
Citation: Yao, B.; He, H.; Kang, S.;

Chao, Y.; He, L. A Review for the

Euler Number Computing Problem.

Electronics 2023, 12, 4406. https://

doi.org/10.3390/electronics12214406

Academic Editor: Silvia Liberata Ullo

Received: 31 August 2023

Revised: 17 October 2023

Accepted: 23 October 2023

Published: 25 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Review

A Review for the Euler Number Computing Problem
Bin Yao 1, Haochen He 1, Shiying Kang 2, Yuyan Chao 3 and Lifeng He 1,4,*

1 Artificial Intelligence Institute, School of Electronic Information and Artificial Intelligence, Shaanxi University
of Science and Technology, Xi’an 710021, China; yaobin@sust.edu.cn

2 School of Computer Science, Xianyang Normal University, Xianyang 712000, China
3 Faculty of Advanced Business, Nagoya Sangyo University, Owariasahi 4888711, Japan
4 School of Information Science and Technology, Aichi Prefectural University, Nagakute 4801198, Japan
* Correspondence: helifeng@ist.aichi-pu.ac.jp or helf@sust.edu.cn; Tel.: +86-29-86132756

Abstract: In a binary image, the Euler number is a crucial topological feature that holds immense
significance in image understanding and image analysis owing to its invariance under scaling, rota-
tion, or any arbitrary rubber-sheet transformation of images. This paper focuses on the Euler number
computing problem in a binary image. The state-of-the-art Euler number computing algorithms are
reviewed, which obtain the Euler number through different techniques, such as definition, features
of binary images, and special data structures representing forms of binary images, and we explain
the main principles and strategies of the algorithms in detail. Afterwards, we present the experi-
mental results to bring order of the prevailing Euler number computing algorithms in 8-connectivity
cases. Then, we discuss both the parallel implementation and the hardware implementation of
algorithms for calculating the Euler number and present the algorithm extension for 3D image Euler
number computation. Lastly, we aim to outline forthcoming efforts concerning the computation of
the Euler number.

Keywords: binary images; topological feature; Euler number; image understanding; image analysis;
computer vision

1. Introduction

A digital binary image is formed by combining the planar connected areas that depict
the projections of the objects present with the real-world scene being captured. Moreover,
it can be considered a two-dimensional array with two possible results, i.e., 0 or 1. A
connected region in a binary image is also called a connected component. It refers to the
connected region composed of adjacent pixels with the same pixel value (usually object
pixel) in a binary image. A hole in the image refers to the regions with non-object pixels
surrounded by a connected component. By analyzing the pixels comprising each object
presented in a binary image, it is possible to extract various topological and geometrical
features that can be used to describe the properties or attributes of the objects. Examples
of the features include area, perimeter, centroid, orientation, convexity, and Euler number.
These features can be used for further analysis, classification, and recognition of objects
within the image. Among the features, the Euler number, which can be obtained by
subtracting the number of holes from the number of connected components (connected
regions) in the given image, has been identified as a significant feature in many image
analysis applications [1–3]. For example, we can calculate the Euler numbers if we need to
distinguish the letter “A” and the letter “B” in a binary image. Obviously, the Euler number
of the letter “A” is 0 and that of the letter “B” is −1; thus, we can distinguish them easily.
The Euler number is also used in various mathematical models and methods for computer
vision tasks [4–6].

In well-known digital image-processing textbooks [7,8], the notation p(x, y) is used
for representing the pixel located at coordinate (x, y) in a binary image with a resolution

Electronics 2023, 12, 4406. https://doi.org/10.3390/electronics12214406 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12214406
https://doi.org/10.3390/electronics12214406
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-8132-0919
https://doi.org/10.3390/electronics12214406
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12214406?type=check_update&version=1

Electronics 2023, 12, 4406 2 of 30

of N × N pixels. The elements x and y in the coordinate (x, y) are integers between 0 and
N − 1, both included. In situations where the meaning is unambiguous, p(x, y) can also be
used to refer to its own value in image processing. In the context of binary images, pixels
that are part of the object are considered foreground pixels, whereas pixels that are not part
of the object are known as background pixels. Unless specified otherwise, it is generally
assumed that the values of foreground pixels are represented by 1, whereas the values
of background pixels are represented by 0. Moreover, to simplify matters, it is generally
assumed that the pixels located on the borders of a binary image are background pixels,
i.e., the value of all pixels on the borders of the given image is 0.

In a binary image, a pixel q is regarded as a 4-connectivity pixel of pixel p when they
share a common edge. Alternatively, a pixel q is considered to be an 8-connectivity pixel of
pixel p when they share a common edge or a common corner. As shown in Figure 1a, pixels
q2, q4, q6, and q8 are 4-connectivity pixels of pixel p, and q1, q2, . . ., and q8 are 8-connectivity
pixels of pixel p. Following this consideration, as shown Figure 1b, there are three connected
components in the image in the case of 4-connectivity, but there is only one connected
component in the case of 8-connectivity.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 31

In well-known digital image-processing textbooks [7,8], the notation p(x, y) is used
for representing the pixel located at coordinate (x, y) in a binary image with a resolution
of N × N pixels. The elements x and y in the coordinate (x, y) are integers between 0 and N
− 1, both included. In situations where the meaning is unambiguous, p(x, y) can also be
used to refer to its own value in image processing. In the context of binary images, pixels
that are part of the object are considered foreground pixels, whereas pixels that are not
part of the object are known as background pixels. Unless specified otherwise, it is gener-
ally assumed that the values of foreground pixels are represented by 1, whereas the values
of background pixels are represented by 0. Moreover, to simplify matters, it is generally
assumed that the pixels located on the borders of a binary image are background pixels,
i.e., the value of all pixels on the borders of the given image is 0.

In a binary image, a pixel q is regarded as a 4-connectivity pixel of pixel p when they
share a common edge. Alternatively, a pixel q is considered to be an 8-connectivity pixel
of pixel p when they share a common edge or a common corner. As shown in Figure 1a,
pixels q2, q4, q6, and q8 are 4-connectivity pixels of pixel p, and q1, q2, …, and q8 are 8-con-
nectivity pixels of pixel p. Following this consideration, as shown Figure 1b, there are three
connected components in the image in the case of 4-connectivity, but there is only one
connected component in the case of 8-connectivity.

Figure 1. Illustration of 4-connectivity and 8-connectivity between pixels: (a) the different connec-
tivity pixels of pixel p;(b) different number of connected components under different connectivity.

As described above, there are 4-connectivity cases and 8-connectivity cases between
pixels, and, accordingly, we can calculate the Euler number in two cases, i.e., the 4-con-
nectivity Euler number and the 8-connectivity Euler number. For example, as shown in
Figure 2, in the case of 4-connectivity, there are three connected components and three
holes; thus, the 4-connectivity Euler number is 3 − 3 = 0. However, in the case of 8-connec-
tivity, only two connected components and three holes exist in Figure 2, so the Euler num-
ber is 2 − 3 = −1. Hereafter, whenever we refer to an “image,” we are actually referring to
a binary image.

Figure 2. An example for explaining the Euler number of different types of connectivity of an im-
age.

Figure 1. Illustration of 4-connectivity and 8-connectivity between pixels: (a) the different connectivity
pixels of pixel p; (b) different number of connected components under different connectivity.

As described above, there are 4-connectivity cases and 8-connectivity cases between
pixels, and, accordingly, we can calculate the Euler number in two cases, i.e., the 4-
connectivity Euler number and the 8-connectivity Euler number. For example, as shown in
Figure 2, in the case of 4-connectivity, there are three connected components and three holes;
thus, the 4-connectivity Euler number is 3 − 3 = 0. However, in the case of 8-connectivity,
only two connected components and three holes exist in Figure 2, so the Euler number
is 2 − 3 = −1. Hereafter, whenever we refer to an “image,” we are actually referring to a
binary image.

Electronics 2023, 12, x FOR PEER REVIEW 2 of 31

In well-known digital image-processing textbooks [7,8], the notation p(x, y) is used
for representing the pixel located at coordinate (x, y) in a binary image with a resolution
of N × N pixels. The elements x and y in the coordinate (x, y) are integers between 0 and N
− 1, both included. In situations where the meaning is unambiguous, p(x, y) can also be
used to refer to its own value in image processing. In the context of binary images, pixels
that are part of the object are considered foreground pixels, whereas pixels that are not
part of the object are known as background pixels. Unless specified otherwise, it is gener-
ally assumed that the values of foreground pixels are represented by 1, whereas the values
of background pixels are represented by 0. Moreover, to simplify matters, it is generally
assumed that the pixels located on the borders of a binary image are background pixels,
i.e., the value of all pixels on the borders of the given image is 0.

In a binary image, a pixel q is regarded as a 4-connectivity pixel of pixel p when they
share a common edge. Alternatively, a pixel q is considered to be an 8-connectivity pixel
of pixel p when they share a common edge or a common corner. As shown in Figure 1a,
pixels q2, q4, q6, and q8 are 4-connectivity pixels of pixel p, and q1, q2, …, and q8 are 8-con-
nectivity pixels of pixel p. Following this consideration, as shown Figure 1b, there are three
connected components in the image in the case of 4-connectivity, but there is only one
connected component in the case of 8-connectivity.

Figure 1. Illustration of 4-connectivity and 8-connectivity between pixels: (a) the different connec-
tivity pixels of pixel p;(b) different number of connected components under different connectivity.

As described above, there are 4-connectivity cases and 8-connectivity cases between
pixels, and, accordingly, we can calculate the Euler number in two cases, i.e., the 4-con-
nectivity Euler number and the 8-connectivity Euler number. For example, as shown in
Figure 2, in the case of 4-connectivity, there are three connected components and three
holes; thus, the 4-connectivity Euler number is 3 − 3 = 0. However, in the case of 8-connec-
tivity, only two connected components and three holes exist in Figure 2, so the Euler num-
ber is 2 − 3 = −1. Hereafter, whenever we refer to an “image,” we are actually referring to
a binary image.

Figure 2. An example for explaining the Euler number of different types of connectivity of an im-
age.

Figure 2. An example for explaining the Euler number of different types of connectivity of an image.

Although the Euler number is calculated by subtracting the number of holes from the
number of connected components in an image, considering the complexity of obtaining the
numbers of holes and connected components, many researchers have presented different

Electronics 2023, 12, 4406 3 of 30

kinds of algorithms by using the local information in an image when obtaining the Euler
number over the past few decades. Based on the computing strategies, intrinsic features
of images, data structure, and/or computer architecture being used, the Euler number
computing algorithms can be divided into six categories:

(1) Algorithms that compute the Euler number by the definition in [9,10]. As described
above, for a given image, the definition of the Euler number is the disparity between
the numbers of connected components and holes. Thus, to compute the Euler number,
these algorithms need to obtain the number of holes and the number of connected
components in the given image. Accordingly, to achieve this goal, complicated labeling
operations need to be conducted to distinguish every connected component and every
hole in the image. Once the number of holes and connected components is acquired,
we can obtain the Euler number easily.

(2) Algorithms that compute the Euler number by utilizing the intrinsic features of the im-
age [11–16]. In these algorithms, different features of an image are used to calculate the
Euler number. For example, taking advantages of the skeleton, the perimeter/contact
perimeter and the special contour pixels of the image, we can compute the Euler
number in different ways.

(3) Algorithms that compute the Euler number by counting specific blocks/patterns in the
image [17–25]. In these algorithms, specific patterns with 2 × 2 pixels and consecutive
foreground pixel blocks in the same row in the image, called runs, can be employed
for calculating the Euler number. Moreover, using a raster scan, these algorithms can
be easily implemented in practice.

(4) Algorithms that compute the Euler number with a special data structure [26–33]. Trees
and graphs are special data structures for representing an image. By representing an
image as a tree or a graph, these algorithms can compute the Euler number through
the theorems or conclusions in the data structure of the tree or graph.

(5) Algorithms that compute the Euler number using machine learning methods [34–36].
In the past decade, machine learning/deep learning methods have been widely
adopted for image classification and image recognition tasks. Then, some researchers
have adopted these methods for Euler number computation. Experimental results
have verified the accuracy of these methods in Euler number computation. However,
these methods need to collect a lot of samples and take a long time to train the samples.
Therefore, for only obtaining the Euler number, these methods may not be so efficient.

(6) Algorithms that compute the Euler number using special structure computers [37–42].
As mentioned in Class (3), the Euler number can be determined by identifying specific
patterns within the raster scan and counting them. Then, VLSI (very large-scale
integration), co-processor, and pipeline architecture can be employed for counting
these patterns within different regions of a given image simultaneously to improve
the conventional algorithms.

Considering that algorithms for ordinary computer architectures in Class (1)–Class (4)
are the base of algorithms in Class (6), we will not discuss the Euler number computing
algorithms in Class (6) in this paper. Moreover, the Euler number is seldom computed with
the algorithms mentioned in Class (5) in practice; thus, we will primarily concentrate on
the algorithms belonging to Class (1), (2), (3), and (4) in this paper.

This paper provides a review of strategies for Euler number computing algorithms.
Additionally, experimental results will be presented to bring order to the classical algo-
rithms. The state-of-the-art algorithms are of particular focus in this paper, which are listed
as follows:

(a) Algorithm that computes the Euler number with the definition proposed in Ref. [9];
(b) Algorithm that computes the Euler number with the skeleton of a given image, as

proposed in Ref. [11];
(c) Algorithm that computes the Euler number via the perimeter of connected components

in a given image, as proposed in Ref. [12];

Electronics 2023, 12, 4406 4 of 30

(d) Algorithm that computes the Euler number via corner codification of foreground
pixels in a given image, as proposed in Ref. [16];

(e) Algorithm that computes the Euler number via specific 2 × 2 bit-quad patterns in a
given image, as proposed in Ref. [17];

(f) Algorithm that computes the Euler number via runs in a given image, as proposed in
Ref. [23];

(g) Algorithm that computes the Euler number by representing a given image as a graph,
as proposed in Ref. [27];

(h) Algorithm that computes the Euler number by representing a given image as a tree, as
proposed in Ref. [31];

(i) Algorithm that computes the Euler number via graph representation of specific runs
in a given image, as proposed in Ref. [33].

Among the above algorithms, the algorithm mentioned in (a) calculates the Euler
number according to the definition, the algorithms mentioned in (b)–(d) calculate the Euler
number by making use of a given image’s intrinsic features, the algorithms mentioned in
(e)–(f) calculate the Euler number by counting specific patterns in a given image, and the
others obtain the Euler number by representing an image as a special data structure.

In the past few decades, different Euler number computing algorithms have been
illustrated in various studies, as listed above, by using different local information in images.
These studies focused on describing their proposed methods, without elaborating on
other state-of-the-art methods and lacking a comparison of experimental results among
different methods. This paper focuses on the state-of-the-art Euler number computing
algorithms. We review different kinds of Euler number computing algorithms and explain
the main principles and strategies of the algorithms in detail. Moreover, we present the
experimental results to bring order of the prevailing Euler number computing algorithms
in 8-connectivity cases.

The subsequent sections of this paper are structured in the following manner: We
review and describe the strategies of state-of-the-art Euler number computing algorithms
in the next section. In Section 3, we present a comparison of the algorithms and the
experimental results of the comparison for different kinds of images. In Section 4, we cover
concerns related to hardware and parallel implementation of Euler number computation
and bring an extension of Euler number computing algorithms for 3D images. Lastly,
Section 5 contains our concluding remarks and outlines the next study focuses.

2. Reviews of State-of-the-Art Euler Number Computing Algorithms
2.1. Algorithms That Compute the Euler Number through the Definition

As described in Ref. [7], the Euler number can be obtained by subtracting the number
of holes from the number of connected components in an image. Obviously, to obtain the
Euler number, the most direct method is to count the number of connected components
and holes in an image. Then, it can be obtained easily by using Formula (1).

E = C − H (1)

Here, C refers to the number of connected components, whereas H represents the
number of holes in the image.

As we know, connected component labeling (CCL) algorithms are classical and efficient
algorithms for distinguishing the different objects in an image, and they can be employed
for labeling and calculating the holes and the connected components simultaneously. When
the labeling process is completed, every foreground/background pixel is assigned a unique
label, so the foreground (or background) pixels px and py have the same label if and only if
they are in the same connected component/hole. Then, we can calculate the number of
connected components and holes by counting the different labels, and thus, Formula (1)
can be used for calculating the Euler number.

Electronics 2023, 12, 4406 5 of 30

In Ref. [9], He et al. presented an efficient labeling algorithm for distinguishing the
different connected components and different holes and computing the Euler number of
an image. In the proposed algorithm, the connected components are labeled in the case of
8-connectivity and the holes are labeled in the case of 4-connectivity (otherwise, if the holes
are also labeled in the case of 8-connectivity, there will be no holes existing in the given
image); thus, this algorithm computes the 8-connectivity Euler number in practice.

To achieve the above goal, this algorithm extends the labeling strategy proposed in
Ref. [10], which needs to scan the image forward twice and conduct three phases.

Phase 1: Label assigning. The algorithm assigns temporary labels to the pixels of the
image, which can either be a new label or an existing one that has already been assigned to
the labeled pixels.

Phase 2: Label recording and resolving. When Phase 1 is completed, each pixel is
assigned a temporary label. In fact, some different labels may belong to the same connected
component/hole, and they are considered to be in the same equivalent class; therefore, the
algorithm needs to record and resolve these equivalent labels.

Phase 3: Label replacing. Lastly, the algorithm replaces every temporary label with a
representative label. After the algorithm has done this, all pixels in the same connected
component and all pixels in the same hole will have a unique label. Accordingly, we can
count the different labels to obtain the number of holes and connected components.

To complete the above three phases, the algorithm needs to conduct two raster scans
of the image. In the first scan, the designed working mask presented in Figure 3a is used
to label the connected components and comprises four scanned neighboring pixels of
the processing foreground pixel. Moreover, this working mask is also used to assign or
share a temporary label for every foreground pixel and to record the labels and resolve
equivalent label classes of the connected components. At the same time, the working mask,
shown in Figure 3b, is used to label the holes, which comprise two scanned neighboring
pixels of the processing background pixel. The same steps are carried out to process each
foreground pixel. This working mask is also used to assign or share a temporary label for
each background pixel and to record the labels and resolve equivalent label classes of the
holes. At all times, equivalent temporary labels are grouped together in an equivalent set
with the same representative label.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 31

label if and only if they are in the same connected component/hole. Then, we can calculate
the number of connected components and holes by counting the different labels, and thus,
Formula (1) can be used for calculating the Euler number.

In Ref. [9], He et al. presented an efficient labeling algorithm for distinguishing the
different connected components and different holes and computing the Euler number of
an image. In the proposed algorithm, the connected components are labeled in the case of
8-connectivity and the holes are labeled in the case of 4-connectivity (otherwise, if the
holes are also labeled in the case of 8-connectivity, there will be no holes existing in the
given image); thus, this algorithm computes the 8-connectivity Euler number in practice.

To achieve the above goal, this algorithm extends the labeling strategy proposed in
Ref. [10], which needs to scan the image forward twice and conduct three phases.

Phase 1: Label assigning. The algorithm assigns temporary labels to the pixels of the
image, which can either be a new label or an existing one that has already been assigned
to the labeled pixels.

Phase 2: Label recording and resolving. When Phase 1 is completed, each pixel is
assigned a temporary label. In fact, some different labels may belong to the same con-
nected component/hole, and they are considered to be in the same equivalent class; there-
fore, the algorithm needs to record and resolve these equivalent labels.

Phase 3: Label replacing. Lastly, the algorithm replaces every temporary label with a
representative label. After the algorithm has done this, all pixels in the same connected
component and all pixels in the same hole will have a unique label. Accordingly, we can
count the different labels to obtain the number of holes and connected components.

To complete the above three phases, the algorithm needs to conduct two raster scans
of the image. In the first scan, the designed working mask presented in Figure 3a is used
to label the connected components and comprises four scanned neighboring pixels of the
processing foreground pixel. Moreover, this working mask is also used to assign or share
a temporary label for every foreground pixel and to record the labels and resolve equiva-
lent label classes of the connected components. At the same time, the working mask,
shown in Figure 3b, is used to label the holes, which comprise two scanned neighboring
pixels of the processing background pixel. The same steps are carried out to process each
foreground pixel. This working mask is also used to assign or share a temporary label for
each background pixel and to record the labels and resolve equivalent label classes of the
holes. At all times, equivalent temporary labels are grouped together in an equivalent set
with the same representative label.

Figure 3. Labeling mask in Ref. [10]: (a) working mask for labeling connected components; (b) work-
ing mask for labeling holes.

As illustrated in Figure 3a, when processing the foreground pixel p(x, y), four pixels—
p(x − 1, y), p(x − 1, y − 1), p(x, y − 1), and p(x + 1, y − 1)—in the working mask need to be
accessed. If there is no foreground pixel in the working mask, it can be concluded that the
processing pixel will not connect to any processed foreground pixel. In other words, the
processing pixel should belong to a new connected component. Consequently, a new tem-
porary label should be assigned to the current pixel. Otherwise, if there are some fore-
ground pixels in the working mask, the processing pixel and the foreground pixels that

Figure 3. Labeling mask in Ref. [10]: (a) working mask for labeling connected components;
(b) working mask for labeling holes.

As illustrated in Figure 3a, when processing the foreground pixel p(x, y), four pixels—
p(x − 1, y), p(x − 1, y − 1), p(x, y − 1), and p(x + 1, y − 1)—in the working mask need
to be accessed. If there is no foreground pixel in the working mask, it can be concluded
that the processing pixel will not connect to any processed foreground pixel. In other
words, the processing pixel should belong to a new connected component. Consequently, a
new temporary label should be assigned to the current pixel. Otherwise, if there are some
foreground pixels in the working mask, the processing pixel and the foreground pixels
that already exist should be part of the same connected component. In this case, any of the
labels in the working mask can be assigned to the current pixel.

When labeling the holes, for the processing background pixel p(x, y), if there is no
background pixel in the working mask, i.e., if both p(x− 1, y) and p(x, y− 1) are foreground

Electronics 2023, 12, 4406 6 of 30

pixels, it can be concluded that no processed background pixels are connected to the
background pixel currently being processed and that the processing pixel should belong to
a new hole. Thus, a new temporary label should be assigned to the processing background
pixel. Otherwise, if some background pixels exist in the working mask, the processing
background pixel and the existing background pixels should belong to the same hole. Then,
the processing background pixel should be assigned any of the labels in the working mask.

All temporary labels that belong to the same connected component or the same hole
will be merged into a set of equivalent labels when the first scan is completed. In the second
raster scan, by replacing each temporary label with the corresponding representative label,
it will assign unique labels to all foreground pixels within each connected component
and to all background pixels within each hole. Hence, to obtain the number of connected
components and holes, the algorithm only needs to count the different labels. Lastly,
the image’s Euler number can be obtained simply by using Formula (1). We refer to the
labeling-based algorithm as the LB algorithm for simplicity in this paper.

Obviously, for labeling the connected components and holes of an image, we need
to have a comprehensive perspective of the whole image. At the same time, the labeling
procedure is very complicated in terms of recording and resolving the equivalent labels.
Although the number of holes and connected components can be obtained simultaneously
by this algorithm, it is not the best choice for obtaining the Euler number only.

2.2. Algorithms That Compute the Euler Number by Utilizing Intrinsic Features

Some intrinsic features, such as the skeleton, can preserve important topological
information of an image. Hence, instead of counting connected components and holes in a
given image directly, the Euler number can be computed with the perimeters of objects and
special pixels in the skeleton of the image.

2.2.1. Skeleton-Based Euler Number Computing Algorithm

The skeleton of an image can maintain the connectivity of small parts of the image,
which helps to highlight object features and reduce redundant information. Moreover, it
can preserve some useful topological features, such as the number of holes and connected
components. Accordingly, researchers have proposed some algorithms for obtaining the
Euler number by utilizing the skeleton of a given image.

Ref. [11] presented a skeleton-based 4-connectivity Euler number computing algorithm
that computes the Euler number of a given image by using the number of terminal pixels
and three-edge pixels in the skeletonized image. To do this, it needs to calculate the number
of neighboring pixels in a foreground pixel p, which is denoted as Nc(p). Nc(p) is different
than 0. As is defined in Ref. [11]:

(1) If Nc(p) = 1, pixel p is called a terminal pixel (Tp);
(2) If Nc(p) = 2, pixel p is called an internal pixel;
(3) If Nc(p) = 3, pixel p is called a three-edge pixel (TEp);
(4) If Nc(p) > 3, pixel p is called a crossing pixel.

Once the number of terminal pixels and three-edge pixels is obtained, we can calculate
the Euler number by using Formula (2).

E =
Tps− TEps

2
(2)

Here, Tps is the number of terminal pixels, whereas TEps is the number of three-edge
pixels in the skeletonized image.

Moreover, if there is a crossing pixel in the skeletonized image, it needs to be de-
composed into two three-edge pixels (TEps). For example, as shown in Figure 4a, pixel
p1 and pixel p3 are three-edge points, and pixel p2 is a crossing point, which should
be decomposed into two three-edge points (as shown in Figure 4b). Moreover, pixels
p4, p5, p6, and p7 are terminal pixels. According to Formula (2), the Euler number is
E = (Tps − TEps)/2 = (4 − 4)/2 = 0. In fact, there is one connected component and one hole

Electronics 2023, 12, 4406 7 of 30

in Figure 4a, so the Euler number is E = C − H = 1 − 1 = 0 according to the definition,
which is consistent with the result calculated with Formula (2).

Electronics 2023, 12, x FOR PEER REVIEW 7 of 31

Moreover, if there is a crossing pixel in the skeletonized image, it needs to be decom-
posed into two three-edge pixels (TEps). For example, as shown in Figure 4a, pixel p1 and
pixel p3 are three-edge points, and pixel p2 is a crossing point, which should be decom-
posed into two three-edge points (as shown in Figure 4b). Moreover, pixels p4, p5, p6, and
p7 are terminal pixels. According to Formula (2), the Euler number is E = (Tps − TEps)/2 =
(4 − 4)/2 = 0. In fact, there is one connected component and one hole in Figure 4a, so the
Euler number is E = C − H = 1 − 1 = 0 according to the definition, which is consistent with
the result calculated with Formula (2).

Figure 4. An example for illustrating the skeleton-based Euler number computation: (a) A skeleton-
ized image with a crossing pixel p2; (b) decomposing the result of pixel p2.

Although the computing formula is very simple in the skeleton-based Euler number
computing algorithm, it is necessary to skeletonize the given image in advance, which will
influence the efficiency of the algorithm to a certain extent. Furthermore, there are two
special cases, i.e., when only one pixel or loop is contained in the image, in which this
algorithm cannot compute Euler number correctly.

2.2.2. Perimeter-Based Euler Number Computing Algorithm
Besides employing the skeleton of a given image, Bribiesca used the perimeter and

contact perimeter of the connected components (or shapes) to compute the 4-connectivity
Euler number in Ref. [12]. The related definition of the perimeter and contact perimeter
can be found in Ref. [13]. Furthermore, this method is only suitable for one-pixel-width
images, with one connected component in the images.

The perimeter P refers to the boundary length of a connected component in an image,
which is determined by adding up the total lengths of the sides of the pixels making up
the connected component. This is in accordance with the traditional definition of a perim-
eter. For example, Figure 5a presents an instance of a connected component comprising
18 pixels, and Figure 5b illustrates the perimeter of the connected component presented
in Figure 5a, which is marked by bold lines. The contact perimeter of an image is denoted
as Pc, which is comprised of pixels corresponding to the total length of the segments
shared by the neighboring pixels. Figure 5c illustrates the contact perimeter of Figure 5a,
which is also marked by bold lines.

Figure 4. An example for illustrating the skeleton-based Euler number computation: (a) A skele-
tonized image with a crossing pixel p2; (b) decomposing the result of pixel p2.

Although the computing formula is very simple in the skeleton-based Euler number
computing algorithm, it is necessary to skeletonize the given image in advance, which will
influence the efficiency of the algorithm to a certain extent. Furthermore, there are two
special cases, i.e., when only one pixel or loop is contained in the image, in which this
algorithm cannot compute Euler number correctly.

2.2.2. Perimeter-Based Euler Number Computing Algorithm

Besides employing the skeleton of a given image, Bribiesca used the perimeter and
contact perimeter of the connected components (or shapes) to compute the 4-connectivity
Euler number in Ref. [12]. The related definition of the perimeter and contact perimeter
can be found in Ref. [13]. Furthermore, this method is only suitable for one-pixel-width
images, with one connected component in the images.

The perimeter P refers to the boundary length of a connected component in an image,
which is determined by adding up the total lengths of the sides of the pixels making up the
connected component. This is in accordance with the traditional definition of a perimeter.
For example, Figure 5a presents an instance of a connected component comprising 18 pixels,
and Figure 5b illustrates the perimeter of the connected component presented in Figure 5a,
which is marked by bold lines. The contact perimeter of an image is denoted as Pc, which
is comprised of pixels corresponding to the total length of the segments shared by the
neighboring pixels. Figure 5c illustrates the contact perimeter of Figure 5a, which is also
marked by bold lines.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 31

Figure 5. Illustration of the perimeter and contact perimeter: (a) an image comprising 18 pixels; (b)
perimeter of the image shown in (a); (c) contact perimeter of the image shown in (a).

When obtaining the perimeter and contact perimeter, we can compute the Euler num-
ber by using Formula (3).

(2)P Pc TE
T

− −= (3)

In Formula (3), the number of sides of a pixel is denoted as T, and for the case of the
rectangular pixels in the image, T = 4.

For the image shown in Figure 5a, the perimeter P is 38, the contact perimeter Pc is
17, and T is 4. According to Formula (3), the Euler number is E = (P − Pc (T − 2))/T = (38 −
34)/4 = 1.

However, the method suggested in Ref. [12] cannot calculate the Euler number cor-
rectly when the given image is not composed of one connected component or it is not a
one-pixel-width image. As an improvement, Sossa [14,15] presented other methods for
obtaining the Euler number by using the perimeter and contact perimeter of the image,
which can compute it for a non-one-pixel-width image with more than one connected
component correctly. To obtain the Euler number according to the algorithm presented
by Sossa, the image needs to be eroded by a 2 × 2 structural element, shown in Figure 6a,
in advance, and the pixels remaining as a result of the erosion are called “tetra pixels”.

Figure 6. An example to illustrate the erosion procedure: (a) the structural element; (b) the given
image; (c) the eroded result.

As shown in Figure 6b, if the image is eroded by the structural element, only two
tetra pixels remain as a result, as shown in Figure 6c. In fact, if an image is one pixel width,
there will be no tetra pixels after erosion; conversely, if there is at least one tetra pixel in
the image after erosion, it is not a one-pixel-width image. Let NT denote the number of
tetra pixels remaining after the erosion operation. We can compute the Euler number by
using Formula (4).

(2)Pc T PE N T
T
− −= − (4)

In fact, the number of tetra pixels remaining after the erosion operation is equal to
the number of 2 × 2 foreground pixel patterns in the image, and this can be calculated by
a simple raster scanning of the image. In Figure 6b, the perimeter and contact perimeter
are 34 and 25, respectively. Moreover, there are two 2 × 2 foreground pixel patterns; thus,

Figure 5. Illustration of the perimeter and contact perimeter: (a) an image comprising 18 pixels;
(b) perimeter of the image shown in (a); (c) contact perimeter of the image shown in (a).

Electronics 2023, 12, 4406 8 of 30

When obtaining the perimeter and contact perimeter, we can compute the Euler
number by using Formula (3).

E =
P− Pc(T − 2)

T
(3)

In Formula (3), the number of sides of a pixel is denoted as T, and for the case of the
rectangular pixels in the image, T = 4.

For the image shown in Figure 5a, the perimeter P is 38, the contact perimeter Pc
is 17, and T is 4. According to Formula (3), the Euler number is E = (P − Pc (T − 2))/
T = (38 − 34)/4 = 1.

However, the method suggested in Ref. [12] cannot calculate the Euler number cor-
rectly when the given image is not composed of one connected component or it is not a
one-pixel-width image. As an improvement, Sossa [14,15] presented other methods for
obtaining the Euler number by using the perimeter and contact perimeter of the image,
which can compute it for a non-one-pixel-width image with more than one connected
component correctly. To obtain the Euler number according to the algorithm presented by
Sossa, the image needs to be eroded by a 2 × 2 structural element, shown in Figure 6a, in
advance, and the pixels remaining as a result of the erosion are called “tetra pixels”.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 31

Figure 5. Illustration of the perimeter and contact perimeter: (a) an image comprising 18 pixels; (b)
perimeter of the image shown in (a); (c) contact perimeter of the image shown in (a).

When obtaining the perimeter and contact perimeter, we can compute the Euler num-
ber by using Formula (3).

(2)P Pc TE
T

− −= (3)

In Formula (3), the number of sides of a pixel is denoted as T, and for the case of the
rectangular pixels in the image, T = 4.

For the image shown in Figure 5a, the perimeter P is 38, the contact perimeter Pc is
17, and T is 4. According to Formula (3), the Euler number is E = (P − Pc (T − 2))/T = (38 −
34)/4 = 1.

However, the method suggested in Ref. [12] cannot calculate the Euler number cor-
rectly when the given image is not composed of one connected component or it is not a
one-pixel-width image. As an improvement, Sossa [14,15] presented other methods for
obtaining the Euler number by using the perimeter and contact perimeter of the image,
which can compute it for a non-one-pixel-width image with more than one connected
component correctly. To obtain the Euler number according to the algorithm presented
by Sossa, the image needs to be eroded by a 2 × 2 structural element, shown in Figure 6a,
in advance, and the pixels remaining as a result of the erosion are called “tetra pixels”.

Figure 6. An example to illustrate the erosion procedure: (a) the structural element; (b) the given
image; (c) the eroded result.

As shown in Figure 6b, if the image is eroded by the structural element, only two
tetra pixels remain as a result, as shown in Figure 6c. In fact, if an image is one pixel width,
there will be no tetra pixels after erosion; conversely, if there is at least one tetra pixel in
the image after erosion, it is not a one-pixel-width image. Let NT denote the number of
tetra pixels remaining after the erosion operation. We can compute the Euler number by
using Formula (4).

(2)Pc T PE N T
T
− −= − (4)

In fact, the number of tetra pixels remaining after the erosion operation is equal to
the number of 2 × 2 foreground pixel patterns in the image, and this can be calculated by
a simple raster scanning of the image. In Figure 6b, the perimeter and contact perimeter
are 34 and 25, respectively. Moreover, there are two 2 × 2 foreground pixel patterns; thus,

Figure 6. An example to illustrate the erosion procedure: (a) the structural element; (b) the given
image; (c) the eroded result.

As shown in Figure 6b, if the image is eroded by the structural element, only two tetra
pixels remain as a result, as shown in Figure 6c. In fact, if an image is one pixel width,
there will be no tetra pixels after erosion; conversely, if there is at least one tetra pixel in the
image after erosion, it is not a one-pixel-width image. Let NT denote the number of tetra
pixels remaining after the erosion operation. We can compute the Euler number by using
Formula (4).

E = NT − Pc(T − 2)− P
T

(4)

In fact, the number of tetra pixels remaining after the erosion operation is equal
to the number of 2 × 2 foreground pixel patterns in the image, and this can be calcu-
lated by a simple raster scanning of the image. In Figure 6b, the perimeter and contact
perimeter are 34 and 25, respectively. Moreover, there are two 2 × 2 foreground pixel
patterns; thus, NT should be 2. According to Formula (4), the Euler number is computed as
E = NT − (Pc (T − 2) − P)/T = 2 − (50 − 34)/4 = −2.

In Figure 6b, there are three holes and one connected component. Based on the
definition of the Euler number, it is E = C − H = 1 − 3 = −2, which is consistent with the
result calculated with Formula (4).

2.2.3. Corner Codification-Based Euler Number Computing Algorithm

The contour pixel information in an image is very useful for image analysis and
understanding. Accordingly, Ref. [16] proposed a 4-connectivity corner codification-based
algorithm for computing the Euler number, taking advantage of the number of foreground
pixels that each connected component’s exterior contour pixels contacts.

According to the proposed algorithm, every exterior contour pixel that touches the
connected component’s background directly will be encoded by the number of foreground
pixels it touches. As shown in Figure 7a, there are four corners in a foreground pixel, i.e.,

Electronics 2023, 12, 4406 9 of 30

NW, NE, SW, and SE. Moreover, there are only three codifications for the corners of exterior
contour pixels, i.e., 1, 2, and 3. For example, for the contour pixel a in Figure 7a:

(1) The NW corner touches one foreground pixel, i.e., pixel a; thus, the codification of this
corner is 1.

(2) The NE corner touches two foreground pixels, i.e., pixel a and pixel b; thus, the
codification of this corner is 2.

(3) The SW corner touches three foreground pixels, i.e., pixel a, pixel c, and pixel d; thus,
the codification of this corner is 3.

(4) The SE corner touches three foreground pixels, i.e., pixel a, pixel b, and pixel d; thus,
the codification of this corner is 3.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 31

NT should be 2. According to Formula (4), the Euler number is computed as E = NT − (Pc
(T − 2) − P)/T = 2 − (50 − 34)/4 = −2.

In Figure 6b, there are three holes and one connected component. Based on the defi-
nition of the Euler number, it is E = C − H = 1 − 3 = −2, which is consistent with the result
calculated with Formula (4).

2.2.3. Corner Codification-Based Euler Number Computing Algorithm
The contour pixel information in an image is very useful for image analysis and un-

derstanding. Accordingly, Ref. [16] proposed a 4-connectivity corner codification-based
algorithm for computing the Euler number, taking advantage of the number of fore-
ground pixels that each connected component’s exterior contour pixels contacts.

According to the proposed algorithm, every exterior contour pixel that touches the
connected component’s background directly will be encoded by the number of fore-
ground pixels it touches. As shown in Figure 7a, there are four corners in a foreground
pixel, i.e., NW, NE, SW, and SE. Moreover, there are only three codifications for the cor-
ners of exterior contour pixels, i.e., 1, 2, and 3. For example, for the contour pixel a in
Figure 7a:
(1) The NW corner touches one foreground pixel, i.e., pixel a; thus, the codification of

this corner is 1.
(2) The NE corner touches two foreground pixels, i.e., pixel a and pixel b; thus, the codi-

fication of this corner is 2.
(3) The SW corner touches three foreground pixels, i.e., pixel a, pixel c, and pixel d; thus,

the codification of this corner is 3.
(4) The SE corner touches three foreground pixels, i.e., pixel a, pixel b, and pixel d; thus,

the codification of this corner is 3.

Figure 7. An example illustrating the corner codification-based Euler number computing algorithm:
(a) different codifications of each exterior corner of a contour pixel; (b) codification of an image; (c)
codification of the deformed image.

Let N1 be the number of corners whose corner codifications are 1, and let N3 be the
number of corners whose corner codifications are 3. The image’s Euler number can be
obtained by using Formula (5).

1 3

4
N N

E
−

= (5)

Figure 7. An example illustrating the corner codification-based Euler number computing algorithm:
(a) different codifications of each exterior corner of a contour pixel; (b) codification of an image;
(c) codification of the deformed image.

Let N1 be the number of corners whose corner codifications are 1, and let N3 be the
number of corners whose corner codifications are 3. The image’s Euler number can be
obtained by using Formula (5).

E =
N1 − N3

4
(5)

For example, as shown in Figure 7b, there are 18 corners whose codifications are 1
and 18 corners whose codifications are 3. According to Formula (5), the Euler number is
E = (N1 − N3) = (18 − 18)/4 = 0.

In fact, there is one connected component and one hole in Figure 7b, so the Euler
number is E = C − H = 1 − 1 = 0 according to the definition, which is consistent with the
result calculated with Formula (5). Then, when the image is transformed into the one in
Figure 7c, both N1 and N3 are 16 and the Euler number of the image is still 0. It is verified
that the Euler number remains unchanged when the image is transformed or rotated.

2.3. Algorithms That Compute the Euler Number by Counting Specific Blocks/Patterns in the Image

In Ref. [24], Lin proved that Euler number computation satisfies the additive theorem.
In other words, to obtain the Euler number, we can independently calculate the Euler
number of a small portion of a given image and summarize all of the results to obtain the
image’s Euler number. Hence, different from the method described in Ref. [9], the Euler
number can be obtained without a comprehensive understanding of the image in advance.

2.3.1. Bit-Quad-Based Euler Number Computing Algorithm

In Ref. [17], a classical and efficient algorithm is presented for Euler number computa-
tion. This algorithm computes the Euler number by counting specific bit-quads in an image

Electronics 2023, 12, 4406 10 of 30

composed of 2 × 2 pixels. Because this algorithm is very easy to implement, the widely
recognized commercial image-processing software MATLAB R2018b has incorporated this
algorithm [18]. For convenience, this classical bit-quad-based algorithm is represented as
the C-BQ algorithm in this paper.

The C-BQ algorithm [17] computes the Euler number by counting specific bit-quads in
an image. To implement the algorithm, it is necessary to conduct a raster scan of the image
horizontally from left to right and vertically from top to bottom. For every pixel p(x, y)
accessed in the raster scan, four pixels should be accessed in the corresponding bit-quad[

p(x, y) p(x + 1, y)
p(x, y + 1) p(x + 1, y + 1)

]
to confirm whether the current bit-quad exists in patterns

Pat1, Pat2, or Pat3, as shown in Figure 8.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 31

For example, as shown in Figure 7b, there are 18 corners whose codifications are 1
and 18 corners whose codifications are 3. According to Formula (5), the Euler number is E
= (N1 − N3) = (18 − 18)/4 = 0.

In fact, there is one connected component and one hole in Figure 7b, so the Euler
number is E = C − H = 1 − 1 = 0 according to the definition, which is consistent with the
result calculated with Formula (5). Then, when the image is transformed into the one in
Figure 7c, both N1 and N3 are 16 and the Euler number of the image is still 0. It is verified
that the Euler number remains unchanged when the image is transformed or rotated.

2.3. Algorithms That Compute the Euler Number by Counting Specific Blocks/Patterns in
the Image

In Ref. [24], Lin proved that Euler number computation satisfies the additive theo-
rem. In other words, to obtain the Euler number, we can independently calculate the Euler
number of a small portion of a given image and summarize all of the results to obtain the
image’s Euler number. Hence, different from the method described in Ref. [9], the Euler
number can be obtained without a comprehensive understanding of the image in advance.

2.3.1. Bit-Quad-Based Euler Number Computing Algorithm
In Ref. [17], a classical and efficient algorithm is presented for Euler number compu-

tation. This algorithm computes the Euler number by counting specific bit-quads in an
image composed of 2 × 2 pixels. Because this algorithm is very easy to implement, the
widely recognized commercial image-processing software MATLAB R2018b has incorpo-
rated this algorithm [18]. For convenience, this classical bit-quad-based algorithm is rep-
resented as the C-BQ algorithm in this paper.

The C-BQ algorithm [17] computes the Euler number by counting specific bit-quads
in an image. To implement the algorithm, it is necessary to conduct a raster scan of the
image horizontally from left to right and vertically from top to bottom. For every pixel p(x,
y) accessed in the raster scan, four pixels should be accessed in the corresponding bit-quad

(,) (1,)
(, 1) (1, 1)
p x y p x y

p x y p x y
 +
 + + +

 to confirm whether the current bit-quad exists in patterns Pat1,

Pat2, or Pat3, as shown in Figure 8.

Figure 8. Three types of bit-quads need to be addressed in the C-BQ algorithm.

Let NP1, NP2, and NP3 denote the number of patterns Pat1, Pat2, and Pat3 that occurred
in the image, respectively. Then, the 4-connectivity Euler number can be computed by
using Formula (6), whereas for 8-connectivity cases, the computing formula is Formula
(7).

Figure 8. Three types of bit-quads need to be addressed in the C-BQ algorithm.

Let NP1, NP2, and NP3 denote the number of patterns Pat1, Pat2, and Pat3 that occurred
in the image, respectively. Then, the 4-connectivity Euler number can be computed by
using Formula (6), whereas for 8-connectivity cases, the computing formula is Formula (7).

E4 =
NP1 − NP2 + 2NP3

4
(6)

E8 =
NP1 − NP2 − 2NP3

4
(7)

It is obvious that, to compute the Euler number with the C-BQ algorithm, we scan
the image, access the pixels, check the corresponding bit-quads, and confirm whether
they should be counted or not. For each scanned pixel, we have to access the other three
neighboring pixels in the corresponding bit-quad. As a result, we need to access four pixels
when processing each pixel in the C-BQ algorithm. For an image with a resolution of X × Y
pixels, while computing its Euler number, we have to access 4 × X × Y pixels in the C-BQ
algorithm.

However, some pixels are accessed redundantly during the computation procedure
with the C-BQ algorithm. For example, as shown in Figure 9, when we process pixel p11,

we need to access pixels p11, p12, p21, and p22 in the corresponding bit-quad
[

p11 p12
p21 p22

]
to confirm whether this bit-quad should be counted or not. Then, when we process the
next pixel, p12, in the same row, we need to access pixels p12, p13, p22, and p23 in the

corresponding bit-quad
[

p12 p13
p22 p23

]
to confirm whether this bit-quad should be counted or

not. Obviously, pixels p12 and p22 were already accessed while processing pixel p11. On the
other hand, when we process pixel p21 in the next row, we need to access pixels p21, p22, p31,

Electronics 2023, 12, 4406 11 of 30

and p32 in the corresponding bit-quad
[

p21 p22
p31 p32

]
. It is found that pixels p21 and p22 were

also accessed while processing pixel p11.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 31

1 2 3
4

2
4

− +
=
NP NP NP

E (6)

1 2 3
8

2
4

− −
=
NP NP NPE (7)

It is obvious that, to compute the Euler number with the C-BQ algorithm, we scan the
image, access the pixels, check the corresponding bit-quads, and confirm whether they
should be counted or not. For each scanned pixel, we have to access the other three neigh-
boring pixels in the corresponding bit-quad. As a result, we need to access four pixels
when processing each pixel in the C-BQ algorithm. For an image with a resolution of X ×
Y pixels, while computing its Euler number, we have to access 4 × X × Y pixels in the C-
BQ algorithm.

However, some pixels are accessed redundantly during the computation procedure
with the C-BQ algorithm. For example, as shown in Figure 9, when we process pixel p11,

we need to access pixels p11, p12, p21, and p22 in the corresponding bit-quad 11 12

21 22

p p
p p

 to

confirm whether this bit-quad should be counted or not. Then, when we process the next
pixel, p12, in the same row, we need to access pixels p12, p13, p22, and p23 in the corresponding

bit-quad 12 13

22 23

p p
p p

 to confirm whether this bit-quad should be counted or not. Obvi-

ously, pixels p12 and p22 were already accessed while processing pixel p11. On the other
hand, when we process pixel p21 in the next row, we need to access pixels p21, p22, p31, and

p32 in the corresponding bit-quad 21 22

31 32

p p
p p

. It is found that pixels p21 and p22 were also

accessed while processing pixel p11.

Figure 9. Illustration of the problems in the C-BQ algorithm.

In order to avoid accessing pixels repeatedly while processing pixels in the raster
scan, Yao et al. [19,20] proposed two efficient strategies, i.e., state transition and multi-row
scanning, to reduce redundant pixel access from the horizontal direction and vertical di-
rection of the image.
1. Strategy of state transition

As described above, two pixels are accessed repeatedly while processing the current
pixel and the previous pixel in the same row in the C-BQ algorithm. In fact, the repeated
access can be avoided by use of the values acquired while processing the previous pixel.
As shown in Figure 10, in order to represent the values of the two accessed pixels, four
states, St1–St4, are defined in Ref. [19], and, taking advantage of transitions among the
states, only two pixels need to be accessed to process a pixel.

Figure 9. Illustration of the problems in the C-BQ algorithm.

In order to avoid accessing pixels repeatedly while processing pixels in the raster
scan, Yao et al. [19,20] proposed two efficient strategies, i.e., state transition and multi-
row scanning, to reduce redundant pixel access from the horizontal direction and vertical
direction of the image.

1. Strategy of state transition

As described above, two pixels are accessed repeatedly while processing the current
pixel and the previous pixel in the same row in the C-BQ algorithm. In fact, the repeated
access can be avoided by use of the values acquired while processing the previous pixel. As
shown in Figure 10, in order to represent the values of the two accessed pixels, four states,
St1–St4, are defined in Ref. [19], and, taking advantage of transitions among the states, only
two pixels need to be accessed to process a pixel.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 31

Figure 10. Four states defined when processing a pixel with the state transition strategy.

In implementation, based on the prior assumption that all pixels on the border are
background pixels, the algorithm begins the processing from St1, and it only needs to ac-
cess two pixels on the right of the bit-quad, i.e., px and py in Figure 10, to confirm whether
the current bit-quad should be counted or not. According to the values of pixel px and
pixel py, the next bit-quad to be checked must be one of the four states, and to confirm
whether the next bit-quad should be counted or not, still only two pixels need to be ac-
cessed. In other words, following the strategy of state transition, only the right two pixels
need to be accessed in a bit-quad to confirm whether the current bit-quad should be
counted or not. Therefore, the number of pixels that need to be accessed to process a pixel
can decrease from four to two. That is to say, we only need to access 2 × X × Y pixels to
compute the Euler number of an X × Y-size image with this strategy.

Hence, the problem of accessing pixels repeatedly from the horizontal direction of an
image can be solved via the strategy of state transition. To simplify matters, the algorithm
introduced in Ref. [19] is denoted as the IH-BQ algorithm.
2. Strategy of multi-row scanning

In the IH-BQ algorithm, by using the four defined states, only two pixels need to be
accessed to process a pixel in an image. However, there are pixels that are accessed re-
peatedly when processing pixel p(x, y) and pixel p(x, y + 1) in the next row. For example,

we need to check the corresponding bit-quad
(,) (1,)

(, 1) (1, 1)
p x y p x y

p x y p x y
 +
 + + +

 to confirm

whether it should be counted or not when processing pixel p(x, y). While processing pixel
p(x, y + 1) in the next row, we have to check the corresponding bit-quad

(, 1) (1, 1)
(, 2) (1, 2)

p x y p x y
p x y p x y
 + + +
 + + +

. Then, it is noticed that pixel p(x, y + 1) and pixel p(x + 1, y + 1)

are accessed repeatedly.
In order to avoid the repeated access of pixels mentioned above, Ref. [20] presented

an efficient strategy that scans image rows two by two. For example, when processing

pixel p(x, y), we access six pixels
(,) (1,)

(, 1) (1, 1)
(, 2) (1, 2)

p x y p x y
p x y p x y
p x y p x y

 +
 + + +
 + + +

 once and confirm whether

the two bit-quads
(,) (1,)

(, 1) (1, 1)
p x y p x y

p x y p x y
 +
 + + +

 and
(, 1) (1, 1)
(, 2) (1, 2)

p x y p x y
p x y p x y
 + + +
 + + +

 should be

counted or not. Via this means, we need to access 6/2 = 3 pixels to process a bit-quad,
which seems to be more than with the IH-BQ algorithm.

If the two strategies of state transition and multi-row scanning can be employed sim-
ultaneously, we can check two bit-quads by accessing three pixels. In other words, 3/2 =
1.5 pixels need to be accessed to process a bit-quad, which is fewer than with the IH-BQ
algorithm, and then, the efficiency of algorithm can be improved further.

Following this consideration, when every row n of the given image is scanned, we
can confirm whether n bit-quads should be counted or not by accessing n + 1 pixels. Then,
(n + 1)/n pixels need to be accessed to process each bit-quad on average. Theoretically, as

Figure 10. Four states defined when processing a pixel with the state transition strategy.

In implementation, based on the prior assumption that all pixels on the border are
background pixels, the algorithm begins the processing from St1, and it only needs to access
two pixels on the right of the bit-quad, i.e., px and py in Figure 10, to confirm whether the
current bit-quad should be counted or not. According to the values of pixel px and pixel
py, the next bit-quad to be checked must be one of the four states, and to confirm whether
the next bit-quad should be counted or not, still only two pixels need to be accessed. In
other words, following the strategy of state transition, only the right two pixels need to be
accessed in a bit-quad to confirm whether the current bit-quad should be counted or not.
Therefore, the number of pixels that need to be accessed to process a pixel can decrease
from four to two. That is to say, we only need to access 2 × X × Y pixels to compute the
Euler number of an X × Y-size image with this strategy.

Hence, the problem of accessing pixels repeatedly from the horizontal direction of an
image can be solved via the strategy of state transition. To simplify matters, the algorithm
introduced in Ref. [19] is denoted as the IH-BQ algorithm.

2. Strategy of multi-row scanning

In the IH-BQ algorithm, by using the four defined states, only two pixels need to be ac-
cessed to process a pixel in an image. However, there are pixels that are accessed repeatedly
when processing pixel p(x, y) and pixel p(x, y + 1) in the next row. For example, we need

Electronics 2023, 12, 4406 12 of 30

to check the corresponding bit-quad
[

p(x, y) p(x + 1, y)
p(x, y + 1) p(x + 1, y + 1)

]
to confirm whether it

should be counted or not when processing pixel p(x, y). While processing pixel p(x, y + 1) in

the next row, we have to check the corresponding bit-quad
[

p(x, y + 1) p(x + 1, y + 1)
p(x, y + 2) p(x + 1, y + 2)

]
.

Then, it is noticed that pixel p(x, y + 1) and pixel p(x + 1, y + 1) are accessed repeatedly.
In order to avoid the repeated access of pixels mentioned above, Ref. [20] presented an

efficient strategy that scans image rows two by two. For example, when processing pixel

p(x, y), we access six pixels

 p(x, y) p(x + 1, y)
p(x, y + 1) p(x + 1, y + 1)
p(x, y + 2) p(x + 1, y + 2)

 once and confirm whether the

two bit-quads
[

p(x, y) p(x + 1, y)
p(x, y + 1) p(x + 1, y + 1)

]
and

[
p(x, y + 1) p(x + 1, y + 1)
p(x, y + 2) p(x + 1, y + 2)

]
should be

counted or not. Via this means, we need to access 6/2 = 3 pixels to process a bit-quad,
which seems to be more than with the IH-BQ algorithm.

If the two strategies of state transition and multi-row scanning can be employed
simultaneously, we can check two bit-quads by accessing three pixels. In other words,
3/2 = 1.5 pixels need to be accessed to process a bit-quad, which is fewer than with the
IH-BQ algorithm, and then, the efficiency of algorithm can be improved further.

Following this consideration, when every row n of the given image is scanned, we
can confirm whether n bit-quads should be counted or not by accessing n + 1 pixels. Then,
(n + 1)/n pixels need to be accessed to process each bit-quad on average. Theoretically, as
the ever-increasing number of bit-quads is simultaneously processed, the average number
of pixels that need to be accessed to process each bit-quad will decrease. At the same
time, the algorithm will become more complex as the number of bit-quads being processed
simultaneously increases, and it may not be very efficient in practice. Ref. [20] studied the
bit-quad-based algorithms and implemented the algorithm of multi-row scanning every
three rows, every four rows, and every five rows and verified that the best compromise
for this algorithm is to scan five rows once and process four bit-quads simultaneously. To
simplify matters, we denote the algorithm presented in Ref. [20] as the I-BQ algorithm.

Furthermore, to obtain the Euler number, Gomez [21] and Sossa [22] presented alter-
native formulas by use of bit-quads. Similar to the C-BQ algorithm, there are pixels that are
accessed repeatedly upon implementation, and the proposed algorithm can be improved
by using the strategies of state transition and multi-row scanning.

2.3.2. Run-Based Euler Number Computing Algorithm

Besides certain 2 × 2 bit-quad patterns, the Euler number can be obtained based on
the consecutive foreground pixel patterns, called runs, in each row in an image. Ref. [23]
suggested an algorithm for obtaining the 8-connectivity Euler number by using the number
of runs and 8-connectivity runs in an image.

If there is a pixel p1 in run R1 of a row and a pixel p2 in run R2 of another adjacent row
such that they are 8-connectivity, then runs R1 and R2 are considered to be 8-connectivity.

As shown in Figure 11, the number of runs in the second row, the third row, the
fourth row, and the fifth row are two, four, four, and one, respectively. Moreover, there are
15 8-connectivity runs in the adjacent rows, which are marked by oval shapes. It is noticed
that a run can be an 8-connectivity run of other runs in adjacent rows simultaneously.

According to the above definition, the algorithm [23] computes the Euler number
by using the difference between the runs and the 8-connectivity runs in the image. The
correctness of this algorithm is proven by using the additive theorem [24]. Let RUNS
and NBRUNS denote the numbers of runs and 8-connectivity runs, respectively. We can
calculate the Euler number of an image by using Formula (8).

E = RUNS − NBRUNS (8)

Electronics 2023, 12, 4406 13 of 30

Electronics 2023, 12, x FOR PEER REVIEW 13 of 31

the ever-increasing number of bit-quads is simultaneously processed, the average number
of pixels that need to be accessed to process each bit-quad will decrease. At the same time,
the algorithm will become more complex as the number of bit-quads being processed sim-
ultaneously increases, and it may not be very efficient in practice. Ref. [20] studied the bit-
quad-based algorithms and implemented the algorithm of multi-row scanning every three
rows, every four rows, and every five rows and verified that the best compromise for this
algorithm is to scan five rows once and process four bit-quads simultaneously. To simplify
matters, we denote the algorithm presented in Ref. [20] as the I-BQ algorithm.

Furthermore, to obtain the Euler number, Gomez [21] and Sossa [22] presented alter-
native formulas by use of bit-quads. Similar to the C-BQ algorithm, there are pixels that
are accessed repeatedly upon implementation, and the proposed algorithm can be im-
proved by using the strategies of state transition and multi-row scanning.

2.3.2. Run-Based Euler Number Computing Algorithm
Besides certain 2 × 2 bit-quad patterns, the Euler number can be obtained based on

the consecutive foreground pixel patterns, called runs, in each row in an image. Ref. [23]
suggested an algorithm for obtaining the 8-connectivity Euler number by using the num-
ber of runs and 8-connectivity runs in an image.

If there is a pixel p1 in run R1 of a row and a pixel p2 in run R2 of another adjacent row
such that they are 8-connectivity, then runs R1 and R2 are considered to be 8-connectivity.

As shown in Figure 11, the number of runs in the second row, the third row, the
fourth row, and the fifth row are two, four, four, and one, respectively. Moreover, there
are 15 8-connectivity runs in the adjacent rows, which are marked by oval shapes. It is
noticed that a run can be an 8-connectivity run of other runs in adjacent rows simultane-
ously.

Figure 11. An example to illustrate the run-based Euler number computing algorithm.

According to the above definition, the algorithm [23] computes the Euler number by
using the difference between the runs and the 8-connectivity runs in the image. The cor-
rectness of this algorithm is proven by using the additive theorem [24]. Let RUNS and
NBRUNS denote the numbers of runs and 8-connectivity runs, respectively. We can cal-
culate the Euler number of an image by using Formula (8).

E = RUNS − NBRUNS (8)

As a result, for the image shown in Figure 11, the Euler number is E = RUNS −
NBRUNS = (2 + 4 + 4 + 1) − 15 = −4. In fact, only one connected component exists in the
image in the case of 8-connectivity. On the other hand, five holes labeled by the numbers
1, 2, 3, 4, and 5 are formed in the image. The Euler number is E = C − H = 1 − 5 = −4, which
is consistent with the result calculated with Formula (8). To simplify matters, this classical
run-based algorithm is denoted as the C-RB algorithm in this paper.

Figure 11. An example to illustrate the run-based Euler number computing algorithm.

As a result, for the image shown in Figure 11, the Euler number is E = RUNS − NBRUNS
= (2 + 4 + 4 + 1) − 15 = −4. In fact, only one connected component exists in the image in the
case of 8-connectivity. On the other hand, five holes labeled by the numbers 1, 2, 3, 4, and 5
are formed in the image. The Euler number is E = C − H = 1 − 5 = −4, which is consistent
with the result calculated with Formula (8). To simplify matters, this classical run-based
algorithm is denoted as the C-RB algorithm in this paper.

Based on the description above, a raster scan should also be conducted on the given
image with the C-RB algorithm for Euler number computation. For all scanned rows except
the first row, we need to identify the shift from background pixel to foreground pixel to
count the runs in each row. Meanwhile, the location information needs to be recorded to
find the 8-connectivity runs between the current row and the previous row. When the last
row is scanned completely, the numbers of runs and 8-connectivity runs can be obtained,
and the Euler number can be calculated with Formula (8) easily.

As an improvement, based on the numbers of runs and 8-connectivity runs in the im-
age, Ref. [25] presented another Euler number computing algorithm. Instead of processing
rows of the image one by one from the first row to the last row, the improved algorithm
divides the scanning procedure into two steps. In the first step, it scans the odd rows from
the first row of the image, detects and counts the runs in the odd rows, and records the
end locations. In the second step, it scans the even rows and detects and counts the runs in
the even rows. At the same time, it also finds 8-connectivity runs formed in the previous
row and the next row at once. To simplify matters, the algorithm mentioned in Ref. [25] is
denoted as the I-RB algorithm in this paper.

Through in-depth analysis of the C-RB algorithm and the I-RB algorithm, we realized
that all runs and all 8-connectivity runs need to be found in the two algorithms. On the
other hand, both the start location and the end location need to be recorded in the C-RB
algorithm, whereas only the end location needs to be recorded in the I-RB algorithm.
Furthermore, all runs in a given image need to be recorded in the C-RB algorithm, whereas
only runs in the odd rows need to be recorded in the I-RB algorithm, which can indicate an
improvement over the C-RB algorithm.

2.4. Algorithms That Compute the Euler Number by Special Data Structure

Although images and graphs are stored differently in the memory of computers, there
is still some connection between images and graphs [26–28]. When an image is represented
by a graph, some useful conclusions and theorems in graph theory can be employed for
image-processing tasks.

2.4.1. Graph-Representing-Based Euler Number Computing Algorithm

In Ref. [26], Chen presented a graph-representing-based algorithm for computing the
4-connectivity Euler number by employing the Euler formula, which is often used in graph
theory.

Electronics 2023, 12, 4406 14 of 30

To take advantage of the Euler formula in graph theory, an image needs to be rep-
resented by a graph. Because the images we processed are two-dimensional images, the
corresponding graphs will be square graphs. To construct the graph, an image X is consid-
ered to be a subset in Z2, and every foreground pixel in the given image will be treated as
a node. For any foreground pixel xi, xj ∈ X, add an edge eij between xi and xj if xi and xj

are 4-connectivity. Wherever a 2 × 2 foreground pixel pattern
[

1 1
1 1

]
occurs in the image,

there will be a basic face in the corresponding graph. When all foreground pixels are added
to the graph and all edges and all basic faces are fully considered, we can construct a square
graph. Denoting the numbers of nodes, edges, and basic faces as n, e, and f in the graph,
respectively, the Euler number can be obtained by using Formula (9).

E = n − e + f (9)

Upon implementation, instead of constructing the corresponding graph in advance
and counting the nodes, edges, and basic faces in the constructed graph, we can calculate
them directly by using the given image. According to the graph-constructing rules, the
number of nodes in the graph will be the same as that of the foreground pixels in the
image. As for the edges, whenever there are two consecutive foreground pixels in the
horizontal direction or the vertical direction of the image, there will be an edge. Thus, to

calculate the number of edges, we should consider the configurations of
[

1
1

]
and

[
1 1

]
in the image. Lastly, while computing the basic faces, we only need to count the 2 × 2
foreground bit-quads in the given image, i.e., we only need to consider the configuration of[

1 1
1 1

]
in the image.

For example, for the image shown in Figure 12, the number of nodes, edges, and basic
faces is 15, 16, and 2, respectively; therefore, the Euler number is calculated as E = n − e
+ f = 15 − 16 + 2 = 1. In fact, there are two connected components and one hole in the
image, so the Euler number is E = C − H = 2 − 1 = 1, according to the definition, which is
consistent with the result calculated with Formula (9).

Electronics 2023, 12, x FOR PEER REVIEW 15 of 31

calculate the number of edges, we should consider the configurations of
1
1

 and 1 1

in the image. Lastly, while computing the basic faces, we only need to count the 2 × 2
foreground bit-quads in the given image, i.e., we only need to consider the configuration

of
1 1
1 1

 in the image.

For example, for the image shown in Figure 12, the number of nodes, edges, and basic
faces is 15, 16, and 2, respectively; therefore, the Euler number is calculated as E = n − e + f
= 15 − 16 + 2 = 1. In fact, there are two connected components and one hole in the image,
so the Euler number is E = C − H = 2 − 1 = 1, according to the definition, which is consistent
with the result calculated with Formula (9).

Figure 12. An example to illustrate the 4-connectivity graph-representing-based Euler number com-
puting algorithm.

The algorithm presented in Ref. [26] calculates the 4-connectivity Euler number of an
image according to the number of nodes, edges, and basic faces in the constructed graph
corresponding to the image. Then, some researchers extended it to 8-connectivity and pro-
posed some improvements in Refs. [27,28].

As shown in Figure 13, for the given image, when we take all foreground pixels as
nodes and add all edges between two foreground pixels if and only if they are 8-connec-
tivity neighbors, unless the resulting edge would cross another edge, we can construct a
graph corresponding to the given image in the case of 8-connectivity. Obviously, the con-
structed graph is also a square graph. If we denote the number of nodes, edges, squares,
and connected components in the graph as n, e, r, and C, respectively, we can obtain n − e
+ r = C + 1 by using the Euler formula in graph theory.

Figure 12. An example to illustrate the 4-connectivity graph-representing-based Euler number
computing algorithm.

The algorithm presented in Ref. [26] calculates the 4-connectivity Euler number of an
image according to the number of nodes, edges, and basic faces in the constructed graph
corresponding to the image. Then, some researchers extended it to 8-connectivity and
proposed some improvements in Refs. [27,28].

As shown in Figure 13, for the given image, when we take all foreground pixels as
nodes and add all edges between two foreground pixels if and only if they are 8-connectivity
neighbors, unless the resulting edge would cross another edge, we can construct a graph
corresponding to the given image in the case of 8-connectivity. Obviously, the constructed

Electronics 2023, 12, 4406 15 of 30

graph is also a square graph. If we denote the number of nodes, edges, squares, and con-
nected components in the graph as n, e, r, and C, respectively, we can obtain n − e + r = C + 1
by using the Euler formula in graph theory.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 31

calculate the number of edges, we should consider the configurations of
1
1

 and 1 1

in the image. Lastly, while computing the basic faces, we only need to count the 2 × 2
foreground bit-quads in the given image, i.e., we only need to consider the configuration

of
1 1
1 1

 in the image.

For example, for the image shown in Figure 12, the number of nodes, edges, and basic
faces is 15, 16, and 2, respectively; therefore, the Euler number is calculated as E = n − e + f
= 15 − 16 + 2 = 1. In fact, there are two connected components and one hole in the image,
so the Euler number is E = C − H = 2 − 1 = 1, according to the definition, which is consistent
with the result calculated with Formula (9).

Figure 12. An example to illustrate the 4-connectivity graph-representing-based Euler number com-
puting algorithm.

The algorithm presented in Ref. [26] calculates the 4-connectivity Euler number of an
image according to the number of nodes, edges, and basic faces in the constructed graph
corresponding to the image. Then, some researchers extended it to 8-connectivity and pro-
posed some improvements in Refs. [27,28].

As shown in Figure 13, for the given image, when we take all foreground pixels as
nodes and add all edges between two foreground pixels if and only if they are 8-connec-
tivity neighbors, unless the resulting edge would cross another edge, we can construct a
graph corresponding to the given image in the case of 8-connectivity. Obviously, the con-
structed graph is also a square graph. If we denote the number of nodes, edges, squares,
and connected components in the graph as n, e, r, and C, respectively, we can obtain n − e
+ r = C + 1 by using the Euler formula in graph theory.

Figure 13. An example to illustrate the 8-connectivity graph-representing-based Euler number
computing algorithm.

In the Euler formula in graph theory, in an infinite square outside of the graph, all of
the basic faces and holes can be treated as squares. Let H denote the number of holes and
f denote the number of basic faces in the graph; the squares r are H + f + 1. By using the
Euler formula, we can obtain n − e + (H + f + 1) = C + 1. Therefore, we can calculate the
Euler number as:

E = C − H = n − e + f (10)

It looks the same as Formula (9). In other words, the image’s Euler number can be
computed according to the number of nodes, edges, and basic faces in the corresponding
graph in the case of 8-connectivity. However, it is noticed that the basic faces are referred to
as right-angled triangle faces in the case of 8-connectivity.

Similarly, as in the algorithm presented in [26], the number of nodes, edges, and basic
faces can be obtained by accessing all pixels in the given image without constructing a
square graph in advance.

When implementing the algorithm, the number of nodes is the same as the number
of foreground pixels in the image, which is the same as in the algorithm presented in [26].
According to the constructing rules, an edge should be added if and only if two foreground
pixels are 8-connectivity neighbors and the added edge will not cross another edge in order
to avoid calculating the edges repeatedly. To calculate the edges, the pixels in the image
need to be accessed and whether two neighboring pixels can form a new edge or not needs
to be determined. This procedure can be implemented by checking every bit-quad in the
image. As shown in Figure 14, for each processing bit-quad, we access the pixels and
calculate the edges marked by the dotted line. Noticed that if edges (p(x, y), p(x − 1, y-1))
and (p(x − 1, y), p(x, y − 1)) exist, only one edge will be counted because an edge should
not cross with another edge.

When counting the basic faces, i.e., the right-angled triangle faces, all of the pixels in a
bit-quad need to be accessed. If all of the pixels in a bit-quad are foreground pixels, two
basic faces (right-angled triangle faces) will be formed in the graph. If there are three pixels
in a bit-quad, only one basic face will be formed in the graph. Otherwise, no basic faces
will be formed.

When all bit-quads in the image are processed, the number of nodes, edges, and basic
faces can be obtained, and therefore, the Euler number can be easily calculated by using
Formula (10).

Electronics 2023, 12, 4406 16 of 30

Electronics 2023, 12, x FOR PEER REVIEW 16 of 31

Figure 13. An example to illustrate the 8-connectivity graph-representing-based Euler number com-
puting algorithm.

In the Euler formula in graph theory, in an infinite square outside of the graph, all of
the basic faces and holes can be treated as squares. Let H denote the number of holes and
f denote the number of basic faces in the graph; the squares r are H + f + 1. By using the
Euler formula, we can obtain n − e + (H + f + 1) = C + 1. Therefore, we can calculate the Euler
number as:

E = C − H = n − e + f (10)

It looks the same as Formula (9). In other words, the image’s Euler number can be
computed according to the number of nodes, edges, and basic faces in the corresponding
graph in the case of 8-connectivity. However, it is noticed that the basic faces are referred
to as right-angled triangle faces in the case of 8-connectivity.

Similarly, as in the algorithm presented in [26], the number of nodes, edges, and basic
faces can be obtained by accessing all pixels in the given image without constructing a
square graph in advance.

When implementing the algorithm, the number of nodes is the same as the number
of foreground pixels in the image, which is the same as in the algorithm presented in [26].
According to the constructing rules, an edge should be added if and only if two fore-
ground pixels are 8-connectivity neighbors and the added edge will not cross another
edge in order to avoid calculating the edges repeatedly. To calculate the edges, the pixels
in the image need to be accessed and whether two neighboring pixels can form a new
edge or not needs to be determined. This procedure can be implemented by checking
every bit-quad in the image. As shown in Figure 14, for each processing bit-quad, we ac-
cess the pixels and calculate the edges marked by the dotted line. Noticed that if edges
(p(x, y), p(x − 1, y-1)) and (p(x − 1, y), p(x, y − 1)) exist, only one edge will be counted because
an edge should not cross with another edge.

p(x-1, y-1) p(x, y-1)

p(x, y)p(x-1, y)

Figure 14. Illustration of processing a bit-quad to calculate edges.

When counting the basic faces, i.e., the right-angled triangle faces, all of the pixels in
a bit-quad need to be accessed. If all of the pixels in a bit-quad are foreground pixels, two
basic faces (right-angled triangle faces) will be formed in the graph. If there are three pix-
els in a bit-quad, only one basic face will be formed in the graph. Otherwise, no basic faces
will be formed.

When all bit-quads in the image are processed, the number of nodes, edges, and basic
faces can be obtained, and therefore, the Euler number can be easily calculated by using
Formula (10).

Obviously, to reduce the complexity of the graph-representing-based Euler number
computing algorithm, the procedure of calculating nodes, edges, and basic faces is con-
verted to process the bit-quads in an image. Yao et al. [29] analyzed the configurations of
each type of bit-quad; listed the increments in nodes, edges, and basic faces; and presented
their Euler number increments, as shown in Table 1. It is obvious that only three types of

Figure 14. Illustration of processing a bit-quad to calculate edges.

Obviously, to reduce the complexity of the graph-representing-based Euler number
computing algorithm, the procedure of calculating nodes, edges, and basic faces is con-
verted to process the bit-quads in an image. Yao et al. [29] analyzed the configurations of
each type of bit-quad; listed the increments in nodes, edges, and basic faces; and presented
their Euler number increments, as shown in Table 1. It is obvious that only three types of
bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns ∆n ∆e ∆f ∆E = ∆n − ∆e + ∆f

P1

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

0 0 0 0

P2

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

1 0 0 1

P3

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

0 0 0 0

P4

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

1 1 0 0

P5

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

0 0 0 0

P6

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

1 1 0 0

P7

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

0 1 0 −1

P8

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

1 3 1 −1

P9

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

0 0 0 0

P10

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

1 1 0 0

P11

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

0 0 0 0

P12

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

1 2 1 0

P13

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

0 0 0 0

P14

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

1 2 1 0

P15

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

0 1 1 0
P16

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the
image, access the pixels, and process the bit-quads to obtain the number of nodes, edges,
and basic faces instead of constructing a real graph before implementation. Thus, the

Electronics 2023, 12, 4406 17 of 30

graph-representing-based Euler number computing algorithms can be considered the bit-
quad-based Euler number computing algorithm mentioned in Section 2.3.1, in a sense.
Moreover, the efficient strategies presented in Section 2.3.1 can applied to this algorithm
upon implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm

Besides a graph, an image can also be represented by a tree based on the distribution
of foreground pixels and background pixels of the image [30–32].

Ref. [30] presented an algorithm that computes the Euler number by representing a
given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively
until all pixels in the sub-image are foreground pixels or background pixels, as shown
in Figure 15b. Then, each sub-image can be represented by a leaf node and a binary tree
can be constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are
foreground pixels, the corresponding leaf node is represented as a black square, and when
all pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 31

Figure 15. An example illustrating a binary tree-representing procedure of an image: (a) the given
image; (b) the dividing result of the given image; (c) the binary tree corresponds to the given im-
age.

Based on the binary tree, taking advantage of additive functionals of quermassinte-
grals, a recursive method is proposed for the computation of the surface, volume, average
width, and Euler number of the image. Because of the complexity, to obtain the Euler
number only, this algorithm is rarely used in practice.

Furthermore, an image can be divided into four equal-size sub-images successively
and represented by a quadtree. Dyer [31] presented an algorithm for 4-connectivity Euler
number computation by representing an image as a linear quadtree. Moreover, it is suita-
ble for images with a resolution of 2n × 2n pixels.

For example, if we divide the image shown in Figure 16a into four equal-size sub-
images successively until all pixels in a sub-image are foreground pixels or background
pixels, we can construct a quadtree, as shown in Figure 16b. Based on the quadtree, we
can divide the given image into certain regions with different numbers of foreground pix-
els, as shown in Figure 16c, and each foreground pixel block is marked by a number in the
image and the corresponding quadtree (Figure 16b).

Figure 16. An example illustrating the algorithm proposed in Ref. [31]: (a) the given image; (b) the
quadtree corresponds to the given image; (c) the dividing result of the given image.

As mentioned in Ref. [31], a leaf node is a foreground pixel block that consists entirely
of foreground pixels. Two leaf nodes are said to be adjacent if the corresponding fore-
ground pixel blocks share a common edge, as shown in Figure 16c, where they are marked
by oval shapes. A point is considered to be surrounded by a group of nodes if a 2 × 2 block
of pixels exists, in which each individual node’s block contains at least one of the four
pixels and all four pixels are included in the union of the nodes’ blocks.

Based on the above definition, once the quadtree is constructed, we can obtain the
Euler number by using Formula (12).

E = L − A + S (12)

Here, L denotes the number of leaf nodes in the quadtree, i.e., the number of fore-
ground pixel blocks; A denotes the number of edges shared by adjacent foreground pixel
blocks, which can be formed in the horizontal or the vertical direction; and S denotes the
number of surrounding points in the case of three or four foreground pixel blocks sharing

Figure 15. An example illustrating a binary tree-representing procedure of an image: (a) the given
image; (b) the dividing result of the given image; (c) the binary tree corresponds to the given image.

Based on the binary tree, taking advantage of additive functionals of quermassinte-
grals, a recursive method is proposed for the computation of the surface, volume, average
width, and Euler number of the image. Because of the complexity, to obtain the Euler
number only, this algorithm is rarely used in practice.

Furthermore, an image can be divided into four equal-size sub-images successively
and represented by a quadtree. Dyer [31] presented an algorithm for 4-connectivity Euler
number computation by representing an image as a linear quadtree. Moreover, it is suitable
for images with a resolution of 2n × 2n pixels.

For example, if we divide the image shown in Figure 16a into four equal-size sub-
images successively until all pixels in a sub-image are foreground pixels or background
pixels, we can construct a quadtree, as shown in Figure 16b. Based on the quadtree, we can
divide the given image into certain regions with different numbers of foreground pixels, as
shown in Figure 16c, and each foreground pixel block is marked by a number in the image
and the corresponding quadtree (Figure 16b).

As mentioned in Ref. [31], a leaf node is a foreground pixel block that consists entirely
of foreground pixels. Two leaf nodes are said to be adjacent if the corresponding foreground
pixel blocks share a common edge, as shown in Figure 16c, where they are marked by oval
shapes. A point is considered to be surrounded by a group of nodes if a 2 × 2 block of
pixels exists, in which each individual node’s block contains at least one of the four pixels
and all four pixels are included in the union of the nodes’ blocks.

Based on the above definition, once the quadtree is constructed, we can obtain the
Euler number by using Formula (12).

E =L −A+S (12)

Electronics 2023, 12, 4406 18 of 30

Electronics 2023, 12, x FOR PEER REVIEW 18 of 31

Figure 15. An example illustrating a binary tree-representing procedure of an image: (a) the given
image; (b) the dividing result of the given image; (c) the binary tree corresponds to the given im-
age.

Based on the binary tree, taking advantage of additive functionals of quermassinte-
grals, a recursive method is proposed for the computation of the surface, volume, average
width, and Euler number of the image. Because of the complexity, to obtain the Euler
number only, this algorithm is rarely used in practice.

Furthermore, an image can be divided into four equal-size sub-images successively
and represented by a quadtree. Dyer [31] presented an algorithm for 4-connectivity Euler
number computation by representing an image as a linear quadtree. Moreover, it is suita-
ble for images with a resolution of 2n × 2n pixels.

For example, if we divide the image shown in Figure 16a into four equal-size sub-
images successively until all pixels in a sub-image are foreground pixels or background
pixels, we can construct a quadtree, as shown in Figure 16b. Based on the quadtree, we
can divide the given image into certain regions with different numbers of foreground pix-
els, as shown in Figure 16c, and each foreground pixel block is marked by a number in the
image and the corresponding quadtree (Figure 16b).

Figure 16. An example illustrating the algorithm proposed in Ref. [31]: (a) the given image; (b) the
quadtree corresponds to the given image; (c) the dividing result of the given image.

As mentioned in Ref. [31], a leaf node is a foreground pixel block that consists entirely
of foreground pixels. Two leaf nodes are said to be adjacent if the corresponding fore-
ground pixel blocks share a common edge, as shown in Figure 16c, where they are marked
by oval shapes. A point is considered to be surrounded by a group of nodes if a 2 × 2 block
of pixels exists, in which each individual node’s block contains at least one of the four
pixels and all four pixels are included in the union of the nodes’ blocks.

Based on the above definition, once the quadtree is constructed, we can obtain the
Euler number by using Formula (12).

E = L − A + S (12)

Here, L denotes the number of leaf nodes in the quadtree, i.e., the number of fore-
ground pixel blocks; A denotes the number of edges shared by adjacent foreground pixel
blocks, which can be formed in the horizontal or the vertical direction; and S denotes the
number of surrounding points in the case of three or four foreground pixel blocks sharing

Figure 16. An example illustrating the algorithm proposed in Ref. [31]: (a) the given image; (b) the
quadtree corresponds to the given image; (c) the dividing result of the given image.

Here, L denotes the number of leaf nodes in the quadtree, i.e., the number of fore-
ground pixel blocks; A denotes the number of edges shared by adjacent foreground pixel
blocks, which can be formed in the horizontal or the vertical direction; and S denotes the
number of surrounding points in the case of three or four foreground pixel blocks sharing
a corner, i.e., a 2 × 2 foreground pixel block in which at least three pixels are located in
different foreground pixel blocks.

For example, as shown in Figure 16a, there are ten leaf nodes, marked by numbers
in Figure 16c; ten pairs of adjacent foreground pixel blocks; marked by oval shapes in
Figure 16c; and a surrounding point indicated by X in Figure 16c. Thus, L = 10, A = 10, and
S = 1. As a result, the Euler number is computed as E = L − A + S = 10 − 10 + 1 = 1. In
fact, there are two connected components and one hole in Figure 16a, so its Euler number
is E = C − H = 2 − 1 = 1, according to the definition, which is consistent with the result
obtained by Formula (12).

As an improvement, Samet and Tamminen [32] utilized a novel data structure, resem-
bling a staircase, to represent the blocks that have undergone processing and presented a
useful algorithm for computing geometric properties such as the connected components,
perimeter, and Euler number of an image.

However, as the difference between the leaf nodes’ sizes and the quantity of these
nodes varies dramatically in different images, these tree-representing-based algorithms are
not suitable for VLSI implementation.

2.4.3. Graph Run-Representing-Based Euler Number Computing Algorithm

In Ref. [33], Di Zenzo et al. suggested another algorithm for computing the Euler
number by using graph theory and the runs in an image. In the proposed algorithm, the
runs and 4-/8-connectivity runs defined in Section 2.3.2 are reviewed, and these runs are
divided into several classes based on the features of the runs. Then, a square graph is
constructed based on the position of certain runs, and the Euler number is computed based
on the number of nodes and edges in the graph. Especially for a line-like image, this
algorithm can reduce the storage occupation greatly by ignoring certain runs in the image.

Taking a lesson from the hierarchy tree, for the two 4-/8-connectivity runs in adjacent
rows, the one on the top is named the parent run and the bottom one is named the child
run. All runs in the given image need to be found beforehand, and then, some definitions
can be introduced based on the runs to construct a graph.

Definition 1. A regular run is defined as a run that has only one parent and only one child. If a
run is not a regular run, it is considered to be a singular run. In fact, a singular run is a node in the
corresponding graph. As shown in Figure 17a, a singular run is marked by a capital letter.

Definition 2. A sequence of consecutive regular runs is defined as an arc. If it cannot be further
extended without becoming a proper subset of a larger arc, it is considered a maximal arc. As shown
in Figure 17a, the maximal arc is marked by an oval shape. Moreover, the maximal arc is an edge in
the corresponding graph. In fact, in a maximal arc, the initial parent and the terminal child are both
singular runs.

Electronics 2023, 12, 4406 19 of 30

Electronics 2023, 12, x FOR PEER REVIEW 19 of 31

a corner, i.e., a 2 × 2 foreground pixel block in which at least three pixels are located in
different foreground pixel blocks.

For example, as shown in Figure 16a, there are ten leaf nodes, marked by numbers in
Figure 16c; ten pairs of adjacent foreground pixel blocks; marked by oval shapes in Figure
16c; and a surrounding point indicated by X in Figure 16c. Thus, L = 10, A = 10, and S = 1.
As a result, the Euler number is computed as E = L − A + S = 10 − 10 + 1 = 1. In fact, there
are two connected components and one hole in Figure 16a, so its Euler number is E = C −
H = 2 − 1 = 1, according to the definition, which is consistent with the result obtained by
Formula (12).

As an improvement, Samet and Tamminen [32] utilized a novel data structure, re-
sembling a staircase, to represent the blocks that have undergone processing and pre-
sented a useful algorithm for computing geometric properties such as the connected com-
ponents, perimeter, and Euler number of an image.

However, as the difference between the leaf nodes’ sizes and the quantity of these
nodes varies dramatically in different images, these tree-representing-based algorithms
are not suitable for VLSI implementation.

2.4.3. Graph Run-Representing-Based Euler Number Computing Algorithm
In Ref. [33], Di Zenzo et al. suggested another algorithm for computing the Euler

number by using graph theory and the runs in an image. In the proposed algorithm, the
runs and 4-/8-connectivity runs defined in Section 2.3.2 are reviewed, and these runs are
divided into several classes based on the features of the runs. Then, a square graph is
constructed based on the position of certain runs, and the Euler number is computed
based on the number of nodes and edges in the graph. Especially for a line-like image, this
algorithm can reduce the storage occupation greatly by ignoring certain runs in the image.

Taking a lesson from the hierarchy tree, for the two 4-/8-connectivity runs in adjacent
rows, the one on the top is named the parent run and the bottom one is named the child
run. All runs in the given image need to be found beforehand, and then, some definitions
can be introduced based on the runs to construct a graph.

Definition 1. A regular run is defined as a run that has only one parent and only one child. If a
run is not a regular run, it is considered to be a singular run. In fact, a singular run is a node in
the corresponding graph. As shown in Figure 17a, a singular run is marked by a capital letter.

Figure 17. An example illustrating the graph run-representing-based Euler number computing al-
gorithm: (a) the given image; (b) the graph corresponds to the given image.
Figure 17. An example illustrating the graph run-representing-based Euler number computing
algorithm: (a) the given image; (b) the graph corresponds to the given image.

Accordingly, an image can be represented by the nodes and edges derived from the
singular runs and maximal arc, as shown in Figure 17b. Let SR and MA be the numbers of
nodes and edges of the corresponding graph, respectively, and the image’s Euler number
can be obtained with Formula (13).

E = SR −MA (13)

As can be seen in Figure 17b, there are seven nodes and eight edges in the graph. Thus,
the Euler number is E = SR −MA = 7 − 8 = −1. In fact, there is one connected component
in the image and two holes, so its Euler number is E = C − H = 1 − 2 = −1, according to the
definition, which is consistent with the result obtained by Formula (13).

Moreover, taking advantage of the graph constructed with this method, computing
tasks such as the computation of the diameter and the convex hull can be implemented
conveniently with this algorithm.

2.5. Algorithms That Compute the Euler Number via Machine Learning

Machine learning methods have been widely used for image classification and image
recognition tasks in recent years. In fact, when considering the computing procedure a
classification task, machine learning methods can compute the Euler number correctly.

The support vector machine (SVM) is a supervised learning technique utilized as
a generalized linear classifier in binary classification tasks. SVM learns from a set of
samples and identifies the maximum margin hyperplane, which serves as the decision
boundary for classifying new data. As mentioned in Sections 2.3.1 and 2.4.1, the bit-quad-
based algorithm and the graph-representing-based algorithm present strategies for Euler
number computation via increments of different configurations of bit-quads in an image.
Significantly, there are two different Euler number increments brought on by the bit-quads,
i.e., 1 and −1, and they can be classified by SVM, theoretically.

Sossa [34] explained the usage of SVM for the Euler number computation of an image.
By leveraging a well-known formula outlined in Ref. [17] and treating the computation of
an image’s Euler number as a pattern classification task, two special SVM architectures are
derived to obtain the Euler number of both the 4-connectivity case and the 8-connectivity
case.

As illustrated in Figure 18, the proposed SVM structure consists of two SVMs: SVM1
and SVM2, and they are connected serially. Manipulation of SVM2 is decided by the output

Electronics 2023, 12, 4406 20 of 30

of SVM1. Upon implementation of the computation of the 8-connectivity Euler number, a
vector formed by the values of four pixels in each bit-quad is taken as the input of SVM1.
The classification results of SVM1 are −1 or 1. If the classification result of SVM1 is −1,
corresponding to pattern P1, P3–P6, P9–P16, as shown in Table 2, the current bit-quad does
not need to be concerned because the Euler number increments of these bit-quads are zero.
Subsequently, the SVM1 advances to the next position over the image to check the next
bit-quad. If the classification result of SVM1 is 1, corresponding to pattern P2, P7, or P8,
as shown in Table 2, the current bit-quad will affect the image’s Euler number, and, as a
result, SVM2 will be activated. Based on the classification results of SVM2, the image’s
Euler number will be updated correspondingly.

Electronics 2023, 12, x FOR PEER REVIEW 21 of 31

Figure 18. Structure of the SVM Euler number computing method.

Table 2. Outputs of SVM1 and SVM2, corresponding to the 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Vectors ΔE y1 y2
P1 [0 0 0 0]T 0 −1
P2 [0 0 0 1]T 1 1 1
P3 [0 0 1 0]T 0 −1
P4 [0 0 1 1]T 0 −1
P5 [0 1 0 0]T 0 −1
P6 [0 1 0 1]T 0 −1
P7 [0 1 1 0]T −1 1 −1
P8 [0 1 1 1]T −1 1 −1
P9 [1 0 0 0]T 0 −1
P10 [1 0 0 1]T 0 −1
P11 [1 0 1 0]T 0 −1
P12 [1 0 1 1]T 0 −1
P13 [1 1 0 0]T 0 −1
P14 [1 1 0 1]T 0 −1
P15 [1 1 1 0]T 0 −1
P16 [1 1 1 1]T 0 −1

The experimental findings show that, although the conventional methods are faster,
the SVM-based implementation can serve as a viable alternative for automatically com-
puting an image’s Euler number. In addition, by changing the values of y1 and y2 in SVM2,
the SVM can compute the 4-connectivity Euler number easily.

Furthermore, by analyzing the local operations involved in applying established for-
mulas, Refs. [35,36] proposed other alternative methods for the automatic computation of
the Euler number in an image by means of an MLP (multilayer perceptron) and an ANN
(artificial neural network). Because of the computing efficiency, for the purpose of only
obtaining the Euler number, machine learning-based algorithms are not the best choice.

3. Experimental Results
The algorithms for computing the Euler number undergo a performance evaluation

in this section. Moreover, we only consider 8-connectivity cases. Because the C-BQ algo-
rithm and the C-RB algorithm are the classical algorithms for computing the Euler num-
ber, the labeling-based LB algorithm, bit-quad-based I-BQ algorithm, run-based I-RB al-
gorithm, and graph-based I-GT algorithm demonstrated the highest efficiency in their re-
spective categories. From this point forward, we solely compare the C-BQ, C-RB, LB, I-BQ,
I-RB, and I-GT algorithms. All algorithms used for our comparison were implemented in
C language. Table 3 presents the experimental platform in our experiments.

Figure 18. Structure of the SVM Euler number computing method.

Table 2. Outputs of SVM1 and SVM2, corresponding to the 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Vectors ∆E y1 y2

P1

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[0 0 0 0]T 0 −1

P2

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[0 0 0 1]T 1 1 1

P3

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[0 0 1 0]T 0 −1

P4

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[0 0 1 1]T 0 −1

P5

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[0 1 0 0]T 0 −1

P6

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[0 1 0 1]T 0 −1

P7

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[0 1 1 0]T −1 1 −1

P8

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[0 1 1 1]T −1 1 −1

P9

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[1 0 0 0]T 0 −1

P10

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[1 0 0 1]T 0 −1

P11

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[1 0 1 0]T 0 −1

P12

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[1 0 1 1]T 0 −1

P13

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[1 1 0 0]T 0 −1

P14

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[1 1 0 1]T 0 −1

P15

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[1 1 1 0]T 0 −1
P16

Electronics 2023, 12, x FOR PEER REVIEW 17 of 31

bit-quads will affect the Euler number of an image, i.e., P2, P7, and P8. When processing a
bit-quad, if it is a P2 pattern, the image’s Euler number will increase by 1. Similarly, if it is
either a P7 or P8 pattern, the image’s Euler number will decrease by 1.

Table 1. Configurations and Euler number increments of 16 types of bit-quads.

Pattern Names Bit-Quad Patterns Δn Δe Δf ΔE = Δn − Δe + Δf
P1 0 0 0 0
P2 1 0 0 1
P3 0 0 0 0
P4 1 1 0 0
P5 0 0 0 0
P6 1 1 0 0
P7 0 1 0 −1
P8 1 3 1 −1
P9 0 0 0 0
P10 1 1 0 0
P11 0 0 0 0
P12 1 2 1 0
P13 0 0 0 0
P14 1 2 1 0
P15 0 1 1 0
P16 1 3 2 0

If we denote the numbers of P2, P7 and P8 patterns in the given image as N2, N7, and
N8, respectively, the Euler number can be computed by using Formula (11).

E = N2 − N7 − N8 (11)

To simplify matters, this improved graph-theory-based algorithm is referred to as the
I-GT algorithm in the paper.

In conclusion, by taking advantage of the graph derived from the given image and
some fundamental theorems in graph theory, we can calculate the Euler number by count-
ing the nodes, edges, and basic faces in the constructed graph. Then, we can scan the im-
age, access the pixels, and process the bit-quads to obtain the number of nodes, edges, and
basic faces instead of constructing a real graph before implementation. Thus, the graph-
representing-based Euler number computing algorithms can be considered the bit-quad-
based Euler number computing algorithm mentioned in Section 2.3.1, in a sense. Moreo-
ver, the efficient strategies presented in Section 2.3.1 can applied to this algorithm upon
implementation.

2.4.2. Tree-Representing-Based Euler Number Computing Algorithm
Besides a graph, an image can also be represented by a tree based on the distribution

of foreground pixels and background pixels of the image [30–32].
Ref. [30] presented an algorithm that computes the Euler number by representing a

given image as a binary tree. It divides the given image into two sub-images of equal size
repeatedly, and then, the given image can be associated with a binary tree. For example,
as shown in Figure 15a, it can be divided into two equal-size sub-images successively until
all pixels in the sub-image are foreground pixels or background pixels, as shown in Figure
15b. Then, each sub-image can be represented by a leaf node and a binary tree can be
constructed, as shown in Figure 15c. In Figure 15c, if all pixels in a sub-image are fore-
ground pixels, the corresponding leaf node is represented as a black square, and when all
pixels in a sub-image are background pixels, the corresponding leaf node is represented
as a white square. Otherwise, the sub-image to be divided is represented by a gray circle.

[1 1 1 1]T 0 −1

The experimental findings show that, although the conventional methods are faster, the
SVM-based implementation can serve as a viable alternative for automatically computing
an image’s Euler number. In addition, by changing the values of y1 and y2 in SVM2, the
SVM can compute the 4-connectivity Euler number easily.

Furthermore, by analyzing the local operations involved in applying established
formulas, Refs. [35,36] proposed other alternative methods for the automatic computation
of the Euler number in an image by means of an MLP (multilayer perceptron) and an ANN
(artificial neural network). Because of the computing efficiency, for the purpose of only
obtaining the Euler number, machine learning-based algorithms are not the best choice.

3. Experimental Results

The algorithms for computing the Euler number undergo a performance evaluation in
this section. Moreover, we only consider 8-connectivity cases. Because the C-BQ algorithm

Electronics 2023, 12, 4406 21 of 30

and the C-RB algorithm are the classical algorithms for computing the Euler number, the
labeling-based LB algorithm, bit-quad-based I-BQ algorithm, run-based I-RB algorithm,
and graph-based I-GT algorithm demonstrated the highest efficiency in their respective
categories. From this point forward, we solely compare the C-BQ, C-RB, LB, I-BQ, I-RB, and
I-GT algorithms. All algorithms used for our comparison were implemented in C language.
Table 3 presents the experimental platform in our experiments.

Table 3. The experimental platform of the compared algorithms.

Name Version

Processor Intel Core i5-3470
Frequency 3.20 GHz
Memory 4 GB

Operating system Ubuntu Linux 16.10
GCC compiler 4.2.3

3.1. Experimental Results of Noise Images

Due to the intricate geometric shapes and complex connectivity of noise images, they
present a challenging evaluation scenario for algorithms. The noise dataset for this experi-
ment consisted of a total of 205 noise images, with 41 images generated for five different
resolutions (2048 × 2018, 1024 × 1024, 512 × 512, 256 × 256, and 128 × 128 pixels). To gen-
erate the 41 images for each resolution, a uniform random noise pattern was thresholded
using 41 different threshold values ranging from 0 to 1000 in increments of 25. Nine noise
images with densities of 0.1, 0.2, . . ., and 0.9 are shown in Figure 19.

Electronics 2023, 12, x FOR PEER REVIEW 22 of 31

Table 3. The experimental platform of the compared algorithms.

Name Version
Processor Intel Core i5-3470
Frequency 3.20 GHz
Memory 4 GB

Operating system Ubuntu Linux 16.10
GCC compiler 4.2.3

3.1. Experimental Results of Noise Images
Due to the intricate geometric shapes and complex connectivity of noise images, they

present a challenging evaluation scenario for algorithms. The noise dataset for this exper-
iment consisted of a total of 205 noise images, with 41 images generated for five different
resolutions (2048 × 2018, 1024 × 1024, 512 × 512, 256 × 256, and 128 × 128 pixels). To generate
the 41 images for each resolution, a uniform random noise pattern was thresholded using
41 different threshold values ranging from 0 to 1000 in increments of 25. Nine noise images
with densities of 0.1, 0.2, …, and 0.9 are shown in Figure 19.

Figure 19. Noise images with various densities.

3.1.1. Execution Time versus Density of Noise Images
In this experiment, we evaluated the execution time versus the density of the fore-

ground pixels. This experiment was performed using a set of 41 noise images, each with
a resolution of 512 × 512 pixels. Figure 20 and Table 4 exhibit the experimental findings.
In Figure 20, it can be seen that for all tested images, the I-BQ algorithm was the most
efficient algorithm among the compared algorithms and the I-GT algorithm outperformed
all other algorithms except the I-BQ algorithm for almost all images. Meanwhile, the C-
RB algorithm and the I-RB algorithm had good performance on the images with relatively
low densities, and the I-RB algorithm and the LB algorithm had good performance on the
images with relatively high densities.

Figure 19. Noise images with various densities.

3.1.1. Execution Time versus Density of Noise Images

In this experiment, we evaluated the execution time versus the density of the fore-
ground pixels. This experiment was performed using a set of 41 noise images, each with
a resolution of 512 × 512 pixels. Figure 20 and Table 4 exhibit the experimental findings.
In Figure 20, it can be seen that for all tested images, the I-BQ algorithm was the most
efficient algorithm among the compared algorithms and the I-GT algorithm outperformed
all other algorithms except the I-BQ algorithm for almost all images. Meanwhile, the C-RB
algorithm and the I-RB algorithm had good performance on the images with relatively
low densities, and the I-RB algorithm and the LB algorithm had good performance on the
images with relatively high densities.

Electronics 2023, 12, 4406 22 of 30Electronics 2023, 12, x FOR PEER REVIEW 23 of 31

Figure 20. Experimental results of execution time versus image density.

Table 4. Execution time (ms) versus density of 512 × 512 pixel noise images.

Density C-BQ C-RB LB I-RB I-BQ I-GT
0.000 1.202 0.444 1.438 0.494 0.366 0.572
0.025 1.334 0.618 1.570 0.644 0.442 0.664
0.050 1.472 0.748 1.706 0.806 0.516 0.788
0.075 1.600 0.882 1.830 0.966 0.588 0.902
0.100 1.720 1.020 1.948 1.126 0.664 1.012
0.125 1.840 1.168 2.114 1.288 0.748 1.120
0.150 1.962 1.326 2.228 1.448 0.832 1.224
0.175 2.086 1.492 2.348 1.612 0.924 1.328
0.200 2.210 1.660 2.474 1.766 1.022 1.424
0.225 2.332 1.836 2.608 1.918 1.122 1.524
0.250 2.456 2.020 2.750 2.064 1.226 1.618
0.275 2.584 2.210 2.902 2.196 1.334 1.712
0.300 2.712 2.408 3.070 2.320 1.438 1.808
0.325 2.842 2.612 3.256 2.432 1.544 1.896
0.350 2.974 2.816 3.402 2.542 1.636 1.986
0.375 3.098 3.022 3.560 2.636 1.722 2.062
0.400 3.218 3.222 3.732 2.722 1.796 2.130
0.425 3.328 3.418 3.822 2.796 1.860 2.186
0.450 3.418 3.588 3.812 2.852 1.902 2.218
0.475 3.472 3.724 3.806 2.878 1.930 2.224
0.500 3.496 3.810 3.754 2.886 1.934 2.208
0.525 3.480 3.856 3.672 2.864 1.922 2.162
0.550 3.424 3.852 3.560 2.816 1.896 2.100
0.575 3.342 3.810 3.396 2.748 1.850 2.022
0.600 3.232 3.726 3.222 2.654 1.788 1.920
0.625 3.112 3.622 3.042 2.554 1.716 1.814
0.650 2.980 3.504 2.862 2.440 1.628 1.704
0.675 2.850 3.372 2.678 2.330 1.538 1.592
0.700 2.718 3.232 2.508 2.208 1.442 1.484

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Densities

C-BQ C-RB

LB I-RB

I-BQ I-GT

Figure 20. Experimental results of execution time versus image density.

Table 4. Execution time (ms) versus density of 512 × 512 pixel noise images.

Density C-BQ C-RB LB I-RB I-BQ I-GT

0.000 1.202 0.444 1.438 0.494 0.366 0.572
0.025 1.334 0.618 1.570 0.644 0.442 0.664
0.050 1.472 0.748 1.706 0.806 0.516 0.788
0.075 1.600 0.882 1.830 0.966 0.588 0.902
0.100 1.720 1.020 1.948 1.126 0.664 1.012
0.125 1.840 1.168 2.114 1.288 0.748 1.120
0.150 1.962 1.326 2.228 1.448 0.832 1.224
0.175 2.086 1.492 2.348 1.612 0.924 1.328
0.200 2.210 1.660 2.474 1.766 1.022 1.424
0.225 2.332 1.836 2.608 1.918 1.122 1.524
0.250 2.456 2.020 2.750 2.064 1.226 1.618
0.275 2.584 2.210 2.902 2.196 1.334 1.712
0.300 2.712 2.408 3.070 2.320 1.438 1.808
0.325 2.842 2.612 3.256 2.432 1.544 1.896
0.350 2.974 2.816 3.402 2.542 1.636 1.986
0.375 3.098 3.022 3.560 2.636 1.722 2.062
0.400 3.218 3.222 3.732 2.722 1.796 2.130
0.425 3.328 3.418 3.822 2.796 1.860 2.186
0.450 3.418 3.588 3.812 2.852 1.902 2.218
0.475 3.472 3.724 3.806 2.878 1.930 2.224
0.500 3.496 3.810 3.754 2.886 1.934 2.208
0.525 3.480 3.856 3.672 2.864 1.922 2.162
0.550 3.424 3.852 3.560 2.816 1.896 2.100
0.575 3.342 3.810 3.396 2.748 1.850 2.022
0.600 3.232 3.726 3.222 2.654 1.788 1.920
0.625 3.112 3.622 3.042 2.554 1.716 1.814
0.650 2.980 3.504 2.862 2.440 1.628 1.704
0.675 2.850 3.372 2.678 2.330 1.538 1.592
0.700 2.718 3.232 2.508 2.208 1.442 1.484
0.725 2.584 3.090 2.330 2.086 1.338 1.380
0.750 2.452 2.938 2.154 1.956 1.232 1.278
0.775 2.320 2.782 1.990 1.832 1.124 1.186
0.800 2.190 2.616 1.822 1.700 1.014 1.098
0.825 2.052 2.446 1.654 1.566 0.910 1.014
0.850 1.916 2.270 1.488 1.430 0.810 0.932

Electronics 2023, 12, 4406 23 of 30

Table 4. Cont.

Density C-BQ C-RB LB I-RB I-BQ I-GT

0.875 1.772 2.086 1.310 1.286 0.708 0.854
0.900 1.620 1.890 1.132 1.138 0.612 0.778
0.925 1.466 1.702 0.948 0.996 0.522 0.710
0.950 1.306 1.514 0.766 0.844 0.434 0.644
0.975 1.136 1.316 0.570 0.690 0.344 0.580
1.000 0.956 1.108 0.374 0.542 0.258 0.518

3.1.2. Execution Time versus Resolution of Images

Due to the high degree of similarity between noise images of different resolutions, all
of the generated noise images were utilized to test the linearity of algorithmic execution
time in relation to image resolution. Figures 21a and 21b display the maximum and
average execution times, respectively, for noise images of varying resolutions. Observing
Figure 21, it becomes apparent that all of the algorithms possessed highly desirable linear
characteristics in terms of both maximum and average execution times across different
image resolutions. Additionally, the I-BQ algorithm demonstrated significantly shorter
processing times than any other algorithm when examining either the maximum or the
average execution time.

3.2. Experimental Results of Authentic Images

The authentic image dataset used in this experiment encompasses a set of 50 natural
images that include text, portrait, fingerprint, aerial, snapshot, still-life, and landscape
images. These images were sourced from two distinct databases: the image database of
the University of Southern California and the Standard Image Database presented by the
University of Tokyo. Furthermore, this experiment also utilized seven texture images
downloaded from the Columbia Utrecht Reflectance and Texture Database, as well as
25 medical images obtained from a medical image database owned by the University of
Chicago. Each of these images has a resolution of 512 × 512 pixels and was binarized using
Otsu’s approach [43]. In addition, the experiments also included four synthetic images
with distinct shapes (sawtooth-like, checkerboard-like, spiral-like, and stair-like patterns).

Electronics 2023, 12, x FOR PEER REVIEW 24 of 31

0.725 2.584 3.090 2.330 2.086 1.338 1.380
0.750 2.452 2.938 2.154 1.956 1.232 1.278
0.775 2.320 2.782 1.990 1.832 1.124 1.186
0.800 2.190 2.616 1.822 1.700 1.014 1.098
0.825 2.052 2.446 1.654 1.566 0.910 1.014
0.850 1.916 2.270 1.488 1.430 0.810 0.932
0.875 1.772 2.086 1.310 1.286 0.708 0.854
0.900 1.620 1.890 1.132 1.138 0.612 0.778
0.925 1.466 1.702 0.948 0.996 0.522 0.710
0.950 1.306 1.514 0.766 0.844 0.434 0.644
0.975 1.136 1.316 0.570 0.690 0.344 0.580
1.000 0.956 1.108 0.374 0.542 0.258 0.518

3.1.2. Execution Time versus Resolution of Images
Due to the high degree of similarity between noise images of different resolutions, all

of the generated noise images were utilized to test the linearity of algorithmic execution
time in relation to image resolution. Figure 21a and Figure 21b display the maximum and
average execution times, respectively, for noise images of varying resolutions. Observing
Figure 21, it becomes apparent that all of the algorithms possessed highly desirable linear
characteristics in terms of both maximum and average execution times across different
image resolutions. Additionally, the I-BQ algorithm demonstrated significantly shorter
processing times than any other algorithm when examining either the maximum or the
average execution time.

(a)

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Number of Pixels in Image (×105)

C-BQ I-BQ

C-RB I-RB

LB I-GB

Figure 21. Cont.

Electronics 2023, 12, 4406 24 of 30
Electronics 2023, 12, x FOR PEER REVIEW 25 of 31

(b)

Figure 21. Execution time versus image sizes: (a) the maximum execution time; (b) the average exe-
cution time.

3.2. Experimental Results of Authentic Images
The authentic image dataset used in this experiment encompasses a set of 50 natural

images that include text, portrait, fingerprint, aerial, snapshot, still-life, and landscape im-
ages. These images were sourced from two distinct databases: the image database of the
University of Southern California and the Standard Image Database presented by the Uni-
versity of Tokyo. Furthermore, this experiment also utilized seven texture images down-
loaded from the Columbia Utrecht Reflectance and Texture Database, as well as 25 medi-
cal images obtained from a medical image database owned by the University of Chicago.
Each of these images has a resolution of 512 × 512 pixels and was binarized using Otsu’s
approach [43]. In addition, the experiments also included four synthetic images with dis-
tinct shapes (sawtooth-like, checkerboard-like, spiral-like, and stair-like patterns).

Table 5 displays the minimum, average, and maximum execution times of each algo-
rithm for different kinds of images. From Table 5, it can be seen that the I-BQ algorithm
was the most efficient on various kinds of images. Moreover, the performance of the I-RB
algorithm and the I-GT algorithm was similar and they were more efficient than all other
algorithms except the I-BQ algorithm.

Figure 22 depicts the execution time (in milliseconds) for the six chosen images, with
black representing the foreground pixels and D reflecting the image’s density.

Table 5. Minimum, average, and maximum execution times (ms) of the compared algorithms on
different kinds of images.

Densities C-BQ C-RB LB I-RB I-BQ I-GT

Natural
Min. 1.10 0.61 0.87 0.53 0.31 0.49

Average 1.42 1.07 1.40 0.82 0.50 0.71
Max. 1.86 1.69 1.97 1.29 0.82 1.02

Medical
Min. 1.17 0.75 0.91 0.62 0.36 0.54

Average 1.29 0.92 1.25 0.68 0.42 0.62
Max. 1.47 1.07 1.50 0.84 0.52 0.73

Textural Min. 1.00 1.04 0.51 0.54 0.28 0.51
Average 1.38 1.35 1.10 0.87 0.48 0.68

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40 45

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Number of Pixels in Image (×105)

C-BQ I-BQ

C-RB I-RB

LB I-GB

Figure 21. Execution time versus image sizes: (a) the maximum execution time; (b) the average
execution time.

Table 5 displays the minimum, average, and maximum execution times of each algo-
rithm for different kinds of images. From Table 5, it can be seen that the I-BQ algorithm
was the most efficient on various kinds of images. Moreover, the performance of the I-RB
algorithm and the I-GT algorithm was similar and they were more efficient than all other
algorithms except the I-BQ algorithm.

Figure 22 depicts the execution time (in milliseconds) for the six chosen images, with
black representing the foreground pixels and D reflecting the image’s density.

Electronics 2023, 12, x FOR PEER REVIEW 26 of 31

Max. 1.73 1.66 1.60 1.19 0.71 0.92

Artificial
Min. 0.28 0.24 0.32 0.17 0.08 0.11

Average 0.70 0.67 0.70 0.48 0.21 0.28
Max. 1.11 1.03 1.35 0.92 0.32 0.49

Figure 22. Execution time for the chosen images: (a) a portrait image; (b) a fingerprint image; (c) a
text image; (d) a medical image; (e) a texture image; (f) an artificial image.

4. Relevant Issues
This section covers topics related to the parallel implementation, hardware imple-

mentation, and extension of Euler number computation algorithms for 3D images.

4.1. Parallel Implementation of Euler Number Computing Algorithms
As proven in [17], the Euler number exhibits a local additive property that permits

the image to be partitioned into smaller sub-images, and the overall Euler number can
then be computed by combining the individual Euler numbers of each sub-image.

Refs. [37,38] presented algorithms for calculating the Euler number based on the di-
vide-and-conquer approach. In these algorithms, a given image is partitioned into several
sub-images by cut lines in advance. Suppose I is the given image, and let L represent a cut
line that divides I into two sub-images, i.e., I1 and I2. Suppose that p is a run (defined in
Section 2.3.2) on cut line L and there are r runs on cut line L. We define k1(p) as the number
of runs on the boundary of sub-image I1, which are neighbors of p, and k2(p) as the number
of such runs in sub-image I2. Subsequently, we can compute the Euler number by using
Formula (14).

E(I) = E(I1) + E(I2) + Cont(L) (14)

Figure 22. Execution time for the chosen images: (a) a portrait image; (b) a fingerprint image; (c) a
text image; (d) a medical image; (e) a texture image; (f) an artificial image.

Electronics 2023, 12, 4406 25 of 30

Table 5. Minimum, average, and maximum execution times (ms) of the compared algorithms on
different kinds of images.

Densities C-BQ C-RB LB I-RB I-BQ I-GT

Natural
Min. 1.10 0.61 0.87 0.53 0.31 0.49

Average 1.42 1.07 1.40 0.82 0.50 0.71
Max. 1.86 1.69 1.97 1.29 0.82 1.02

Medical
Min. 1.17 0.75 0.91 0.62 0.36 0.54

Average 1.29 0.92 1.25 0.68 0.42 0.62
Max. 1.47 1.07 1.50 0.84 0.52 0.73

Textural
Min. 1.00 1.04 0.51 0.54 0.28 0.51

Average 1.38 1.35 1.10 0.87 0.48 0.68
Max. 1.73 1.66 1.60 1.19 0.71 0.92

Artificial
Min. 0.28 0.24 0.32 0.17 0.08 0.11

Average 0.70 0.67 0.70 0.48 0.21 0.28
Max. 1.11 1.03 1.35 0.92 0.32 0.49

4. Relevant Issues

This section covers topics related to the parallel implementation, hardware implemen-
tation, and extension of Euler number computation algorithms for 3D images.

4.1. Parallel Implementation of Euler Number Computing Algorithms

As proven in [17], the Euler number exhibits a local additive property that permits the
image to be partitioned into smaller sub-images, and the overall Euler number can then be
computed by combining the individual Euler numbers of each sub-image.

Refs. [37,38] presented algorithms for calculating the Euler number based on the
divide-and-conquer approach. In these algorithms, a given image is partitioned into several
sub-images by cut lines in advance. Suppose I is the given image, and let L represent a cut
line that divides I into two sub-images, i.e., I1 and I2. Suppose that p is a run (defined in
Section 2.3.2) on cut line L and there are r runs on cut line L. We define k1(p) as the number
of runs on the boundary of sub-image I1, which are neighbors of p, and k2(p) as the number
of such runs in sub-image I2. Subsequently, we can compute the Euler number by using
Formula (14).

E(I) = E(I1) + E(I2) + Cont(L) (14)

Here, Cont(L) =
r
∑

p=1
1− k1(p)− k2(p).

As shown in Figure 23, image I is partitioned into I1 and I2 by cut line L. Obviously,
there is one connected component and no hole in the sub-images I1 and I2; thus, the Euler
number of sub-image I1 and sub-image I2 is 1.

Electronics 2023, 12, x FOR PEER REVIEW 27 of 31

Here,
1 2

1
() 1 () ().

r

p
Cont L k p k p

=

= − −
.

As shown in Figure 23, image I is partitioned into I1 and I2 by cut line L. Obviously,
there is one connected component and no hole in the sub-images I1 and I2; thus, the Euler
number of sub-image I1 and sub-image I2 is 1.

Figure 23. An example illustrating the divide-and-conquer approach.

Moreover, both k1(p) and k2(p) are 3, and
1 2

1
() 1 () () 3 3 3 3.

r

p
Cont L k p k p

=

= − − = − − = −
Thus, Euler number I is E(I) = E(I1) + E(I2) + Cont(L) = 1 + 1 − 3 = −1. In fact, one connected
component and two holes exist in image I, so based on the definition, the Euler number of
I is 1 − 2 = −1.

Furthermore, a simple VLSI architecture is established by using some simple proces-
sors, and each processor is responsible for the Euler number computation of a sub-image.
Lastly, the algorithm combines the results of the sub-images and presents the Euler num-
ber of the image. Obviously, the more sub-images are being partitioned, the more efficient
the algorithm will be, theoretically. On the other hand, the more processors are being
used, the more expensive the hardware devices will be.

Considering the specific instance of the image partitioning method presented in Ref.
[37], if we partition an N × N-sized image I into N sub-images I1, I2, …, and IN, each row
(or column) of the image will be a sub-image. According to Formula (14), we need to ob-
tain the Euler number of each row (considered a sub-image) in the given image. At the
same time, we need to count the 8-connectivity runs between two adjacent rows. As we
know, holes cannot be formed in a row, and the Euler number of each row will be the
number of runs in that row. Thus, we can compute the Euler number as the difference
between the number of runs and that of the 8-connectivity runs, which is the run-based
algorithm mentioned in Section 2.3.2.

Following the above consideration, a pipeline architecture is reported in Ref. [23] to
obtain the Euler number of an image. In the reported architecture, two types of processing
units, P1 and P2, are designed to calculate the Euler number. P1 is utilized to locate the
beginning of a run in each row, whereas P2 indicates the start of an 8-connectivity run. To
implement P1, at the start of processing each row, a delay flip-flop is set to 0, and all pixels
in the row are sequentially streamed into P1. At every moment in time, the ith pixel and
the (i − 1)th pixel in a row are examined for a 0→1 transition. Once a 0→1 transition is
examined between the ith pixel and the (i − 1)th pixel in a row, a new run is found. On the
other hand, P2 examines whether a run in a row has started or not and whether it neigh-
bors another run in the adjacent row. The pixel values for the columns of two adjacent
rows are fed sequentially to P2 through a pipeline, along with input from the delay flip-

Figure 23. An example illustrating the divide-and-conquer approach.

Electronics 2023, 12, 4406 26 of 30

Moreover, both k1(p) and k2(p) are 3, and Cont(L) =
r
∑

p=1
1− k1(p)− k2(p) = 3− 3−

3 = −3. Thus, Euler number I is E(I) = E(I1) + E(I2) + Cont(L) = 1 + 1 − 3 = −1. In fact, one
connected component and two holes exist in image I, so based on the definition, the Euler
number of I is 1 − 2 = −1.

Furthermore, a simple VLSI architecture is established by using some simple proces-
sors, and each processor is responsible for the Euler number computation of a sub-image.
Lastly, the algorithm combines the results of the sub-images and presents the Euler number
of the image. Obviously, the more sub-images are being partitioned, the more efficient the
algorithm will be, theoretically. On the other hand, the more processors are being used, the
more expensive the hardware devices will be.

Considering the specific instance of the image partitioning method presented in
Ref. [37], if we partition an N × N-sized image I into N sub-images I1, I2, . . ., and IN, each
row (or column) of the image will be a sub-image. According to Formula (14), we need
to obtain the Euler number of each row (considered a sub-image) in the given image. At
the same time, we need to count the 8-connectivity runs between two adjacent rows. As
we know, holes cannot be formed in a row, and the Euler number of each row will be the
number of runs in that row. Thus, we can compute the Euler number as the difference
between the number of runs and that of the 8-connectivity runs, which is the run-based
algorithm mentioned in Section 2.3.2.

Following the above consideration, a pipeline architecture is reported in Ref. [23] to
obtain the Euler number of an image. In the reported architecture, two types of processing
units, P1 and P2, are designed to calculate the Euler number. P1 is utilized to locate the
beginning of a run in each row, whereas P2 indicates the start of an 8-connectivity run. To
implement P1, at the start of processing each row, a delay flip-flop is set to 0, and all pixels
in the row are sequentially streamed into P1. At every moment in time, the ith pixel and
the (i − 1)th pixel in a row are examined for a 0→1 transition. Once a 0→1 transition is
examined between the ith pixel and the (i − 1)th pixel in a row, a new run is found. On the
other hand, P2 examines whether a run in a row has started or not and whether it neighbors
another run in the adjacent row. The pixel values for the columns of two adjacent rows
are fed sequentially to P2 through a pipeline, along with input from the delay flip-flops of
those two rows. At each moment, P2 examines the ith pixel and the (i − 1)th pixel of the
two adjacent rows in order to check whether there is an 8-connectivity run.

In Ref. [39], Chiavetta discussed how to use the connectivity graph derived from the
cylindrical algebraic decomposition of the Euclidean plane to compute the Euler number
of an image. By partitioning the given image into slices (cylinders) and constructing a
connectivity graph, the algorithm finds the start of a new connected component and the
end of a hole and computes the difference between them as the Euler number. Because
the procedure of finding the start of a new connected component or the end of a hole can
be done in the sub-images simultaneously, a parallel algorithm is proposed by using the
connectivity graph.

Furthermore, the parallel architectures for obtaining the Euler number are applied to
various fields of image processing, such as database search, image binarization, and image
registration [40–42].

However, the execution speed of n parallel processes may be n times faster than that of
a single processor, theoretically. Parallel implementation of an algorithm cannot guarantee
acceleration in the case of simple computation because various parts of the work need to be
allocated to different processing processes or threads, and parallel processing cannot be au-
tomatically implemented due to interrelated issues. For complex computational work, the
efficiency of parallel implementation is generally higher than non-parallel implementation.

4.2. Euler Number Computation of 3D Images

A 3D image can be considered a 3D array composed of voxels (pixels in 2D images).
As in 2D cases, there is different connectivity between voxels in 3D images. For voxels

Electronics 2023, 12, 4406 27 of 30

M = (m1, m2, m3) and N = (n1, n2, n3), M and N are 6-connectivity when |m1 − n1|
+ |m2 − n2| + |m3 − n3| = 1, whereas M and N are 26-connectivity when max (|m1 – n1|,
|m2 – n2|, |m3 – n3|) = 1. For example, as presented in Figure 24, p1, p3, p5, p7, p17, and
p26 are 6-connectivity voxels to voxel p and voxels p1, p2, . . . , and p26 are 26-connectivety
voxels to voxel p [44].

Electronics 2023, 12, x FOR PEER REVIEW 28 of 31

flops of those two rows. At each moment, P2 examines the ith pixel and the (i − 1)th pixel
of the two adjacent rows in order to check whether there is an 8-connectivity run.

In Ref. [39], Chiavetta discussed how to use the connectivity graph derived from the
cylindrical algebraic decomposition of the Euclidean plane to compute the Euler number
of an image. By partitioning the given image into slices (cylinders) and constructing a
connectivity graph, the algorithm finds the start of a new connected component and the
end of a hole and computes the difference between them as the Euler number. Because the
procedure of finding the start of a new connected component or the end of a hole can be
done in the sub-images simultaneously, a parallel algorithm is proposed by using the con-
nectivity graph.

Furthermore, the parallel architectures for obtaining the Euler number are applied to
various fields of image processing, such as database search, image binarization, and image
registration [40–42].

However, the execution speed of n parallel processes may be n times faster than that
of a single processor, theoretically. Parallel implementation of an algorithm cannot guar-
antee acceleration in the case of simple computation because various parts of the work
need to be allocated to different processing processes or threads, and parallel processing
cannot be automatically implemented due to interrelated issues. For complex computa-
tional work, the efficiency of parallel implementation is generally higher than non-parallel
implementation.

4.2. Euler Number Computation of 3D Images
A 3D image can be considered a 3D array composed of voxels (pixels in 2D images).

As in 2D cases, there is different connectivity between voxels in 3D images. For voxels M
= (m1, m2, m3) and N = (n1, n2, n3), M and N are 6-connectivity when |m1 − n1| + |m2 − n2| +
|m3 − n3| = 1, whereas M and N are 26-connectivity when max (|m1 – n1|, |m2 – n2|, |m3 –
n3|) = 1. For example, as presented in Figure 24, p1, p3, p5, p7, p17, and p26 are 6-connectivity
voxels to voxel p and voxels p1, p2, …, and p26 are 26-connectivety voxels to voxel p [44].

Figure 24. Connectivity between voxels in a 3D image.

Formula (15) defines the Euler number for a 3D image, which is commonly utilized
to describe intricate microstructures [45,46].

E = O − H + C (15)

Here, the total number of connected components in the image is denoted by O,
whereas H represents the total number of holes (or tunnels) and C represents the total
number of cavities (or bubbles) present in the 3D image [47,48]. According to the defini-
tion, Akira and Aizawa [44] proposed a one-pass algorithm that utilizes an n × n array of
finite-state automata to calculate the number of connected components, cavities, and holes
in a 3D image. Then, the Euler number can be calculated using Formula (15). In order to
calculate the Euler number based on Formula (15), as with 2D images, the number of

Figure 24. Connectivity between voxels in a 3D image.

Formula (15) defines the Euler number for a 3D image, which is commonly utilized to
describe intricate microstructures [45,46].

E = O − H + C (15)

Here, the total number of connected components in the image is denoted by O, whereas
H represents the total number of holes (or tunnels) and C represents the total number of
cavities (or bubbles) present in the 3D image [47,48]. According to the definition, Akira
and Aizawa [44] proposed a one-pass algorithm that utilizes an n × n array of finite-state
automata to calculate the number of connected components, cavities, and holes in a 3D
image. Then, the Euler number can be calculated using Formula (15). In order to calculate
the Euler number based on Formula (15), as with 2D images, the number of connected
components, cavities, and holes in the 3D image needs to be obtained. In this case, the
classical labeling algorithm needs to be used to label them.

In order to avoid the complex labeling process, many algorithms have been presented
that use alternative methods to calculate the Euler number of a 3D image. Some algorithms
are derived from those in 2D image cases, such as the perimeter-based algorithm [12], the
run-based algorithm [49,50], and the corner codification-based algorithm [51]. Furthermore,
some algorithms are reported only for 3D images. For example, one proposed algorithm,
presented by Lee and Poston [52], involves smoothing a 3D image to a differentiable
object and applying theorems from differential geometry and algebraic topology. Another
alternative method was presented by Sánchez-Cruz et al. [53], which calculates the Euler
number of a voxelized object with tunnels and/or cavities by analyzing the relationship
between contact voxel faces and enclosing surfaces. Moreover, a formula based on surface
calculations was proposed by Čomića [54] for computing the Euler number of an arbitrary
object in a cubical grid that has either vertex- or face-adjacency. This method involves
counting only the boundary faces and vertices of the object while also adjusting the vertex
count to account for the two adjacency relations.

Park and Rosenfeld [47] provided a voxel pattern-based method for calculating the
6-adjacent Euler number in a 3D image via the statistics of specific 2 × 2 × 2 voxel patterns.
For a case in which 26-adjacency is considered, Morgenthaler solved the problem in Ref. [55].
To obtain the Euler number, these algorithms need to count specific 2× 2× 2 voxel patterns,
and they are easy to implement in practice. However, some voxels are accessed repeatedly
in these algorithms. Recently, Yao et al. [56] presented an improved voxel pattern-based
algorithm by changing the access order and combining some voxel patterns that have the

Electronics 2023, 12, 4406 28 of 30

same Euler number increments. Although it is more efficient than the algorithm presented
by Morgenthaler, it can be further improved by hardware implementation.

5. Concluding Remarks

The focus of this paper is to provide an overview of the latest and most advanced
algorithms for computing the Euler number that have been proposed in recent decades.
We aim to introduce the main strategies and techniques utilized in these algorithms. Based
on experimental results from different types of images, the improved bit-quad-based I-BQ
algorithm proved to be the most efficient in almost all cases. However, when the objective
is to identify connected components in an image, it would be more appropriate to choose
the LB algorithm. In additional, parallel implementation and hardware implementation
for computing the Euler number of 2D images are discussed in this paper, and we provide
an extension to Euler number computing algorithms of 3D images. Notably, both the
bit-quad-based and run-based Euler number computation approaches process pixels in a
raster scan order, making them well suited for parallelization. In terms of future research
directions for the Euler number computing problem, the following areas warrant further
consideration:

(1) To further improve the efficiency of Euler number computing for embedded image-
processing systems, it would be worthwhile to explore hardware implementation and
parallel implementation of the bit-quad-based and run-based algorithms on multiple
FPGAs (field programmable gate arrays).

(2) Efficient hardware and parallel implementations of the latest Euler number computing
algorithms for 3D and higher-dimensional images could be pursued to improve the
processing efficiency for such complex image data.

Author Contributions: Conceptualization, B.Y. and L.H.; methodology, B.Y.; software, H.H.; vali-
dation, S.K. and H.H.; formal analysis, Y.C.; investigation, Y.C.; resources, S.K.; data curation, L.H.;
writing—original draft preparation, B.Y.; writing—review and editing, L.H.; supervision, L.H.; project
administration, L.H.; funding acquisition, L.H. and B.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China
under grant Nos. 61971272 and 61603234; the Nitto Foundation, Japan; the Hibi Science Foundation,
Japan; and the Scientific Research Foundation of Shaanxi University of Science and Technology under
grant No. 2020BJ-18.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, H.; Sengupta, S. Intelligent shape recognition for complex industrial tasks. IEEE Control Syst. Mag. 1988, 8, 23–30. [CrossRef]
2. Hashizume, A.; Suzuki, R.; Yokouchi, H.; Horiuchi, H.; Yamamoto, S. An algorithm of automated RBC classification and its

evaluation. Bio Med. Eng. 1990, 28, 25–32.
3. Nayar, S.; Bolle, R. Reflectance-based object recognition. Int. J. Comput. Vis. 1996, 17, 219–240. [CrossRef]
4. Rosin, P.; Ellis, T. Image difference threshold strategies and shadow detection. In Proceedings of the British Machine Vision

Conference, Birmingham, UK, 10–13 September 1995; pp. 347–356.
5. Moraru, L.; Cotoi, O.; Szendrei, F. Euler number: A method for statistical analysis of ancient pottery porosity. Eur. J. Sci. Theol.

2011, 7, 99–108.
6. Qin, X.; Xia, Y.; Wu, J.; Sun, C.; Zeng, J.; Xu, K.; Cai, J. Influence of pore morphology on permeability through digital rock

modeling: New insights from the Euler number and shape factor. Energy Fuels 2022, 36, 7519–7530. [CrossRef]
7. Gonzalez, R.; Woods, R. Digital Image Processing, 3rd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2008; pp. 642–647.
8. Bovik, A.C. The Essential Guide to Image Processing, 2nd ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The

Netherlands, 2009; pp. 70–75.
9. He, L.; Chao, Y. A very fast algorithm for simultaneously performing connected-component labeling and Euler number computing.

IEEE Trans. Image Process. 2015, 24, 2725–2735.

https://doi.org/10.1109/37.473
https://doi.org/10.1007/BF00128232
https://doi.org/10.1021/acs.energyfuels.2c01359

Electronics 2023, 12, 4406 29 of 30

10. He, L.; Chao, Y.; Suzuki, K. An algorithm for connected-component labeling, hole labeling and Euler number computing. J.
Comput. Sci. Technol. 2013, 28, 468–478. [CrossRef]

11. Juan, L.; Sossa, J. On the computation of the Euler number of a binary object. Pattern Recognit. 1996, 29, 471–476.
12. Bribiesca, E. Computation of the Euler number using the contact perimeter. Comput. Math. Appl. 2010, 60, 1364–1373. [CrossRef]
13. Bribiesca, E. Measuring 2D shape compactness using the contact perimeter. Comput. Math. Appl. 1997, 33, 1–9. [CrossRef]
14. Sossa, J.; Cuevas, E.; Zaldivar, D. Alternative way to compute the Euler number of a binary image. J. Appl. Res. Technol. 2011, 9,

335–341.
15. Sossa, J.; Espino, E.; Santiago, R.; López, A.; Ayala, A.; Jimenez, E. Alternative formulations to compute the binary shape Euler

number. IET Comput. Vis. 2014, 8, 171–181.
16. Sossa, J.; Santiago, R.; Pérez, M.; Espino, E. Computing the Euler number of a binary image based on a vertex codification. J. Appl.

Res. Technol. 2013, 11, 360–370. [CrossRef]
17. Gray, S.B. Local properties of binary images in two dimensions. IEEE Trans. Comput. 1971, C–20, 551–561. [CrossRef]
18. Thompson, C.; Shure, L. Image Processing Toolbox; The Math Works Inc.: Natick, MA, USA, 2017.
19. Yao, B.; Wu, H.; Yang, Y.; Chao, Y.; Ohta, A.; Kawanaka, H.; He, L. An efficient strategy for bit-quad-based Euler number

computing algorithm. IEICE Trans. Inf. Syst. 2014, E97–D, 1374–1378. [CrossRef]
20. Yao, B.; He, L.; Kang, S.; Zhao, X.; Chao, Y. Bit-quad-based Euler number computing. IEICE Trans. Inf. Syst. 2017, E100–D,

2197–2204. [CrossRef]
21. Gomez, W.; Sossa, J.; Arce, F. Finding the optimal bit-quad patterns for computing the Euler number of 2D binary image using

simulated annealing. In Proceedings of the 13th Mexican Conference on Pattern Recognition, Mexico City, Mexico, 23–26 June
2021; pp. 240–250.

22. Sossa, J.; Carreón, Á.; Santiago, R.; Bribiesca, E.; Petrilli-Barceló, A. Efficient computation of the Euler number of a 2-D binary
image. In Proceedings of the 15th Mexican International Conference on Artificial Intelligence, Cancún, Mexico, 23–28 October
2016; pp. 401–413.

23. Bishnu, A.; Bhattacharya, B.; Kundu, M.; Murthy, C.; Acharya, T. A pipeline architecture for computing the Euler number of a
binary image. J. Syst. Archit. 2005, 51, 470–487. [CrossRef]

24. Lin, X.; Sha, Y.; Ji, J.; Wang, Y. A proof of image Euler number formula. Sci. China Ser. F Inf. Sci. 2006, 49, 364–371. [CrossRef]
25. Yao, B.; He, L.; Kang, S.; Zhao, X.; Chao, Y. A new run-based algorithm for Euler number computing. Pattern Anal. Appl. 2017, 20,

49–58. [CrossRef]
26. Chen, M.; Yan, P. A fast algorithm to calculate the Euler number for binary images. Pattern Recognit. Lett. 1988, 8, 295–297.

[CrossRef]
27. Yao, B.; He, L.; Kang, S.; Chao, Y.; Zhao, X. A novel bit-quad-based Euler number computing algorithm. Springerplus 2015, 4, 1–16.

[CrossRef] [PubMed]
28. He, L.; Yao, B.; Zhao, X.; Yang, Y.; Shi, Z.; Kasuya, H.; Chao, Y. A fast algorithm for integrating connected-component labeling and

Euler number computation. J. Real-Time Image Process. 2018, 15, 709–723. [CrossRef]
29. Bieri, H.; Nef, W. Algorithms for the Euler Characteristic and related additive functionals of digital objects. Comput. Vis. Graph.

Image Process. 1984, 28, 166–175. [CrossRef]
30. Bieri, H. Computing the Euler characteristic and related additive functionals of digital objects from their bintree representation.

Comput. Vis. Graph. Image Process. 1987, 28, 115–126. [CrossRef]
31. Dyer, C. Computing the Euler number of an image from its quadtree. Comput. Graph. Image Process. 1981, 13, 270–276. [CrossRef]
32. Samet, H.; Tamminen, M. Computing geometric properties of images represented by linear quadtrees. IEEE Trans. Pattern Anal.

Mach. Intell. 1985, 7, 229–240. [CrossRef]
33. Di Zenzo, S.; Cinque, L.; Levialdi, S. Run-based algorithms for binary image analysis and processing. IEEE Trans. Pattern Anal.

Mach. Intell. 1996, 18, 83–89. [CrossRef]
34. Sossa, J.; Carreón, Á.; Santiago, R.; Petrilli, A. Support vector machines applied to 2-D binary image Euler number computation.

In Proceedings of the International Conference on Mechatronics, Electronics and Automotive Engineering, Cuernavaca, Mexico,
22–25 November 2016; pp. 3–8.

35. Santiago, R. Training a multilayered perceptron to compute the Euler number of a 2-D binary image. In Proceedings of the
Mexican Conference on Pattern Recognition, Guanajuato, Mexico, 22–25 June 2016; pp. 44–53.

36. Sossa, J.; Carreón, Á.; Guevara, E.; Santiago, R. Computing the 2-D image Euler number by an artificial neural network. In
Proceedings of the International Joint Conference on Neural Networks, Vancouver, BC, Canada, 24–29 June 2016; pp. 1609–1616.

37. Dey, S.; Bhattacharya, B.; Kundu, M.; Acharya, T. A fast algorithm for computing the Euler number of an image and its VLSI
implementation. In Proceedings of the International Conference on VLSI Design, Science City, India, 3–7 January 2000; pp.
330–335.

38. Dey, S.; Bhattacharya, B.; Kundu, M.; Bishnu, A.; Acharya, T. A co-processor for computing Euler number of a binary image using
divide and conquer strategy. Fundam. Inform. 2007, 76, 75–89.

39. Chiavetta, F.; Di Gesù, V. Parallel computation of the Euler number via connectivity graph. Pattern Recognit. Lett. 1993, 14,
849–859. [CrossRef]

https://doi.org/10.1007/s11390-013-1348-y
https://doi.org/10.1016/j.camwa.2010.06.018
https://doi.org/10.1016/S0898-1221(97)00082-5
https://doi.org/10.1016/S1665-6423(13)71546-3
https://doi.org/10.1109/T-C.1971.223289
https://doi.org/10.1587/transinf.E97.D.1374
https://doi.org/10.1587/transinf.2017EDP7012
https://doi.org/10.1016/j.sysarc.2004.12.001
https://doi.org/10.1007/s11432-006-0364-8
https://doi.org/10.1007/s10044-015-0464-4
https://doi.org/10.1016/0167-8655(88)90078-5
https://doi.org/10.1186/s40064-015-1511-8
https://www.ncbi.nlm.nih.gov/pubmed/26636023
https://doi.org/10.1007/s11554-015-0499-1
https://doi.org/10.1016/S0734-189X(84)80019-5
https://doi.org/10.1016/0734-189X(87)90059-4
https://doi.org/10.1016/0146-664X(80)90050-7
https://doi.org/10.1109/TPAMI.1985.4767646
https://doi.org/10.1109/34.476016
https://doi.org/10.1016/0167-8655(93)90148-7

Electronics 2023, 12, 4406 30 of 30

40. Bishnu, A.; Bhattacharya, B.; Kundu, M.; Murthy, C.; Acharya, T. On-chip computation of Euler number of a binary image for
efficient database search. In Proceedings of the International Conference on Image Processing, Thessaloniki, Greece, 7–10 October
2001; pp. 310–313.

41. Abbasi, N.; Athow, J.; Amer, A. Real-time FPGA architecture of modified Stable Euler-number algorithm for image binarization.
In Proceedings of the International Conference on Image Processing, Cairo, Egypt, 7–10 November 2009; pp. 3253–3256.

42. Pradeep, K.; Veeraiah, N. VLSI implementation of Euler number computation and stereo vision concept for CORDIC based image
registration. In Proceedings of the International Conference on Communication Systems and Network Technologies, Bhopal,
India, 18–19 June 2021; pp. 269–272.

43. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
44. Akira, N.; Aizawa, K. On the recognition of properties of three-dimensional pictures. IEEE Trans. Pattern Anal. Mach. Intell. 1985,

7, 708–713.
45. Velichko, A.; Holzapfel, C.; Siefers, A.; Schladitz, K.; Mücklich, F. Unambiguous classification of complex microstructures by their

three-dimensional parameters applied to graphite in cast iron. Acta Mater. 2008, 56, 1981–1990. [CrossRef]
46. Vogel, H.J.; Roth, K. Quantitative morphology and network representation of soil pore structure. Adv. Water Resour. 2001, 24,

233–242. [CrossRef]
47. Park, C.; Rosenfeld, A. Connectivity and Genus in Three Dimensions; Computer Science Center, University of Maryland: College

Park, MD, USA, 1971; Technical Report TR-156.
48. Toriwaki, J.; Yonekura, T. Euler number and connectivity indexes of a three dimensional digital picture. Forma 2002, 17, 183–209.
49. Lin, X.; Xiang, S.; Gu, Y. A new approach to compute the Euler number of 3D image. In Proceedings of the IEEE Conference on

Industrial Electronics and Applications, Singapore, 3–5 June 2008; pp. 1543–1546.
50. Lin, X.; Ji, J.; Huang, S.; Yang, J. A proof of new formula for 3D images Euler number. Pattern Recognit. Artif. Intell. 2010, 23, 52–58.
51. Sossa, J.; Rubío, E.; Ponce, V.; Sánchez, H. Vertex codification applied to 3-D binary image Euler number computation. Adv. Soft

Comput. 2019, 11835, 701–713.
52. Lee, C.; Poston, T. Winding and Euler numbers for 2D and 3D digital images. Graph. Models Image Process. 1991, 53, 522–537.

[CrossRef]
53. Sánchez, H.; Sossa, J.; Braumann, U.-D.; Bribiesca, E. The Euler-Poincaré formula through contact surfaces of voxelized objects. J.

Appl. Res. Technol. 2013, 11, 65–78. [CrossRef]
54. Čomića, L.; Magillo, P. Surface-based computation of the Euler characteristic in the cubical grid. Graph. Models 2020, 112, 101093.

[CrossRef]
55. Morgenthaler, D. Three-Dimensional Digital Image Processing; University of Maryland: College Park, MD, USA, 1981.
56. Yao, B.; He, H.; Kang, S.; Chao, Y.; He, L. Efficient strategies for computing Euler number of a 3d binary image. Electronics 2023,

12, 1726. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1016/j.actamat.2007.12.033
https://doi.org/10.1016/S0309-1708(00)00055-5
https://doi.org/10.1016/1049-9652(91)90003-3
https://doi.org/10.1016/S1665-6423(13)71515-3
https://doi.org/10.1016/j.gmod.2020.101093
https://doi.org/10.3390/electronics12071726

	Introduction
	Reviews of State-of-the-Art Euler Number Computing Algorithms
	Algorithms That Compute the Euler Number through the Definition
	Algorithms That Compute the Euler Number by Utilizing Intrinsic Features
	Skeleton-Based Euler Number Computing Algorithm
	Perimeter-Based Euler Number Computing Algorithm
	Corner Codification-Based Euler Number Computing Algorithm

	Algorithms That Compute the Euler Number by Counting Specific Blocks/Patterns in the Image
	Bit-Quad-Based Euler Number Computing Algorithm
	Run-Based Euler Number Computing Algorithm

	Algorithms That Compute the Euler Number by Special Data Structure
	Graph-Representing-Based Euler Number Computing Algorithm
	Tree-Representing-Based Euler Number Computing Algorithm
	Graph Run-Representing-Based Euler Number Computing Algorithm

	Algorithms That Compute the Euler Number via Machine Learning

	Experimental Results
	Experimental Results of Noise Images
	Execution Time versus Density of Noise Images
	Execution Time versus Resolution of Images

	Experimental Results of Authentic Images

	Relevant Issues
	Parallel Implementation of Euler Number Computing Algorithms
	Euler Number Computation of 3D Images

	Concluding Remarks
	References

