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Abstract: The magnetorheological elastomer membrane is an interesting kind of smart material that
is gaining new innovative applications. This work is focused on the design of the control system for
magnetorheological elastomer actuators. In general, the plant is characterized by fast oscillations and
slow drift. Therefore, controllers utilize the described features to obtain the solution aimed at, which
makes them unique. We analyze two approaches based on output feedback with state estimation.
The control algorithms have different observers to estimate the state. The first is a Linear Extended
State Observer, which is applied to reject the disturbances in a case with a simple model. The second
is a Linear State Observer, which is used to estimate a state based on the plant model. Furthermore, in
both cases, we have the same proportional-derivative controller after decoupling the dynamics. The
main goal of the paper is to examine both controllers for the magnetorheological actuator. Therefore,
the designed control systems are verified in a series of experiments.

Keywords: active disturbance rejection control; magnetorheological elastomer membrane; state
estimation; smart actuator

1. Introduction

The magnetorheological elastomers are widely used in control systems and robotics
to create advanced actuators and sensors [1,2]. The material is well known in the design
process of isolators and vibration absorbers [1]. However, recently, interesting new actuators
have also been created with this material. In papers [2,3], applications of haptic devices,
valves, or pumps are shown. There are also applications in robotics such as gripper [3,4].

The purpose of this work is to analyze the control system for the MRE axisymmetric
actuator. The actuator, which was presented in work [5], is based on a magnetorheological
membrane. The membrane properties were recently deeply studied, for instance in the
works [2,3]. Compared to the magnetorheological fluid [6], which is in a liquid state,
the magnetorheological elastomer is a membrane. Its main features are its softness and
responsiveness to a magnetic field. Therefore, it is possible to create a device controlled by
a magnetic field. The device presented in work [5] transforms magnetic energy into dis-
placement. It also uses a permanent magnet to increase the range of movement. To improve
the performance of the device, designing a control system was required.

The control problem of a nonlinear plant with single input and single output is a typi-
cal problem for actuators. One solution is to apply standard algorithms like PID controllers.
Another possibility is to use a Linear State Observer like a Luenberger Observer with a feed-
back controller [7]. Due to the wide range of robustness to unknown dynamics, the Active
Disturbance Rejection Control (ADRC) has becomes popular [8–13]. It consists of an ex-
tended state observer, which was successfully applied to many problems [14] and feedback
controllers. Another well-analyzed solution is to apply a Linear Extended State Observer
(LESO) and linear feedback controller with disturbance rejection. The disturbance signal
caused by external and internal imperfections is estimated by an extended variable in the
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observer and then applied to the controller to decouple disturbances. The ADRC approach
has been successfully applied to multiple control problems in recent times. For example,
in the work [15], the path-following controller has been designed for underactuated vehi-
cles. The work [16] shows the application of ADRC in a Quadrotor UAV, and works [17,18]
describe an electric machine ADRC system control.

In this work, two schemes of the MRE axisymmetric actuator are analyzed. The main
objective of the work is to obtain the controllers for the MRE axisymmetric actuator. The con-
trollers are designed based on the output feedback with state estimation. In this work, we
use two different approaches. In the first, the reduced model is used to create an ADRC
controller based on the LESO. In the second, the full model is applied to create a state
feedback controller with a Lueneberger Observer as the Linear State Observer. In both
controllers, the compensator is used to decouple dynamics and to apply the PD controller.
To show the properties of both controllers, a wide range of experiments are performed with
multiple tuning parameters.

2. Model

In the presented work, a control system with MRE axisymmetric actuator is analyzed.
The actuator is based on the soft magnetorheological elastomer with an attached permanent
magnet as shown in work [5]. The plant is controlled by an electromagnetic field created
by an electromagnet with controlled input voltage. The output is the displacement of the
membrane center. In work [5], it is shown that the plant model can be described by the
Hammerstein model. The linear part of the model can be split into fast and slow dynamics.
The model has a third order with a relative degree of 2 and it is described by:

Y(s) = G f ast(s)Gslow(s)V(s) + D(s)

v(t) = fnlr(u(t))
(1)

where Y(s) is the output, U(s) is the input, G f ast(s) is the transfer function of the fast
dynamics, Gslow(s) is the transfer function of the slow dynamics and fnlr(u) describes the
input nonlinearity of the system and D(s) describes external disturbances. The transfer
function details are as follows:

Gslow(s) =
s + z0

s + s0

G f ast(s) =
k
(
α2 + ω2)

s2 + 2αs + α2 + ω2

(2)

In this work, the controllers are designed based on two different models. In the first,
the linear model with slow and fast dynamics is taken into account and the non-linearity is
replaced by static gain:

Y(s) = G1(s)U(s) + D1(s)

G1(s) = knlrG f ast(s)Gslow(s)
(3)

where knlr is static gain linearizing fnlr(u). The disturbance term d1(t) expresses unmod-
elled dynamics and external disturbances. Now, the model in state space form is given by:

ẋ1 = x2

ẋ2 = a21x1 + a22x2 + a23xv + b1u + d1

ẋv = a31x1 + a33xv

y = x1

(4)
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where the parameters aij and b are based on the transfer function knlrG f ast(s)Gslow(s).
The parameters of model (6) are as follows:

b1 =knlrk
(

α2 + ω2
)

a33 =− z0

a31 =a33

a22 =− a33 − s0 − 2α

a21 =a33a22 − 2αs0 −
(

α2 + ω2
)

a23 =
a21a33 −

(
α2 + ω2)s0

a31

(5)

The model can be also represented in the matrix form:

ẋS = ASxS + BSu + d1

y = CxS
(6)

where:

AS =

 0 1 0
a21 a22 a23
a31 0 a33

 BS =

 0
b1
0


C =

[
1 0 0

]
d1 =

[
0 d1 0

]T

xS =
[
x1 x2 xv

]T

(7)

In the second model, only the fast dynamics are taken into account, so the model is
given by:

Y(s) = G2(s)U(s) + beD2(s)

G2(s) = knlrG f ast(s)
(8)

where d2 is the disturbance in the reduced model and be is a gain of disturbance.
It is worth mentioning that Gslow(s) represents slow dynamics; hence, its influence can

be effectively estimated by the extended observer. The model G2(s) is only second order
and it can be represented in state space form:

ẋ1 = x2

ẋ2 = a1x1 + a2x2 + b2u + bed2

y = x1

(9)

where the parameters of model (9) are equal to:

a1 = −α2 −ω2

a2 = −2α

b2 = knlrk
(

α2 + ω2
) (10)

In our work, we use the LESO to observe the disturbance d2, so the extended state is
introduced:

ẋ1 = x2

ẋ2 = a1x1 + a2x2 + b2u + bexe

ẋe = ḋ2

y = x1

(11)
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The second model is also represented in the state space form:

ẋE = AExE + BEu + d2

y = CxE
(12)

where:

AE =

 0 1 0
a1 a2 be
0 0 0

 BE =

 0
b2
0


d2 =

[
0 0 ḋ2

]T

xE =
[
x1 x2 xe

]T

(13)

In both models described by (6) and (12), x1 is the position and also the output is y,
x2 is the velocity and u is the input voltage. The difference is in the number of parameters
required to identify and interpret the third state. In model (6), xv represents the process
of membrane relaxation (the change in force due to the relaxation of force in silicone).
In model (12), xe is the extended state estimating the distribution of unmodeled dynamics.

3. Control Algorithm

Two control algorithms will be described in this section. The first algorithm is based
on a feedback regulator with a Linear State Observer. The second algorithm is Active
Disturbance Rejection Control based on the Linear Extended State Observer. Models from
the previous section are applied to construct the control laws. Both algorithms have the
same general block diagram structure, which is shown in Figure 1. The main parts of the
control system are the plant, the observer and the controller. The plant has a single input
u (voltage applied to electromagnet) and single output y (output distance). The reference
signal is specified as:

xr =
[

x1r x2r
]T

=
[

yr ẏr
]T . (14)

where yr is the reference signal (output distance) and ẏr is its derivative. The controller is
based on a Proportional Derivative regulator. The main difference between the algorithms
is the state observer.

MRE actuator

State observer

Controller
y(t)

y(t)

u(t)

u(t)

x̂(t)

xr(t)

Figure 1. The schema of the control system.

3.1. Linear State Observer

The Linear State Observer is implemented using the model presented in (6). It is based
on the Luenberger Observer:

˙̂xS = ASx̂S + BSu + LS(ŷ− y) (15)
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where x̂S is estimated state, LS is observer gain, AS and BS are the plant model defined in (6).
Luenberger Observer’s gains LS are calculated to make the matrix eigenvalues AS − LSC
described by polynomial (s + ωo)

3. The calculated elements LS have the following form:

ls1 = 3ωo + a22 + a33

ls2 = 3ω2
o + a21 − a22a33 + a22ls1 + a31ls1

ls3 =
1

a23

(
ω3

o − a21a33 + a33ls2 − a22a33ls1

)
+ a31

(16)

where ωo is the cut-off angular frequency selected by the designer.
We use the estimated state to compensate for disturbance and unknown dynamics for

which we define the following control law:

u =
1
b1
(u∗ − a21x1 − a22 x̂2 − a23 x̂v) (17)

where u is the control signal applied to the plant and u∗ is the PD controller signal.

3.2. Linear Extended State Observer

In the second control algorithm, we used the Linear Extended-State Observer (LESO) to
estimate plant state with extended state represent disturbance. The LESO can be written as:

˙̂xE = AEx̂E + BEu + LE(ŷ− y) (18)

We use the Linear Extended State Observer, for which we define the gain LE =
[
le1 le2 le3

]T

and the elements of the vector as:

le1 = 3ωo + a2

le2 = 3ω2
o + le1a2 + a1

le3 =
ω3

o
b2

(19)

where ωo is the cut-off angular frequency range. To eliminate disturbance and known
dynamics, the control law can be written as:

u =
u∗ − be x̂e − a1x1 − a2 x̂2

b2
(20)

3.3. PD Controller

In this part, we show how the PD controller is applied to the MRE Axisymmetric
actuator. We consider the plant with an applied compensator based on the estimated state
with LSO or LESO. Using (17) or (20) we can simplify the dynamics of the object as seen by
the controller to:

ẋ1 = x2

ẋ2 = u∗
(21)

The selected controller is a proportional derivative with a feed-forward loop regulator
(PD+FF) described by:

u∗ = kp(x1 − x1r) + kd(x̂2 − x2r)− ÿr (22)
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where xr is the reference signal, kp and kd are controller gains which are chosen to have

poles located as ωc

(√
2

2 ± j
√

2
2

)
; hence,

kp = −ω2
c

kd = −
√

2ωc.
(23)

The cut-off angular frequency ωc is provided by the designer. The signal u∗ is given
in the compensation loop to calculate the u signal. The states x1 and x2 have the same
interpretation, so the controller is the same for both control algorithms.

3.4. Stability Analysis

The next step is stability analysis which is performed based on the models and control
laws defined before. The Nyquist stability criterion for an open-loop system is applied
to calculate whether the system is stable or not. Therefore, it is required to calculate the
open-loop system transfer function defined as:

Gopen(s) = Gctr(s)Gplant(s) (24)

where Gopen(s) is the open-loop transfer function, Gctr(s) is the controller open-loop transfer
function and Gplant(s) is the plant transfer function. In our work, we have two cases. In both
cases, the plant is defined as (3), whereas the transfer function of controller Gctr(s) can be
calculated from the state space representation of (15), (17) and (22). In the case of LSO and
PD controller, the state space can be specified as:

˙̂xS = (AS − LSC + BSKe
S)x̂S − (LS + BSKo

S)yo

u = Ke
S x̂S −Ko

Syo
(25)

where yo is the open-loop input for the controller (in closed loop equal to yo = −y) and u is
the output of the controller. The gains Ke

S and Ko
S are calculated from (17) and (22):

Ke
S =

[
0 kd−a22

b1
− a23

b1

]
Ko

S =
[

kp−a21
b1

]
(26)

Similarly, the LESO with PD controller based on (18), (20) and (22) is as follows:

˙̂xE = (AE − LEC + BEKe
E)x̂E − (LE + BEKo

E)yo

u = Ke
E x̂E −Ko

Eyo
(27)

where gains
Ke

E =
[
0 kd−a2

b2
− be

b2

]
Ko

E =
[

kp−a1
b2

]
(28)

The form represented in (25) and (27) allows us to simply calculate the transfer function
with the help of numerical packages. In the simulation section, the Nyquist plots of
both controllers will be shown.

4. Experiments

This section describes the experimental verification of the designed controllers. The
quality of controllers was examined on the MRE Axisymmetric actuator described in
work [5]. In this section, the hardware description, stability analysis and experimental tests
will be shown.

The hardware used to perform experiments was equipped with the controller unit,
power driver and feedback sensor. Control algorithms were implemented on the Nucleo
STM32 microcontroller. We also used an H-bridge as an extended device to energize the
electromagnet coil. The coil generated an electromagnetic field that moved the membrane.
The power supply was the pulse wave modulation signal (PWM) with an amplitude of−12
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to 12 V. Above the membrane is the laser sensor (Micro-Epsilon ILD1900-25), for which we
built an electrical system to supply and convert laser output to the microcontroller input.

Now, the model parameters and stability analysis will be described. The actuator
parameters are based on the previous works and are specified in Table 1. It is visible that
the system has a single stable zero, a slow real pole and a fast complex pole.

Table 1. Plant model parameters from work [5].

Name Parameter Value Unit

nonlinear gain knlr −0.08241 mm V−1

linear gain k 0.77 1
zero z0 0.18 1/s
pole s0 0.14 1/s

decay rate α 32.91 1/s
angular frequency ω 218.98 rads−1

The stability is analyzed by the Nyquist criterion based on the open-loop transfer
function (24). The results of the Nyquist stability criterion are shown in Figure 2. The open-
loop systems are stable, and as visible in Figure 2, both systems are stable and have similar
Nyquist plots. The figure shows also the stability under a small time delay (τd = 2 ms).
It is clear that time delay has a great influence on systems with higher ωc. Additionally,
the stability margins are calculated for the presented system and shown in Table 2.

Table 2. Stability margins for the controllers with LSO and LESO observers.

Observer ωc(rads−1) Delay Gain Margin Phase Margin

LSO 100 0 ms 1.78 56.11
LSO 100 2 ms 1.76 53.03
LSO 200 0 ms 7.41 78.30
LSO 200 2 ms 2.11 44.61

LESO 100 0 ms 1.78 55.71
LESO 100 2 ms 1.76 52.62
LESO 200 0 ms 7.40 78.25
LESO 200 2 ms 2.10 44.56

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Re{Gopen(j )}

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Im
{G

op
en

(j
)}

d = 0, c = 100 (rad/s)
d > 0, c = 100 (rad/s)

d = 0, c = 200 (rad/s)
d > 0, c = 200 (rad/s)

(a)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Re{Gopen(j )}

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
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{G

op
en

(j
)}

d = 0, c = 100 (rad/s)
d > 0, c = 100 (rad/s)

d = 0, c = 200 (rad/s)
d > 0, c = 200 (rad/s)

(b)

Figure 2. The Nyquist plot with stability criterion. (a) PD Controller with Linear State Observer.
(b) PD Controller with Linear Extended State Observer.

To verify the controller, experiments showing its tracking possibilities were conducted.
The series of cut-off frequencies were tested to show the influence on different observer
and control gains:

• ωo = {275, 350, 425, 500, 575} rads−1

• ωc = {100, 200} rads−1
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We test control algorithms for the sinusoidal reference signal described by:

yr(t) = Ar sin(2π frt) (29)

where Ar = 0.3 mm is amplitude, fr is frequency equal 5 Hz. The single test lasts 15 s and
the probe time is set at Tp = 1 ms. The example results of experiments are presented in
Figures 3 and 4, where are illustrated: reference signal yr, measure position y and estimated
position ŷ. On the graph waveforms, we can see a noise impact in y and ŷ signals, and we
can also see that the estimated position is very close to the measured position. For the sets
ωc = 100 rads−1 and ωo = 500 rads−1, the control quality is acceptable, but there is a slight
delay between yr and y. Changing ωc to 200 rads−1 reduced the signal delay but increased
the noise.
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time t(s)
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0.0

0.2
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m
)
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y
y

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
time t(s)

0.4

0.2

0.0

0.2

0.4
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ut
 (m

m
)
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y
y

(b)
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time t(s)
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y
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0.4
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 (m

m
)
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y
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(d)

Figure 3. The membrane position in time for Ar = 0.3 mm, fr = 5 Hz, ωc = 100 rads−1 and different
ωo. On the left side is the control algorithm with the Linear State Observer (LSO) (a,c), whereas
on the right side is the control algorithm with the Linear Extended State Observer (LESO) (b,d).
(a) ωo = 350 rads−1. (b) ωo = 350 rads−1. (c) ωo = 500 rads−1. (d) ωo = 500 rads−1.
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Figure 4. The membrane position in time for Ar = 0.3 mm, fr = 5 Hz, ωc = 200 rads−1 and different
ωo. On the left side is the control algorithm with the Linear State Observer (a,c), whereas on the right
side is the control algorithm with the Linear Extended State Observer (b,d). (a) ωo = 275 rads−1.
(b) ωo = 275 rads−1. (c) ωo = 350 rads−1. (d) ωo = 350 rads−1.

5. Discussion

The results obtained in the experiments are analyzed and discussed with auxiliary
tools to obtain more insight into the results. Firstly, control algorithms were also analyzed
using the Integral Square Error described:

JISE =
∫ T

0
[y(τ)− yr(τ)]

2dτ (30)

where T is the final time of the experiment. Values of JISE for different control algorithms
and different parameter values are presented in Figure 5. In this figure, we present data
from two experimental trials. Analyzing results from the first trial and the second trial, it
can be seen that the values of JISE are similar, respectively, and speak to the experiments
that are repetitive. The optimal results for the LESO algorithm and the LSO algorithm
are for parameters ωc = 100 rads−1 and ωo = 575 rads−1. For these parameter values,
the system control achieves a high accuracy control. For these parameter values, where the
system was unstable, JISE reach high values. These parameters are ωc = 200 rads−1 and
ωo = {425, 500, 575} rads−1.
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Figure 5. The values of JISE for two trial. The (a,b) are for the first trial and (c,d) are for the second trial.
(a) ωc = 100 rads−1. (b) ωc = 200 rads−1. (c) ωc = 100 rads−1. (d) ωc = 200 rads−1.

Secondly, the steady state response of the actuator was analyzed in the frequency
domain. The power of reference signal, output and noise are calculated as:

Pre f erence = A2
re f erence( fr)

Poutput = A2
output( fr)

Pnoise = ∑
f 6= fr

A2
output( f )

(31)

where Pre f erence is the power of reference signal, Poutput is the power of output signal without
noise, Pnoise is the power of noise of output signal. Are f erence and Aoutput are amplitude
coefficients for a spectrum of frequencies calculated by discrete FFT transformation in
the steady state with a window equal to ten periods of reference signal (Twindow = 10

fr
).

In Figure 6, the power of signals is analyzed for varying cut-off frequencies. It is visible
that for low controller cut-off angular frequency, the noise is kept low and the quality of
control depends on observer cut-off angular frequency. In the case of high controller cut-off
angular frequency, the noise is dominating.
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Figure 6. The power of output signal, noise signal and the reference signal for various ωo for the
controller with different state estimation algorithms. Controller with Linear State Observer (a,c), Con-
troller with Linear Extended State Observer (b,d). (a) wc =100 rad s−1, with LSO. (b) wc =100 rad s−1,
with LESO. (c) wc =200 rad s−1, with LSO. (d) wc =200 rad s−1, with LESO.

6. Conclusions

In summary, we analyzed the two types of controllers working in the closed-loop
system to control the MRE axisymmetric membrane with a permanent magnet. The first
was implemented based on a Linear State Observer with a Luenberger Observer and using
information about slow and fast plant dynamics. The second was implemented as ADRC
with a Linear Extended State Observer using a reduced model with knowledge about
only fast dynamics. Then, we tested these algorithms in experiments for many variants of
parameter values. Both algorithms have similar control quality. FFT analysis has shown
that noise has had a crucial impact on control performance. Further, the performance
indexes depend strictly on observer and controller cut-off frequencies. In future works,
magnetorheological elastomers with the designed controller can be used to construct
intelligent actuators, for example, pumps with a variable capacity of chambers.
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