Design and Analysis of the Model Based Control System for an MRE Axisymmetric Actuator
Abstract
:1. Introduction
2. Model
3. Control Algorithm
3.1. Linear State Observer
3.2. Linear Extended State Observer
3.3. PD Controller
3.4. Stability Analysis
4. Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Li, J.; Li, W.; Du, H. A state-of-the-art review on magnetorheological elastomer devices. Smart Mater. Struct. 2014, 23, 123001. [Google Scholar] [CrossRef]
- Böse, H.; Gerlach, T.; Ehrlich, J. Magnetorheological elastomers—An underestimated class of soft actuator materials. J. Intell. Mater. Syst. Struct. 2021, 32, 1550–1564. [Google Scholar] [CrossRef]
- Bernat, J.; Gajewski, P.; Kołota, J.; Marcinkowska, A. Silicone-Based Membranes as Potential Materials for Dielectric Electroactive Polymer Actuators. Energies 2022, 15, 6324. [Google Scholar] [CrossRef]
- Guan, R.; Zheng, H.; Liu, Q.; Ou, K.; Li, D.-s.; Fan, J.; Fu, Q.; Sun, Y. DIW 3D printing of hybrid magnetorheological materials for application in soft robotic grippers. Compos. Sci. Technol. 2022, 223, 109409. [Google Scholar] [CrossRef]
- Bernat, J.; Superczynska, P.; Gajewski, P.; Marcinkowska, A. Magnetorheological Axisymmetric Actuator with Permanent Magnet. arXiv 2022, arXiv:2210.15968. [Google Scholar] [CrossRef]
- Ashour, O.; Rogers, C.A.; Kordonsky, W. Magnetorheological Fluids: Materials, Characterization, and Devices. J. Intell. Mater. Syst. Struct. 1996, 7, 123–130. [Google Scholar] [CrossRef]
- Hendricks, E.; Jannerup, O.; Sørensen, P. Linear Systems Control: Deterministic and Stochastic Methods; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Huang, Y.; Xue, W. Active disturbance rejection control: Methodology and theoretical analysis. ISA Trans. 2014, 53, 963–976. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.; Yau, S.T.; Gao, Z. Optimal fast tracking observer bandwidth of the linear extended state observer. Int. J. Control 2007, 80, 102–111. [Google Scholar] [CrossRef]
- Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Herbst, G. A Simulative Study on Active Disturbance Rejection Control (ADRC) as a Control Tool for Practitioners. Electronics 2013, 2, 246–279. [Google Scholar] [CrossRef]
- Pazderski, D.; Patelski, R.; Krysiak, B.; Kozłowski, K. Analysis of an Impact of Inertia Parameter in Active Disturbance Rejection Control Structures. Electronics 2020, 9, 1801. [Google Scholar] [CrossRef]
- Patelski, R.; Pazderski, D. Improving the Active Disturbance Rejection Controller Tracking Quality by the Input-Gain Underestimation for a Second-Order Plant. Electronics 2021, 10, 907. [Google Scholar] [CrossRef]
- Haroon, S.I.A.; Qian, J.; Zeng, Y.; Zou, Y.; Tian, D. Extended State Observer Based-Backstepping Control for Virtual Synchronous Generator. Electronics 2022, 11, 2988. [Google Scholar] [CrossRef]
- Łakomy, K.; Michałek, M.M. Robust output-feedback VFO-ADR control of underactuated spatial vehicles in the task of following non-parametrized paths. Eur. J. Control 2021, 58, 258–277. [Google Scholar] [CrossRef]
- Cheng, Y.; Dai, L.; Li, A.; Yuan, Y.; Chen, Z. Active Disturbance Rejection Generalized Predictive Control of a Quadrotor UAV via Quantitative Feedback Theory. IEEE Access 2022, 10, 37912–37923. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.; Li, L.; Liu, H. An Enhanced Nonlinear ADRC Speed Control Method for Electric Propulsion System: Modeling, Analysis, and Validation. IEEE Trans. Power Electron. 2023, 38, 4520–4528. [Google Scholar] [CrossRef]
- Shi, S.; Guo, L.; Chang, Z.; Zhao, C.; Chen, P. Current Controller Based on Active Disturbance Rejection Control With Parameter Identification for PMSM Servo Systems. IEEE Access 2023, 11, 46882–46891. [Google Scholar] [CrossRef]
Name | Parameter | Value | Unit |
---|---|---|---|
nonlinear gain | −0.08241 | mm V−1 | |
linear gain | k | 0.77 | 1 |
zero | 0.18 | ||
pole | 0.14 | ||
decay rate | 32.91 | ||
angular frequency | 218.98 | rads−1 |
Observer | ωc (rads−1) | Delay | Gain Margin | Phase Margin |
---|---|---|---|---|
LSO | 100 | 0 | 1.78 | 56.11 |
LSO | 100 | 2 | 1.76 | 53.03 |
LSO | 200 | 0 | 7.41 | 78.30 |
LSO | 200 | 2 | 2.11 | 44.61 |
LESO | 100 | 0 | 1.78 | 55.71 |
LESO | 100 | 2 | 1.76 | 52.62 |
LESO | 200 | 0 | 7.40 | 78.25 |
LESO | 200 | 2 | 2.10 | 44.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czopek, P.; Bernat, J. Design and Analysis of the Model Based Control System for an MRE Axisymmetric Actuator. Electronics 2023, 12, 4386. https://doi.org/10.3390/electronics12214386
Czopek P, Bernat J. Design and Analysis of the Model Based Control System for an MRE Axisymmetric Actuator. Electronics. 2023; 12(21):4386. https://doi.org/10.3390/electronics12214386
Chicago/Turabian StyleCzopek, Paweł, and Jakub Bernat. 2023. "Design and Analysis of the Model Based Control System for an MRE Axisymmetric Actuator" Electronics 12, no. 21: 4386. https://doi.org/10.3390/electronics12214386
APA StyleCzopek, P., & Bernat, J. (2023). Design and Analysis of the Model Based Control System for an MRE Axisymmetric Actuator. Electronics, 12(21), 4386. https://doi.org/10.3390/electronics12214386