evident from the data that the duration of the preheating process exhibits variability. To
preheat the fluid bed dryer, some batches take a longer time preheating the machine than
others, with the consequent unnecessary consumption of energy.
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Figure 6. Example of 4 different days of batch drying. Above each figure is plotted the date of the
batch (1.0 Preheating, 2.0 Drying, 3.0 Cooling).

5.1.1. EDA Timing Savings Analysis

In Figure 7, it can be observed for the 200 batches analyzed how many minutes on
average the fluid bed dryer was used to perform the preheating process. Each blue line
indicates, for each individual batch, the time taken to complete the preheating process in
the fluid bed dryer. The variability in the preheating duration is attributed to the manual
operation of the process, as it relies on the operator’s discretion to start and finish the
preheating phase; considering the age of the machine, the machine is kept for preheating
less than 50.1 min, whereas other times, the machine is kept preheating for up to 180.3 min.
The fluid bed dryer is initially set up with hot air inlet at 45 degrees and airflow 2000 m3/h.
However, the fluid bed dryer does not have any sensor notifying when the machine is
warm enough to introduce the drug product and start the drying process. The brown line
in the graph indicates the average that was 99.7 min to complete the preheating process.

To summarize, this indicates again the opportunity to harmonize the preheating process
by establishing an optimum preheating time, and potentially, to be able to reduce the
preheating process time, and consequently reduce the fluid bed dryer energy consumption.

5.1.2. EDA Energy Savings Analysis

Figure 8 shows the variability of analyzing the energy consumption used to complete

the preheating process for each batch in the fluid bed dryer. The energy consumption EC,
was calculated using Equation (2):

ECy, = Batchyx Cpm 2)

where Batch; is the time consumed by the fluid bed dryer for preheating the batch, and
Cpm corresponds to the fluid bed dryer energy consumption per minute. The fluid bed
dryer currently consumes 18.5 kWh during the preheating process; this means that for each



Electronics 2023, 12, 4325

11 0f 16

minute it consumes 0.31 kWh (18.5 kWh/60 min = 0.31 kWh). If the preheating process
may take between 50.1 and 180.3 min, the fluid bed dryer consumes between 15.5 kWh and
55.8 kWh for preheating the machine to dry one batch of drug product.
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It can be observed that some batches needed 55.8 kWh; however, other batches needed
less than 15.5 kWh, which means in some cases around 72.2% less energy consumption
for some batches. The brown line indicates the average consumption for the 200 batches,
around 30.9 kWh. This indicates important potential energy savings if the preheating
process in the fluid bed dryer is optimized. To calculate the potential energy savings of the
fluid bed dryer during the preheating process for each batch, a machine learning model
was implemented, as discussed in the next chapter, to predict when the right time was to
stop the process, and therefore, consume just the energy needed for preheating the fluid
bed dryer.

5.2. Catboost Machine Learning Model Analysis

As described in this section, a Catboost model was selected and executed using the
historical data obtained from the activity of the fluid bed dryer process in the production
plant. Due to the fluid bed dryer’s age, one of the primary problems is that it does not
have sensors that can detect whether the air within is at the right temperature to conclude
the preheating process. From the perspective of data modeling, the issue has a number of
intriguing characteristics:

e Due to the inclusion of 56 sensors, there are a large number of possible inputs (700.000 rows
and 3 GB data).

e  There are a lot of manufacturing batches, more than 200, but the machine does not keep
track of when the preheating operation starts or ends. As a result, the deduction is
carried out using the machine’s air inlet and output as well as temperature differences.

e The goal is to interpret the estimated model in a way that can reveal the factors that
influence the air inlet- and outlet-temperature differential curves. Using this method,
it is possible to estimate how long the preheating process will take.

To estimate the preheating time conceptually, a function model f (i) was constructed
using the data of a matrix X, which contained the data taken from the fluid bed dryer. In
order for the operators to know when it is best to cease the machine’s preheating operation
and so save energy, the information present in the machine learning model was used to
anticipate the estimated preheating time for each batch. The time remaining for the fluid
bed dryer to finish preheating (based on the inlet-outlet temperature disparities) was the
predicted output from our model. Data preprocessing techniques were used on the input
dataset to remove unnecessary information, such as missing values, in preparation for
future analysis. The first step to select the most suitable model was to split the dataset
into training and testing data. This technique is used for evaluating the performance of a
machine learning algorithm. It can be used for classification or regression problems and
can be used for any supervised learning algorithm. The process consists of taking a dataset
and dividing it into two subsets. The first subset is used to fit the model and is referred
to as the training dataset. The second subset is not used to train the model; instead, the
input element of the dataset is provided to the model, then predictions are made and
compared to the expected values. This second dataset is referred to as the test dataset.
The objective of splitting the dataset into train and test is to estimate the performance of
the machine learning model based on new data that will be captured directly from the
fluid bed dryer, namely, to fit it on available data with known inputs and outputs, then
make predictions on new examples in the future where there are not the expected output
or target values. The train—test procedure is appropriate when there is a sufficiently large
dataset available, which means that there are enough data to split the dataset into train
and test datasets and each of the train and test datasets are suitable representations of the
problem domain. To perform the evaluation and selection of the best-fit algorithm for the
fluid bed dryer process, the Python libraries were used. The same dataset was injected in
the different algorithms. The dataset contained 18 months data coming from the 56 sensors
of the fluid bed dryer, and the values represented the average of 10-fold cross validation
(partitioning of the dataset into 10 parts, 9 for train and one for test, then rotating 10 times
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to obtain different combinations of partitions). The results of the most relevant algorithm’s
evaluation are shown in Table 2.

Table 2. Benchmarking outcomes of various machine learning algorithms on the dataset.

Model MAE MSE RMSE R2

CatBoost Regressor 8.3507 144.1894 11.8781 0.6806
Light Gradient Boosting Machine 9.3655 168.9438 12.8561 0.6285
Extreme Gradient Boosting 9.3243 188.3094 13.3581 0.5845
Random Forest Regressor 10.6074 195.4555 13.8601 0.5616
Gradient Boosting Regressor 10.6236 211.7174 14.3607 0.5365
K Neighbors Regressor 13.3827 301.5125 17.1741 0.3466
AdaBoost Regressor 14.2045 297.2756 17.1463 0.3375
Orthogonal Matching Pursuit 16.1283 402.0394 19.9813 0.1090
Lasso Regression 16.3557 407.1744 20.0864 0.1020
Elastic Net 16.6512 412.9383 20.2066 0.0947
Bayesian Ridge 16.6316 420.1060 20.3491 0.0779
Decision Tree Regressor 14.0376 411.2750 19.9699 0.0285
Ridge Regression 16.4399 450.6532 21.0216 0.0156

Based on Table 2, the Catboost Regressor has the lowest MAE of 83.507 and the lowest
RMSE of 118.781, indicating that it has the best predictive accuracy compared to the other
models. It also has the highest R2 value of 0.6806, indicating that it can explain about
68.06% of the variance in the target variable. The Light Gradient Boosting Machine has the
second-best performance, with slightly higher MAE and RMSE values than the Catboost
model, and an R2 value of 0.67. The Extreme Gradient Boosting, Random Forest Regressor,
and Gradient Boosting Regressor models have higher MAE, MSE, and RMSE values and
lower R2 values than the Catboost and Light Gradient Boosting models, indicating that they
may not perform as well on this specific dataset, the same as the rest of the models. To select
the best metric for the Catboost algorithm, the nature of the problem and the evaluation
criteria was considered. To measure the proportion of variance in the target variable that
can be explained by the model, R2 was the most suitable metric. MAE was discarded
because it focuses on minimizing the average absolute difference between predicted and
actual values, and MSE or RMSE penalize larger errors more than smaller errors.

5.2.1. Time Duration Analysis

In Figure 9, the real duration of the preheating process per month from the historical
dataset can be seen in blue. This duration is measured in minutes and represents the average
of the time spent by the process for the whole month. This measure was performed for
the 200 batches evaluated during 18 months. The results show that the preheating process
duration varied from one month to another and fell between 88.5 and 110.6 min, depending
on when the optimal temperature difference in—out was reached. The average duration of
the 200 batches during the 18 months was around 99.7 min. This key information allowed
us to calculate the real consumption of the preheating process. Figure 9 also shows the
Catboost prediction duration of the preheating process. It can be observed how for the
200 batches, during 18 months of evaluation, the predicted time was always lower than
the real time. The reduction in the predicted time was significant, ranging from 34.7 min
(39.2% time reduction) in the month of December 2018 to 66.0 min (59.68.2% reduction) in
the month of October 2018. The optimal time predicted by the algorithm corresponded
to an average per month between 42.5 and 59.5 min, with an average of 49.4 min. The
average predicted time reduction was 50.3 min. Therefore, the duration of the process can
be reduced on average by 50.45%.
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Figure 9. Time duration for preheating process comparing real duration with Catboost prediction.

5.2.2. Energy Saving Analysis

In Figure 10, the real energy consumption of the preheating process per month from
the historical dataset can be seen in blue. This energy consumption is measured in kWh
and represents the average of the energy spent by the process for the whole month per
batch. This measure was performed for the 200 batches, evaluated over 18 months. The
results show that the real preheating-process energy consumption varied from one month
to another and fell between 27.1 kWh and 34.3 kWh per batch every month, depending
on when the optimal temperature difference in-out was reached. The average energy
consumption of the 200 batches as 30.9 kWh per batch.

Figure 10 shows also the Catboost prediction energy consumption of the preheating
process. It can be observed how for the 200 batches, during the 18 months of evaluation,
the predicted energy consumption was always lower than the real energy consumption.
The reduction in the predicted energy consumption was significant, ranging from 10.8 kWh
(39.8% energy reduction) in the month of December 2018 to 20.5 kWh (59.76% energy
reduction) in the month of October 2018.

The optimal energy consumption predicted by the algorithm per batch corresponded
to on average between 13.2 kWh and 18.4 kWh. The average predicted energy reduction was
15.6 kWh. Consequently, the reduction in energy consumption predicted by the algorithm,
to complete the prehearing process, represented 50.48% less energy. The total energy saving
was calculated using Equation (3), with Nbatches being the number of batches and ESj, the
energy saved per batch.

ES; = Nbatchesx ES,, 3)

Based on Figure 9, there is a potential saving of 50.3 min per batch each time the fluid
bed dryer is preheated. This means a saving of around 15.6 kWh per batch (50.3 min x
0.31 kWh). If the fluid bed dryer processes approximately 200 batches per year, based on
the current estimation, then the annual potential energy savings could be approximately
3.120 kWh when applying Equation (3).
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6. Conclusions

This paper introduced an exploration data analysis methodology tailored for the anal-
ysis and optimization of a large-scale drug production process, and a Catboost machine
learning model implementation, specifically focusing on the preheating stage of pharma-
ceutical granules using a fluid bed dryer. As a conclusion drawn from the exploratory data
analysis of the signals, it can be stated that the preheating phase lasts longer than necessary.
Some batches need less than 50.1 min to complete the preheating process; however, there
are batches that take up to 180.3 min. In terms of energy consumption, this means that for
some batches, the fluid bed dryer consumes 15.5 kWh, and for others it consumes 55.8 kWh,
which could represent savings, in some cases, of 72.2% of energy. In addition, the most
suitable model for the fluid bed dryer prediction process was selected based on the current
dataset obtained from the activity of the fluid bed dryer process in the production plant.
First, several models, including Catboost, Elastic net, Random Forest or Linear Regression,
were compared. Catboost was selected because it provided the lowest error and, at the
same time, the highest R2, as it has been described in previous sections. Once the model
was selected, the analysis of the historical dataset, with 200 batches from 18 months of
production, was performed. It has been shown that the model is able to predict on average
a reduction of 50.45% of the preheating process duration and up to 59.68% in some cases.
Likewise, the energy consumption of the fluid bed dryer for the preheating process could
be reduced on average by 50.48% and up to 59.76%, which results on average in around
3.120 kWh of energy consumption savings per year.
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