
Citation: Borowiec, M.; Rak, T.

Advanced Examination of User

Behavior Recognition via Log Dataset

Analysis of Web Applications Using

Data Mining Techniques. Electronics

2023, 12, 4408. https://doi.org/

10.3390/electronics12214408

Academic Editor: Manuel

Palomo-Duarte

Received: 7 October 2023

Revised: 20 October 2023

Accepted: 23 October 2023

Published: 25 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Advanced Examination of User Behavior Recognition via Log
Dataset Analysis of Web Applications Using Data
Mining Techniques
Marcin Borowiec and Tomasz Rak *

Department of Computer and Control Engineering, Rzeszow University of Technology,
Powstancow Warszawy 12, 35-959 Rzeszow, Poland; mborowiec@prz.edu.pl
* Correspondence: trak@kia.prz.edu.pl

Abstract: As web systems based on containerization increasingly attract research interest, the need
for effective analytical methods has heightened, with an emphasis on efficiency and cost reduction.
Web client simulation tools have been utilized to further this aim. While applying machine learning
(ML) methods for anomaly detection in requests is prevalent, predicting patterns in web datasets
is still a complex task. Prior approaches incorporating elements such as URLs, content from web
pages, and auxiliary features have not provided any satisfying results. Moreover, such methods
have not significantly improved the understanding of client behavior and the variety of request
types. To overcome these shortcomings, this study introduces an incremental approach to request
categorization. This research involves an in-depth examination of various established classification
techniques, assessing their performance on a selected dataset to determine the most effective model
for classification tasks. The utilized dataset comprises 8 million distinct records, each defined by
performance metrics. Upon conducting meticulous training and testing of multiple algorithms from
the CART family, Extreme Gradient Boosting was deemed to be the best-performing model for
classification tasks. This model outperforms prediction accuracy, even for unrecognized requests,
reaching a remarkable accuracy of 97% across diverse datasets. These results underline the exceptional
performance of Extreme Gradient Boosting against other ML techniques, providing substantial
insights for efficient request categorization in web-based systems.

Keywords: experimental analysis; workload characterization; interactive web applications; web
client classification; web software

1. Introduction

The deployment of a log collection mechanism is an indispensable tool for software
developers and IT system administrators. This tool is primarily used for error detection
or system failure analysis during the operation of an application or system. Also, logs
can serve as a performance analysis resource. The process of implementing a log event
mechanism begins by identifying the events to be recorded and the purpose for doing
so. The appropriate logging tool or library is then selected, or a custom solution is devel-
oped based on the initial specifications. During the creation of the logging mechanism,
performance-related considerations such as the log detail level, time interval, log location,
and log rotation need to be taken into account [1]. After implementing the event logging
mechanism, it is essential to test its operation and, if necessary, introduce modifications to
ensure optimal effectiveness and efficiency in system monitoring.

The objective of this article is to analyze the operation of a web application—a stock
market system—based on its logs. These logs are generated during the operation of a
benchmark that tests the hardware architecture on which the application has been deployed.
The exploratory data analysis (EDA), which allows understanding the characteristics of
the data through their visualization and statistical analysis, has been presented in [2].

Electronics 2023, 12, 4408. https://doi.org/10.3390/electronics12214408 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12214408
https://doi.org/10.3390/electronics12214408
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9299-2216
https://doi.org/10.3390/electronics12214408
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12214408?type=check_update&version=2


Electronics 2023, 12, 4408 2 of 27

In this article, machine learning (ML) techniques are utilized for information extraction.
Data analysis and machine learning are crucial in log examinations, as they enable the
efficient processing of massive amounts of data recorded by the event logging mechanism.
Classifiers for ML were created to predict user behavior (the URL being viewed) based
on the collected logs. The article analyzes the operation of the system on two different
hardware configurations and proposes a set of methods designed for log analysis and user
classification. Jupyter Notebook scripts in Python were used, employing libraries, such as
NumPy, Pandas, Scikit-learn, Matplotlib, Seaborn, and Mlxtend. This research examines if
the quality of produced logs is influenced by the way the logging system is implemented
and the underlying system architecture that produces the logs. The areas covered in this
paper are:

• Developing operational scenarios for the stock market software client.
• Collecting logs from the reference benchmark.
• Evaluating the accuracy of the stock market simulations.
• Diving into data analysis [2].
• Contrasting the employed classification techniques and studying their efficacy.

The core aim of this paper is to delve into the workings of a web-based stock market
platform and forecast the actions performed by participants (represented by the variable
endpointUrl) through the examination of the performance metrics recorded in the logs
from every system module. Such logs are procured during the operation of a benchmark
designed to evaluate the hardware framework on which the application runs. Moreover, the
study endeavored to assess how effective the classification techniques are when data from
the mentioned categories are amalgamated into a collective cluster, labeled as allGroup.
The results of this investigation will pinpoint the most suitable classification approach
for the data generated by the stock market platform throughout its simulation using the
designated benchmark. Key metrics such as the training duration for the classifier, the Root
Mean Square Error (RMSE), and the determined precision were considered. An additional
aspect explored was the effect of increasing the size of the training dataset on predicting
stock market action procedures. In the course of this research, the authors aspired to
address existing knowledge voids pertaining to the efficacy of machine learning classifiers
across diverse user interaction patterns and server demands.

This article is divided into five sections. Section 2 provides a literature review. Section 3
contains a brief description of the experimental environment and the conducted real-system
simulations. Section 4 gives the description of the proposed log analysis methods. Section 5
discusses the practical application of the methods analysis of the prepared logs and the
results of the conducted research. Section 6 provides a summary of the work.

2. Related Work

The field of user behavior recognition and web log dataset analysis is abundant with
previous research and methodologies, forming a solid foundation on which this study
is built. The utilization of log files for understanding system behavior and detecting
anomalies in user behavior has been a recurring theme in research and has been extensively
studied over the years. This robust tradition of log dataset analysis, machine learning
techniques, and user behavior recognition methodologies have guided several pivotal
works [3–5], setting the stage for the investigation conducted in this paper. The paper
by [6] presents a comprehensive study on the role and analysis of system logs in modern
software systems. It outlines how these logs, though unstructured, are crucial for tasks, like
anomaly analysis, intrusion detection, and situational awareness. Due to the complexities
of today’s software systems and the immense volume of data, automated log analysis,
achieved through log parsing and feature extraction, is now favored over manual processes,
enabling higher efficiency and accuracy. Software system logs, which record software
operation information, are vital for system reliability assurance tasks. They are used in
various services, including intrusion detection, digital forensics, and situational awareness.
Compared to network data packets, system logs capture more critical information, like



Electronics 2023, 12, 4408 3 of 27

memory and CPU data. Researchers use this log information to enhance intrusion detection
based on network data packets. The review work [6] presents today’s network services that
are deeply interconnected, and any downtime could have cascading effects.

The extensive body of research in the realm of user behavior recognition and web log
dataset analysis incorporates various methods and techniques. A significant portion of
the article [7] has focused on leveraging log files to understand system behavior, as well
as recognizing user behavior and identifying anomalies through log data. The authors
extract navigational patterns using data mining techniques. However, the application of
machine learning methodologies for user request categorization remains unexplored in
their research. Hochenbaum et al. [8] use machine learning methodologies in their notable
study on log data analysis, with a particular focus on log anomaly detection. This approach
of using machine learning for anomaly detection is expanded on by Chandola et al., who
offer a comprehensive survey of various machine learning-based anomaly detection tech-
niques [9]. Several works have discussed the process of log parsing and feature extraction,
essential steps in transforming semi-structured log data into structured statements. The
subsequent application of machine learning and deep learning methods allows for anomaly
detection [6]. We have found approaches [10] to detecting anomalies in stream data, out-
performing other state-of-the-art unsupervised and semi-supervised detectors, making it
particularly applicable in settings with stringent memory limitations. Some authors inte-
grate the Apriori association rule algorithm with web application development technology
to enhance the college sports data information management system. It introduces a novel
log mining technology that excels in system performance enhancement and understanding
user behavior.

Regarding classification techniques in log data analysis, Kotsiantis et al. [11] offer
significant insights, evaluating the performance of established classification models on
large datasets. This area of research presents a formidable challenge, as illustrated by
Akoglu et al., whose pioneering work in anomaly detection in graphs is [12]. Chen and
Guestrin further explore classification techniques [13], particularly for ML tasks. Their
findings underscore the importance of this ML technique due to its exceptional performance.
Srivastava et al. [14] address the challenge of predicting patterns and classifying requests
based on web data. Using data mining techniques, they identify user behavior and patterns
from weblogs, albeit without employing ML techniques. Meanwhile, Piszko et al. [2]
perform an in-depth exploratory data analysis of a benchmark application log dataset,
focusing on a stock market web application using statistical methods and data visualization
techniques. In the same way, Meng et al. [15] evaluate the efficiency of different ML
classifiers in predicting user behavior based on weblogs, utilizing datasets similar to
our study.

Further studies extend beyond log analysis and user behavior. They delve into broader
data mining, knowledge discovery in databases, and the application of advanced data min-
ing techniques, such as the pincer-search-based approach, for an in-depth understanding
of consumer behavior [3,5]. Some studies explore different aspects of data management
and processing, such as the development of a new data portal architecture to facilitate the
processing and interaction with large datasets [16]. Others employ data mining techniques
to expedite the selection process for scholarship recipients using clustering and classifica-
tion algorithms [17]. Moreover, containerization in web systems [18], an emerging area of
interest, has seen studies like that of Bernstein, which emphasizes the need for effective
analytical methods for efficiency and cost reduction. However, such works often overlook
the importance of log data analysis and user behavior recognition [19]. The rapid adoption
of container systems in modern computing environments has necessitated the development
of robust performance models tailored to these architectures. In container-based web
systems, the challenge of accurately predicting system performance has been a focal point
of research. The study [20] introduces a novel method that employs queueing Petri nets
to model the performance of containerized web systems, a significant advancement in
performance engineering for containerized environments.



Electronics 2023, 12, 4408 4 of 27

Web mining is categorized into three types [21,22]: web content mining (extracting
information from web page content), web structure mining (analyzing links between web
pages), and web usage mining (analyzing user behavior). This article emphasizes the
benefits of data and web mining. This paper also touches upon customer preferences,
the importance of data preprocessing, the role of pattern recognition, and the intricacies
of web mining. In conclusion, while previous works have significantly contributed to
understanding system behavior and user recognition through log files, the particular
combination of methodologies this current study proposes to fill other gaps in the literature.
This includes the application of ML techniques for log analysis and an in-depth examination
of various classification techniques for effective user behavior recognition. Our approach
aims for high accuracy in unrecognized requests, an aspect often overlooked in prior
studies. Therefore, this research seeks to augment the existing knowledge and pave the
way for further advances in the field.

3. Experimental Environment

The experimental environment of the OSTS stock exchange system, discussed in [2],
was used to obtain the system logs. It consists of two applications: a scalable stock
exchange application (APP1) and an application generating traffic on the stock exchange—
an automatic client (APP2). Communication between them is conducted through the
RabbitMQ message broker—each request of the automatic client (traffic generator (APP2))
goes to a separate queue, waiting to be processed by the stock exchange’s transaction
algorithm (APP1).

3.1. OSTS

Legacy applications, built on a unified architecture, assume a single application and
database structure with low latency. Various technologies aim to transform monolithic
legacy applications into cloud-based solutions. There have been proposals to automate the
transition from a monolith to microservices; these often focus on code-level or database-
level refactoring [23].

The stock exchange application (APP1—a container-based web system in the cloud)
is based on the operating principles of IBM’s open-source DayTrader application. It is a
benchmark that operates on the basis of the Online Stock Trading System. It allows users
to log in, review their portfolios, search for stock quotes, and buy and sell shares. Using
APP2 based on the web network, an actual load could be used to measure and compare the
performance of application servers. The traffic-generating application (APP2) simulates
user behavior and makes requests to the web API (APP1). During the experiments, we
obtained measurements of the response times of individual queries and resource usage.
All these events were recorded in databases (of both applications) and, at the end of the
simulation, saved in the form of logs (converted to CSV format). The types of queries
generated by APP2 are discussed in detail in [2]:

• do–register—user registration in the system;
• add–sell–o f f er—adding a share sale offer by the user;
• add–buy–o f f er—adding an offer to buy a specific share by the user;
• get–stock–data—displaying the detail page of the desired share;
• get–stock–users–and–companies—displaying a page with shares of given companies.

The types of queries a player uses in the stock exchange depend on the strategy
they adopt for playing in the stock exchange (Table 1). Strategies A1 and A2 use all
available queries for the player (except for the reserved add-company), while A3 only
checks their portfolio.

All of the above-described elements of the stock exchange system are containerized
using Docker (version 20.10.6, build 370c289), a system-level virtualization software. The
Docker Swarm tool ensures the scalability of the stock exchange application. This enables
multiple stock exchange nodes, for example, to balance the load in the system.



Electronics 2023, 12, 4408 5 of 27

Table 1. Types of queries (endpointUrl) generated by players a.

Strategy A1 A2 A3

1 do–register X X X
2 add–sell–o f f er X X
3 add–buy–o f f er X X
4 get–stock–data X X X
5 add–company
6 get–stock–users–and–companies X X X

a Explanations: A1—player with strategy 1—buying and selling shares until all funds are used up; A2—player
with strategy 2—buying and selling individual shares alternately; A3—player with strategy 3—browsing offers.

3.2. Conducted System Simulations

In order to obtain data to analyze the functioning of the operating stock exchange
application, a series of simulations (scenarios) were conducted on the benchmark platform.
The scenarios were grouped into four characteristic groups studying different features:

• A group studying the impact of the number of R replicas of the exchange (replGroup).
• A group studying the impact of the time between the execution of the transactions

(transGroup).
• A group studying the impact of the time between the player requests (reqGroup).
• A group studying the impact of the tactics applied by the players (algGroup).

In the replGroup, the operation of the system in the case of increasing and decreasing
the number of containers (R) of the stock exchange application (Docker Swarm) was
considered. In reality, there are situations where this parameter changes (container failure
or scaling of the architecture). In the transGroup, the transaction algorithm was examined,
specifically its tT parameter, which determines the delay in between the execution of
the transaction offers (pairing buy-and-sell share offers). Changing the time window for
transaction execution can be useful during increased traffic on the stock exchange. The
next group studied was reqGroup. The analysis in this group focused on the performance
capabilities of the architecture by changing the tR delays of user-generated queries. The
stock exchange system, of course, does not have the same traffic all the time, so different
tR times were taken into account. The last group studied was the algGroup, in which the
different types of game algorithms (A1, A2, and A3) used by the players were tested on the
same hardware configuration. This group, therefore, describes different actions taken by
users during the simulation, making it practical and its log set usable in a real system (as
a training set for classifiers). The set of all the groups was named allGroup and was also
considered in the analysis. The impact of the physical factor, i.e., the performance of the
server on which the application under test will be run, was also taken into account. The
simulations were performed on two different servers with different architectures. The first
server had 8 processors and 20 GB (S1) of RAM, while the second had 12 processors and
30 GB of memory (S2). Each of the eighteen simulation scenarios presented in Table 2 were
also performed for different time ranges: t = {3600, 10800, 21320, 32400, 43200} (s).

Table 2. Simulation scenarios for 8CPU_20RAM (S1) and 12CPU_30RAM (S2) architectures a.

Simulation t (s) R A1 A2 A3 tR (ms) tT (s)

5repl 3600 5 200 0 0 500 180
2repl 10,800 2 200 0 0 500 180
4repl 21,600 4 200 0 0 500 180
6repl 32,400 6 200 0 0 500 180

43,200



Electronics 2023, 12, 4408 6 of 27

Table 2. Cont.

Simulation t (s) R A1 A2 A3 tR (ms) tT (s)

trans_60s 3600 5 200 0 0 500 60
trans_120s 10,800 5 200 0 0 500 120
trans_180s 21,600 5 200 0 0 500 180
trans_240s 32,400 5 200 0 0 500 240
trans_300s 43,200 5 200 0 0 500 300

req_250ms 3600 5 200 0 0 250 180
req_500ms 10,800 5 200 0 0 500 180
req_1000ms 21,600 5 200 0 0 1000 180
req_2000ms 32,400 5 200 0 0 2000 180

43,200

A1_200–A3_100 3600 5 200 0 100 500 180
A2_200 10,800 5 0 200 0 500 180
A2_200–A3_100 21,600 5 0 200 100 500 180
A1_100–A2_100–A3_100 32,400 5 100 100 100 500 180
A3_200 43,200 5 0 0 200 500 180

a Explanations: R—number of stock exchange replicas; S1—architecture 1, also called 8CPU_20RAM; S2—
architecture 2, also called 12CPU_30RAM; A1—number of players with strategy 1; A2—number of players with
strategy 2; A3—number of players with strategy 3; T [s]—simulation duration; tR [ms]—time between player
queries; tT [s]—time between transaction execution.

4. Examination of Web Application Logs

This section presents the kinds of logs and also the prepared ML tools. The dataset
will be based on performance logs (generated by APP1 and APP2).

4.1. Types of Logs

There are various types of logs based on their different scopes of operation, but
the principle of operation is common—they are used to report and record events along
with timestamps. Server logs record events related to server operation, such as client
requests or server errors. In the context of an HTTP server, they contain information about
who visited our site (IP address) and what resources (URL addresses) were visited at
a given moment. The user-agent is recorded as well—a header identifying the client’s
browser and system. Application logs have all the application’s actions recorded in them,
such as errors, exceptions, or events related to user handling or processes called by the
application. Their main application is to point out the source of the problem in the case of
encountering potential errors with the operation of the application. System logs record all
events related to the operation of the operating system, such as starting and closing the
system, installing and removing packages, changes in configuration files, etc. They contain
valuable information for system administrators in case the system is not working properly,
e.g., unexpected device shutdown. Network logs are generated by network devices, such
as routers, switches, or hardware firewalls. They record events related to network activity,
such as network connections, data transfer, or successful network configuration. Security
logs are usually a subset of system logs. They record events that could potentially be
dangerous to network infrastructure, such as attempts to log into the system without
appropriate permissions, network attacks, or attempts to access protected resources. The
performance log can log request activities and their min/max/average response time and
the number of requests for different time frames or resource loads (the CPU or memory
utilization). In summary, monitoring based on log collection is implemented in many
solutions that are important for IT designers. It allows for tracking and the analysis of the
operation of IT systems, thanks to which we can identify and solve technical problems,
monitor the performance of applications, and react to potential security threats through
the logs collected. The most characteristic group among the above is application logs. The
nature, format, and detail of the generated logs are entirely dependent on the programmers,
who can appropriately adjust these features depending on the needs, requirements of the



Electronics 2023, 12, 4408 7 of 27

application, and environment in which it is deployed. The prevailing log formats are a text
recording in the standard applicable to them: Common Log Format, W3C Extended Log,
Syslog, JSON, XML, or CSV.

The stock market system (APP1) during the simulation, initiated by the benchmark
platform (APP2), generates four performance logs in the CSV format (table data). These
are the following, in order:

• methods.csv—logs of the queries performed by the user, e.g., submitting an offer;
• stock.csv—logs of the parameters of consumption of the stock exchange replica—the

processor and RAM;
• trading.csv—logs concerning the number of bids/asks submitted;
• tra f f ic.csv—logs of the processor and RAM consumption on the traffic generator

(APP2).

Performance user query logs carry entries about the queries executed by users and the
associated resource parameters (Table 3). The queries are generated by a load generator
(APP2) based on previously set simulation parameters.

Table 3. Attributes of methods.csv file.

Column Description

timestamp Timestamp of query execution
apiTime Query duration from the moment it is sent to the exchange until receiving a response (ms)
applicationTime Query processing time at the exchange (ms)
databaseTime Query processing time in the database (ms)
endpointUrl Name of the API method executed by the user, e.g., registration, retrieval of share offers, etc.
queueSizeForward Number of queries yet to be processed or in progress
queueSizeBack Number of queries waiting in the queue
replicaId ID of the exchange application container that processed the query

The exchange system is scalable, meaning the number of exchange application con-
tainers could be adjusted according to the performance capabilities of the architecture upon
which the system operates. Performance replica logs contain information about hardware
resource consumption from each predefined exchange application node at regular time
intervals (Table 4).

Table 4. Attributes of stock.csv file.

Column Description

timestamp Timestamp of measurement
cpuUsage CPU usage (0.00–1.00) at the container (%)
memoryUsage RAM usage (0.00–1.00) at the container (%)
replicaId ID of the exchange application container that processed the query

During the operation of the exchange system, purchase and sale offers of shares are
paired and processed by a transaction algorithm. This algorithm determines the feasibility
of the transaction finalization in between players trading on the exchange. Also, the
transaction algorithm generates performance logs during its operation (Table 5).

The final type of logs are traffic generator logs of performance, which contain infor-
mation about the consumption of hardware resources registered on the traffic generator
(APP2). In contrast to the previous logs, the replicaId parameter does not appear here as
the traffic generator application operates on a single replica (Table 6).



Electronics 2023, 12, 4408 8 of 27

Table 5. Attributes of trading.csv file.

Column Description

timestamp Timestamp of the transaction algorithm’s measurement
applicationTime Transaction duration (ms)
databaseTime Transaction processing time in the database (ms)
numberO f SellO f f ers Number of processed share sale offers
numberO f BuyO f f ers Number of processed share purchase offers
replicaId ID of the exchange application container that executed the transaction

Table 6. Attributes of tra f f ic.csv file.

Column Description

timestamp Timestamp of measurement on the traffic generator
cpuUsage CPU usage (0.00–1.00) in the traffic generator (%)
memoryUsage RAM usage (0.00–1.00) in the traffic generator (%)

The aforementioned logs, generated by the individual components (APP1 and APP2),
have been merged. The purpose of this operation is to facilitate further data analysis
and to enable consideration of all features/attributes within the entire system. The only
difference between them is that merged.csv primarily uses the query log file (methods.csv),
while merged2.csv is based on the exchange replica logs (stock.csv). This aims to create two
datasets of significantly different sizes (Table 7).

Table 7. Attributes of merged.csv and merged2.csv files.

Column Description

apiTime Duration of the request from the moment it was sent to the exchange until the response
was received (ms)

applicationTime Duration of request processing on the exchange (ms)
databaseTime Duration of request processing in the database (ms)
endpointUrl Name of the API method executed by the user, e.g., registration, stock offer retrieval, etc.
queueSizeForward Number of requests not yet processed or currently being processed on the exchange
queueSizeBack Number of requests waiting in line on the exchange
st_cpuUsage CPU usage (0.00–1.00) on the exchange container (%)
st_memoryUsage RAM memory usage (0.00–1.00) on the exchange container (%)
trad_applicationTime Duration of the transaction (ms)
trad_databaseTime Duration of transaction processing in the database (ms)
trad_numberO f SellO f f ers Number of processed stock selling offers (transaction algorithm)
trad_numberO f BuyO f f ers Number of processed stock buying offers (transaction algorithm)
tra f _cpuUsage CPU usage (0.00–1.00) on the traffic generator (%)
tra f _memoryUsage RAM memory usage (0.00–1.00) on the traffic generator (%)

Logs contain a plethora of information, which aids in managing individual systems.
Proper implementation of the logging mechanism and its analysis are not only beneficial for
software developers but also for IT system administrators and regular users. According to a
paper [24], there are four categories in which the implementation of a logging mechanism in
a system will bring tangible benefits: performance, security, prediction, reporting, and pro-
filing. For performance, log analysis might aid in system optimization or debugging when
problems arise. Security is another advantage of implementing a logging mechanism. Logs
store system security-related information, such as security breach event logs, network flows,
user login sessions, etc. The analysis of such logs is based on previously prepared security
templates or anomaly detection mechanisms. Predictive models based on generated logs
forecast future trends. For example, predictive models developed based on available data
can assist in automating or enhancing knowledge about load management, server resource
delivery, or system configuration optimization. The final group considered is reporting



Electronics 2023, 12, 4408 9 of 27

and profiling. Data collected in system logs are grouped by certain characteristics. For
example, websites visited by users in a local network could be divided into categories, thus
allowing the profiling of user groups interested in a particular topic. Other applications of
log analysis may include system resource profiling in terms of load.

Insights derived from the analysis of active IT system logs could significantly con-
tribute to improving the system’s performance, security, and efficiency in event monitoring.
Performance logs are used for the implementation of data feature/attribute classifiers
(prediction).

4.2. Log Dataset Analysis

In this section, we present the proposed methods, including the operational methods
and types of algorithms, as well as the approach to log analysis of the stock exchange
system, which could also be applied in the analysis of logs from other web applications.
The described issues include studies of ML techniques (supervised learning algorithms—
classification). Before applying the above methods, it is recommended to use EDA to
understand the characteristics of the logs, as presented in the article [2]. This study focuses
on classification.

Data classification theory is a field that develops methods and algorithms for assigning
objects to specific classes based on their attributes or features. A classification algorithm is
a supervised learning technique used to identify the categories of new observations based
on training data. The operation of classification involves using a model that has previously
been trained (on a training set) to recognize patterns and relationships in data, in order to
predict appropriate classes for new, unlabeled data. The output variable of classification is
a category (class), which is a designation of a group to which a given observation belongs.
In the case of prediction, where the output variable is a numerical value, not a category,
we use supervised regression methods. A classifier that predicts only two possibilities is
called binary, while one that considers a larger number of possible outcomes is called a
multiclass classifier. The general process of data classification can be divided into several
steps: data collection, data preparation, model selection, model training, model evaluation,
and prediction.

There are many different types of classifiers used in data classification. Classifiers
(classification algorithms) could be divided into two categories due to the nature of the
model built: linear or nonlinear. Below are examples of algorithms from both of these cate-
gories: linear models (linear regression, logistic regression, and support vector machines
(SVM)), and nonlinear models (naive Bayes classifier, k-nearest neighbors (KNN) algorithm,
decision trees, and neural networks).

Algorithms based on decision trees are popular in the field of machine learning and
data analysis. Decision trees generated as a result of the Classification and Regression Trees
(CART) algorithms are graphical representations of a hierarchical decision structure. The
structure of such a tree consists of nodes (vertices), branches, and leaves. Nodes conduct
tests on the values of features/attributes; branches are the outcomes of a given node,
e.g., yes/no (binary tree); and leaves represent the results of the classification. Decisions
or tests in the decision tree are made based on attributes of a given dataset and feature
values. The operation of the CART algorithm is as follows: feature selection, data division,
tree construction by recursive data divisions, and ending the tree construction. The built
decision tree, as a result of the described steps of the CART algorithm, can be used for the
prediction of new data. If the problem we are solving is more complex, it is possible to
increase the depth of the generated tree or to use other measures to examine the quality
of divisions in the tree. Also, it is possible to modify the existing tree model by pruning
branches that negatively affect the final model.

The main goal of this article is to classify user request types in the stock exchange
system based on the logs it generates. During the analysis of the stock exchange application
logs, three classification methods based on CART were used: Decision Tree (DT), Random
Forest (RF), and Extreme Gradient Boosting (XGBoost).



Electronics 2023, 12, 4408 10 of 27

DT is a supervised learning algorithm that utilizes a tree structure to determine
outcomes. For each branching point in the tree, the algorithm evaluates an attribute’s
value, guiding its path downward until reaching a concluding node or decision. Its
main attraction lies in its clear structure and visual interpretability. Within this paper,
the DecisionTreeClassi f ier was quick to learn owing to its uncomplicated nature. Yet,
when contrasted with other classifiers in the simulation environment, it fell short in terms
of efficacy.

RF operates as an ensemble technique, amassing multiple decision trees during its
training phase. During prediction, it weighs the decisions of all the trees within its “forest”
ensemble, finalizing the class label through a majority consensus. Such an approach aids
in enhancing precision and mitigating overfitting. As per the discussion in this article,
the RandomForestClassi f ier showcased commendable performance, notably within the
replGroup, outshining the standalone DT in efficiency.

XGBoost refines the gradient-boosting machine learning paradigm. Boosting revolves
around the concept of sequentially developing models to rectify the preceding models’
errors. Recognized for its briskness and operational efficiency, XGBoost was perceived
to deliver superior results in this study, specifically for the simulation duration of 32400s,
surpassing RF in accuracy metrics and training speed.

The DT algorithm (CART) is a relatively simple (but fast) algorithm, and in the case
of a larger dataset, its accuracy may be unsatisfactory. On the other hand, CART can be
used in other ensemble learning methods (algorithms) as a solid foundation for advanced
algorithms that use the concept of building DTs. One such method is the RF algorithm,
which is an extension of CART and is used to improve prediction quality. The RF algorithm
involves creating not one, but many DTs based on random subsets of a given set, called the
training set. A set of such DTs is called a forest, where each tree is trained on a separate,
random subset of training data, and predictions are made based on the voting of all the
trees (result confrontation). The operation of the RF algorithm is as follows: creating
random subsets, building DTs, and predicting. Another popular algorithm based on the
DT concept is XGBoost. This is an advanced ML algorithm based on the Gradient Boosting
framework. XGBoost builds predictive models by sequentially adding DTs, each successive
tree focusing on correcting the errors of its predecessor. Models are trained in the boosting
technique, which means that each subsequent model focuses more on the samples that
were incorrectly classified by the previous models. During combination, the cost function
is minimized using the method of the straightforward gradient. Classifier models can be
added until all elements in the training set are correctly predicted or the maximum number
of classifier models is added (a hyperparameter set by the user).

Classification methods can be used to analyze the logs of web applications for various
applications: a recommendation/personalization system, identification of attacks and
threats, anomaly and error detection, and classification of types of requests and operations.
Because web application logs often contain information about different types of requests
and operations performed by users, classification methods are used to classify these re-
quests, based on their features such as technical parameters of the request, making it possi-
ble to identify and analyze them. This might be useful in system optimization, performance
monitoring, and user behavior analysis. In the context of the analyzed stock exchange
system and the log dataset related to its operation, specific results are expected through
the application of data analysis and machine learning methods. Data classification—the
use of data classification methods—will allow for the automatic labeling of stock exchange
system log events based on training data. It is expected that the classification will be able
to recognize different categories of user queries (endpointURL) generated in the system,
based on features, such as the processing time of the query (applicationTime), the size of
the queues (queueSizeBack and queueSizeForward), or the resource consumption of individ-
ual components of S1 incrementalcontribution and S2 (cpuUsage and memoryUsage). The
created classifiers will be compared to each other in order to select the best method based



Electronics 2023, 12, 4408 11 of 27

on the CART algorithms. The impact of the server architecture used (S1 and S2) on the
quality of predictions will also be examined.

5. User Action Prediction

The logs of the executed stock exchange operation simulations were subjected to the
classification methods. These logs contain the results of four simulation groups, referring
to various technical parameters of the functioning application: the number of containers
(replGroup), tT intervals between transactions (transGroup), and tR intervals between
queries (reqGroup), as well as the traffic generator actions (scenarios {A1, A2, A3} of the
stock exchange play—algGroup). The aim of this research was to predict the actions
performed by the players (attribute endpointUrl), based on the performance parameters
recorded in the logs of all the system components (the merged.csv set of individual groups).
Additionally, the effectiveness of the classification taking into account all the data, i.e.,
combining the above groups into one (allGroup), was checked.

The following classification methods were used in the analysis: DT, RF, and XGBoost.
As a result of the conducted analyses, the best classification method was selected

for the dataset generated by the stock exchange application during the stock exchange
simulation using the prepared benchmark. The duration of the classifier learning, the Root
Mean Square Error (RMSE), and the calculated effectiveness (accuracy) were measured. The
influence of increasing the size of the training set on the prediction of the stock exchange
action methods was checked (t = {3600, 10800, 21320, 32400, 43200} (s)).

The predicted actions performed by the user (endpointUrl) in the application will be
mapped as follows (with numerical representation in brackets):

• do–register (0);
• add–sell–o f f er (1);
• add–buy–o f f er (2);
• get–stock–data (3);
• add–company (4);
• get–stock–users–and–companies (5).

5.1. Classification of Actions in the replGroup Log Group

The replGroup contains the results of four simulations (Table 2), in which the number
of replicas (Docker Swarm containers) of the stock exchange application is changed.

At the beginning, classifiers based on the training dataset 3600s for the treplGroup = 3600s
simulation time were tested (Figure 1) on the remaining sets of the same group (TreplGroup =
{10800s, 21600s, 32400s, 43200s}—testing sets). All the used methods did not have high
effectiveness and repeatability in classification precision. The best method turned out to
be the classifier based on FRs (RFClassi f ier), followed by XGBoost (XGBoostClassi f ier).
The classifier based on a single DT (DecisionTreeClassi f ier) learned the fastest due to its
simplicity, but in all cases (Table 2), it was the least effective. The results of the classifier
based on the simulations of 3600s (Figure 1) were not very optimistic, so it was necessary
to increase the training dataset. The most effective set for building classifiers turned out to
be the set from the simulation of 32400s (Figure 2). In this case, the best algorithm turned
out to be XGBoost, winning over RF by a few percent, and also with a shorter training
time—420 (s) vs. 1200 (s) (Table 8).



Electronics 2023, 12, 4408 12 of 27

Figure 1. Accuracy of user action prediction (endpointUrl) in the group with a variable number of
replicas of the stock exchange application (replGroup). Training data 3600s and S1 architecture.

Figure 2. Accuracy of user activity prediction (endpointUrl) in the group with a varying number of
exchange application replicas (replGroup). Training data 32400s and S1 architecture.



Electronics 2023, 12, 4408 13 of 27

Table 8. Results of discussed classifiers for replGroup (S1 architecture).

Classifier Training Set Test Set Training Time RMSE Accuracy (%)

21600s 1.0936 8.77
32400s 1.1108 13.07
43200s 1.0446 8.24

32400s

3600s

0:01:16.815806

0.8311 37.22
10800s 0.5337 73.04
21600s 0.4224 83.23
43200s 0.4768 78.65

RandomForestClassi f ier

3600s

10800s

0:03:20.466097

0.6164 68.00
21600s 0.9667 11.06
32400s 0.8350 34.62
43200s 0.9683 10.95

32400s

3600s

0:20:04.924134

0.7721 42.62
10800s 0.3901 85.58
21600s 0.2596 93.74
43200s 0.3290 89.78

XGBoostClassi f ier

3600s

10800s

0:02:42.927881

0.6909 58.81
21600s 0.9820 8.80
32400s 0.9068 24.10
43200s 0.9874 8.55

32400s

3600s

0:07:03.088863

0.7609 43.76
10800s 0.3344 89.43
21600s 0.2266 95.22
43200s 0.2736 93.00

5.2. Classification of Actions in the transGroup Log Group

Another characteristic dataset consisted of data collected during the manipulation
of the transaction time (tT) parameter while maintaining the same simulation parameters
for user actions—the transGroup (Table 2). Also, this parameter has an influence on the
character of the generated logs and is responsible for balancing the load of the stock
exchange application.

The tested classifiers were stable with respect to the different simulation sets and had
a high percentage accuracy of classification, which cannot be said for the replGroup.

The best training set turned out to be once again the training set with a size of 32400s
(Figure 3), as it showed the highest efficiency in the tests. However, using a longer set of
43200s resulted in a classic case of overfitting the model (Figure 4); hence, it is important to
test different training sets and choose the optimal one to use.

The effectiveness of the RF and XGBoost methods was the best and very similar to
each other, in the transGroup. Due to the approximately 3 times shorter training time
of the XGBoost algorithm, it is recommended for this group. The detailed results of the
discussed classifiers are available in Table 9 (the best average accuracy of 97.22% for the
32400s training set).



Electronics 2023, 12, 4408 14 of 27

Figure 3. Accuracy of prediction of user activities (endpointUrl) in the group manipulating the tT

time of the transaction algorithm (transGroup). Training data 32400s and S1 architecture.

Table 9. Results of the discussed classifiers for the transGroup (S1 architecture).

Classifier Training Set Testing Set Training Time RMSE Accuracy (%)

DecisionTreeClassi f ier

32400s

3600s

0:01:49.501914

0.4103 83.88
10800s 0.4335 81.89
21600s 0.4275 82.54
43200s 0.3929 85.56

43200s

3600s

0:02:07.528890

0.5775 67.73
10800s 0.5657 68.94
21600s 0.4532 80.11
32400s 0.4939 76.48

RandomForestClassi f ier

32400s

3600s

0:27:37.105359

0.1814 97.25
10800s 0.1978 96.47
21600s 0.1893 96.73
43200s 0.1905 96.78

43200s

3600s

0:31:42.413660

0.4094 83.69
10800s 0.3344 89.20
21600s 0.2400 94.50
32400s 0.2722 92.95

XGBoostClassi f ier

32400s

3600s

0:09:29.015630

0.1692 97.48
10800s 0.1776 97.13
21600s 0.1743 97.20
43200s 0.1795 97.06

43200s

3600s

0:10:12.453611

0.2128 95.85
10800s 0.2353 94.84
21600s 0.1685 97.37
32400s 0.2069 96.05



Electronics 2023, 12, 4408 15 of 27

Figure 4. Accuracy of prediction of user activities (endpointUrl) in the group manipulating the tT

time of the transaction algorithm (transGroup). Training data 43200s and S1 architecture.

5.3. Action Classification in the Log Group reqGroup

By manipulating the tR parameter, which represents the interval in between user
requests, it was possible to examine the durability of a given server architecture against
traffic generated by the benchmarking platform. The smaller the tR interval, the greater
the generated traffic; hence, the server worked with greater intensity. This is how the next
reqGroup was formed, which includes four simulations (Table 2).

The accuracy of all the classifiers was high; however, the best was the classifier derived
from the 21600s training set (Figure 5) of this group. Increasing the dataset (32400s and
43200s) did not improve the results for each of the discussed methods. As in the previously
discussed group, the RF and XGBoost methods almost overlapped in the efficiency results,
but the speed of training the XGBoostClassi f ier still remains unmatched. The detailed
results of the discussed classifier are shown in Table 10.

Table 10. Classifier results (21600s) for the reqGroup (S1 architecture).

Classifier Training Set Testing Set Training Time RMSE Accuracy (%)

DecisionTreeClassi f ier 21600s

3600s

0:00:29.945958

0.4162 83.99
10800s 0.3363 89.91
32400s 0.4407 81.97
43200s 0.3406 89.84

RandomForestClassi f ier 21600s

3600s

0:08:32.000624

0.2392 94.83
10800s 0.2275 95.46
32400s 0.2303 95.36
43200s 0.2488 94.69

XGBoostClassi f ier 21600s

3600s

0:04:35.172833

0.2054 96.29
10800s 0.1967 96.57
32400s 0.2104 96.11
43200s 0.2281 95.33



Electronics 2023, 12, 4408 16 of 27

Figure 5. Prediction accuracy of user actions (endpointUrl) in the group manipulating the tR of the
traffic generator (reqGroup). Training data 21600s and S1 architecture.

5.4. Action Classification in the Log Group algGroup

The last group considered for classifier construction was the algGroup, which tests
various user behaviors during the operation of a stock exchange application. Five simu-
lations (Table 2) represent various actions according to three differently connected stock
market trading strategies (algorithms). Server parameters such as the number of replicas R,
transaction time tT , and delay in between requests tR remained the same. The dataset, after
merging the simulations, takes into account all possible actions (requests) made by users,
and it also describes them in different load situations.

Again, the best method turned out to be XGBoost (Figure 6). An interesting fact is the
relatively small difference in classification accuracy between the simplest method—DT—
and the more advanced FR in the tested set (Table 11). The training times are as follows:
DT—36 (s), RF—666 (s), and XGBoost—407 (s).

Table 11. Classifier results (21600s ) for the algGroup (S1 architecture).

Classifier Training Set Testing Set Training Time RMSE Accuracy (%)

DecisionTreeClassi f ier 21600s

3600s

0:00:36.742987

0.4821 84.04
10800s 0.6425 78.59
32400s 0.6097 81.53
43200s 0.6389 68.67

RandomForestClassi f ier

3600s

0:11:06.478485

0.4218 86.03
10800s 0.5161 82.26
32400s 0.4877 84.44
43200s 0.6024 68.35

XGBoostClassi f ier

3600s

0:06:47.001467

0.3854 89.17
10800s 0.4603 88.14
32400s 0.4364 89.13
43200s 0.5381 75.46



Electronics 2023, 12, 4408 17 of 27

Figure 6. Prediction accuracy of user actions (endpointUrl) in the group testing stock market trading
strategies (algGroup). Training data 21600s and S1 architecture.

The algGroup is a rather interesting set, which quite realistically presents possible
server load situations with set technical parameters.

5.5. Classification of All Logs (allGroup)

By combining all the conducted simulations, namely, the previously described groups,
replGroup, transGroup, reqGroup, and algGroup (Table 2), we obtain a single consolidated
dataset (allGroup) covering various load scenarios and technical parameters. Hence, the
classifiers trained to recognize user activities on this set are universal in nature, unlike
those described earlier for smaller groups.

The highest classification results were achieved on the 10800s training set. XGBoost
proved to be the best method again (Figure 7). In the case of increasing the volume of the
training set to 43200s , RF was slightly better, but as a result of overfitting the models, their
accuracy disappeared (Figure 8), which was also observed in the other groups. The detailed
results of the discussed classifier are available in Table 12.

Figure 7. Accuracy of user action predictions (endpointUrl) in a dataset composed of all groups.
Training data 10800s and S1 architecture.



Electronics 2023, 12, 4408 18 of 27

Figure 8. Accuracy of user action predictions (endpointUrl) in a dataset composed of all groups.
Training data 43200s and S1 architecture.

Table 12. Results of the discussed classifiers for the allGroup (S1 architecture).

Classifier Training Set Testing Set Training Time RMSE Accuracy (%)

DecisionTreeClassi f ier

10800s

3600s 0:03:14.406778 0.5763 72.36
21600s 0.4705 82.37
32400s 0.4117 86.59
43200s 0.5051 78.79

43200s

3600s 0:07:52.660749 0.8147 41.71
10800s 0.7246 55.95
21600s 0.5333 77.54
32400s 0.6059 68.14

RandomForestClassi f ier

10800s

3600s 0:48:06.579417 0.4631 80.88
21600s 0.3601 88.66
32400s 0.2564 94.57
43200s 0.4237 83.41

43200s

3600s 2:02:20.184634 0.7282 53.48
10800s 0.5611 70.30
21600s 0.4131 87.15
32400s 0.4256 83.30

XGBoostClassi f ier

10800s

3600s 0:17:32.660420 0.4325 83.08
21600s 0.2802 93.40
32400s 0.2443 95.16
43200s 0.3607 88.68

43200s

3600s 1:06:06.665074 0.7299 51.04
10800s 0.5650 69.26
21600s 0.3752 88.29
32400s 0.4361 82.07

5.6. Influence of Architecture and Datasets on Classification Accuracy

A crucial aspect to consider is the physical factor, which is the hardware architecture
on which the application, in this case, a stock exchange system, operates. Generated logs
may be distorted if the server is not sufficiently efficient. In the creation of classifiers
recognizing user actions/behaviors, certain actions may be incorrectly identified due
to the similar nature of the technical parameters (e.g., constant high load) during their
execution. In the analyzed stock exchange system, two architectures were taken into
account: S1 (8CPU_20RAM) and S2 (12CPU_30RAM). In the case of architecture S1, there
were situations in which the effectiveness of classifying the user actions was larger or



Electronics 2023, 12, 4408 19 of 27

smaller than the previous one as the training set increased. Architecture S2, which has
more computational resources, had noticeably smaller deviations in the results. It should be
added that the S1 and S2 architectures were not overloaded, up to 70–80% of the resource
utilization.

This situation is most clearly illustrated by the allGroup group, which takes into
account all scenarios (Figure 9). For S2, increasing the time of individual simulations gave
similar results, so we are able to say that the system and the data it generates are both
stable, or in other words: user actions are easily distinguishable based on the available
parameters. For S1, increasing the training set brought negative effects, and the classifiers
lose their prediction effectiveness.

(a)

(b)

Figure 9. Cont.



Electronics 2023, 12, 4408 20 of 27

(c)

Figure 9. Classification methods of user actions in the allGroup dataset. Comparison of classi-
fiers based on datasets of two architectures: (a) DecisionTreeClassi f ier, (b) RandomForestClassi f ier,
(c) XGBoostClassi f ier.

In addition to the considered group, these dependencies were also examined in the
others. In all the tested methods (Figure 10a–f), a similar dependence occurs—the classi-
fication results in the S2 architecture are almost linear if we consider larger training sets,
while S1 generates data that are difficult to classify. Firstly, the average accuracy of dataset
classification depends on the nature of the scenarios in the tested group. The more coherent
the data in the group, the higher the percentage of correctness. Secondly, we can read
from this indicator (accuracy) what parameters manipulated within the group have a high
impact on the system operation (lower classification correctness), and hence the different
nature of reported logs in individual scenarios in the group. The hierarchy of sets (groups),
in terms of the highest classification effectiveness in all methods (descending order), is
as follows:

1. reqGroup;
2. transGroup;
3. algGroup;
4. allGroup;
5. replGroup.

The above ranking is maintained in every used method, i.e., DT (Figure 10a,b), RF
(Figure 10c,d), and XGBoost (Figure 10e,f), and in two different architectures: 8CPU_20RAM
(S1) and 12CPU_30RAM (S2).

In the formal analysis, a high influence of the number of replicas parameter (R) on the
system’s operation character was noticed, which is also confirmed by the low effectiveness
of the endpointUrl classification within this group (replGroup), making this set possess the
smallest percentage classification accuracy of all the groups. The reqGroup and transGroup
sets have the best results and are quite similar to each other in terms of effectiveness due
to the similar character of operation of both these parameters. The algGroup ranks 3rd in
terms of the effectiveness of predicting user actions; however, this group considers various
player strategies, which means it has more types of actions (endpointUrl methods) for
analysis than other sets. This set assumes that the server architecture is unchanged in all
simulations. In the case when we analyze the results of the complete set (allGroup) of
weblogs generated by the system, their effectiveness is comparable to the algGroup set but
only in the case of the S2 architecture (it is usually lower). Creating a “universal” classifier
could be useful in case of frequent server parameter changes during its operation.



Electronics 2023, 12, 4408 21 of 27

(a) (b)

(c) (d)

(e) (f)

Figure 10. (a,b) DT method, effectiveness of classifying user actions depending on the considered
sets and architectures. Detailed data (Table A1). (c,d) RF method, user action classification efficiency
depending on the considered datasets and architectures. Detailed data (Table A2). (e,f) XGBoost
method, user action classification efficiency depending on the considered datasets and architectures.
Detailed data (Table A3).

The main focus of this paper is on the categorization of logs stemming from simulations
of stock exchange operations. The study delves into numerous parameters, encompassing
the count of containers (replGroup), gaps between transactions (transGroup), pause be-
tween requests (reqGroup), and actions of the traffic generator (algGroup), examining them
in light of their technical details. The variable tR, which denotes the pause between user
interactions, has a profound effect on server architecture performance, particularly its re-
silience to traffic emanating from benchmarking tools. A shorter value of tR typically results
in heightened server engagement. The classifiers demonstrated commendable accuracy
across diverse scenarios. In the context of the reqGroup on the S1 setup, augmenting the
data volume did not yield a noticeable uptick in outcomes. It is noteworthy that while both
RF and XGBoost delivered similarly regarding efficiency, XGBoost boasted unparalleled
training rapidity. On a closer inspection of the classifiers’ outcomes for the reqGroup on
the S1 blueprint, XGBoost consistently outshone in the accuracy metrics, overshadowing
both the DecisionTreeClassi f ier and RandomForestClassi f ier. This indicates the superior
capability of the XGBoostClassi f ier in managing the designated server layout and data
compilation. Within the algGroup, which probed diverse user interactions during a stock
exchange application’s run, the variance in classification precision between the rudimen-
tary DT and the advanced RF was marginal. Therefore the variations in architecture,



Electronics 2023, 12, 4408 22 of 27

especially in terms of the application replica counts, are pivotal in shaping the precision
and trustworthiness of classifications.

The DecisionTreeClassi f ier displays varied effectiveness depending on the simula-
tion group, especially in the 8CPU_20RAM architecture. However, its performance be-
comes more consistent in the 12CPU_30RAM setup. The RandomForestClassi f ier shows
some fluctuations in the 8CPU_20RAM architecture but remains relatively stable in the
12CPU_30RAM setup. The XGBoostClassi f ier has a consistent performance across both
architectures, with minor variations based on the simulation group. In conclusion, the effec-
tiveness of classifying user actions does vary based on the considered sets and architectures.
However, the variations are more pronounced in the 8CPU_20RAM architecture. The
12CPU_30RAM setup generally offers more consistent and high classification effectiveness
across all classifiers and simulation groups.

6. Conclusions

This research article presents a study of the operation of a stock exchange system,
utilizing log data generated by its individual components during set parameter simulations.
This analysis was conducted using ML techniques on two architectures, S1 and S2. This
study’s primary focus was the prediction of user actions on the stock exchange, examined
through classification methods, such as DT, RF, and XGBoost.

The stock exchange logs were divided into four simulation groups, each referring
to different technical parameters of the functioning application: number of containers
(replGroup), time intervals in between transactions (transGroup), intervals in between
queries (reqGroup), and traffic generator operations (algGroup). Also, this study considered
the classification effectiveness when all the data were combined (allGroup).

For the replGroup, the XGBoostClassi f ier was the most effective, enabling better pre-
diction accuracy. In the case of transGroup, the classification effectiveness was significantly
higher, with XGBoost recommended due to the shorter training time. For the reqGroup, the
best results were achieved with a classifier based on a training set of length 21600s , with
XGBoost and RF proving to be the most effective. For algGroup, the XGBoost method was
the most effective in classifying player actions, crucial for behavior predictions. For the
allGroup, XGBoost was found to be the best classification method, with an optimal training
set of 10800s.

Certain groups like the transGroup consistently showed higher accuracy in predicting
user actions compared to the replGroup. The size of the training dataset plays a significant
role in the effectiveness of the classifiers. The optimal size found was 32400s in both
groups studied. The XGBoost algorithm showed promise in both groups, outperforming
or matching the RandomForestClassi f ier in terms of accuracy while also requiring less
training time. Factors contributing to these patterns include the nature of the data in each
group, the parameters of the application being manipulated, and the size of the training
datasets used.

Our research discovered that performance significantly impacts the quality of logs, as
confirmed by the effective classification between S1 and S2 in the examined groups. This
suggests that the logging mechanism functions correctly; however, architectural limitations
may become a bottleneck, potentially leading to user misinterpretation of the logs.

For quick checks, the CART model, particularly a DT, is utilized, but more precise
verification requires either RF or XGBoost. It is crucial to test which model will perform
better on a given dataset. In the conducted analyses, the gradient model was found to be
more effective and faster.

Examining various test cases enabled us to determine whether the increase in log data
influences the models’ effectiveness. Accuracy was not always associated with larger data sizes.
Data verification is critical because weaker architecture (S1) may cause the logging mechanism
to deadlock, stop working, or generate incorrect logs due to system desynchronization.

The zenith of accuracy recorded is 86.59% using a training duration of 32400s and a
testing span of 43200s. Conversely, the nadir stands at 41.71% with training for 43200s and



Electronics 2023, 12, 4408 23 of 27

testing over 3600s. Notably, there is a significant oscillation in accuracy, swinging from a
minimum of 41.71% to a peak of 86.59%. The pinnacle of accuracy reached is 94.57% when
trained for 32400s and tested over 43200s. The lowest mark is 53.48% with 43200s training
and 3600s testing phases. Although there are variations in performance, the classifier
touches top-notch values exceeding 94%, signaling its commendable efficacy under certain
settings. The optimal accuracy stands at 95.10% with training and testing durations of
32400s and 43200s, respectively. The floor is marked at 51.04% under the 43200s training
and 3600s test scenarios. Echoing the RandomForestClassi f ier, the XGBoostClassi f ier also
registers remarkable efficacy, crossing the 95% threshold in its superior configurations.

Both the RandomForestClassi f ier and XGBoostClassi f ier manifest peak accuracies
surpassing the 94% mark in some setups, underscoring their potent prowess in discerning
user actions within the stock exchange milieu. In contrast, the DecisionTreeClassi f ier trails
with a subdued apex accuracy. A conspicuous observation is a dip in precision for all the
classifiers when trained on a vast dataset (43200s) and assessed on a diminutive one (3600s) ,
spotlighting the intricacies of extrapolating from extensive, varied data to confined datasets.
There exists a palpable disparity in accuracy metrics across the classifiers, particularly when
juxtaposing the scores of the RandomForestClassi f ier and XGBoostClassi f ier against the
DecisionTreeClassi f ier. To wrap up, all the classifiers exhibit adeptness in forecasting user
actions. However, in the stock exchange framework presented, the RandomForestClassi f ier
and XGBoostClassi f ier consistently outclass the DecisionTreeClassi f ier, registering loftier
peak accuracies.

Open issues include the application of other log analysis methods beyond those
proposed. Deep learning was omitted from the stock exchange system ML analysis due to
the vast volume of datasets and the number of simulation sets. Future models could be
more refined and consider only those features that genuinely impact prediction quality.
Additionally, prepared scripts and implementations of data analysis and machine learning
methods may require hyperparameter optimization and a larger number of comparative
effectiveness measures. Investigating alternative log evaluation techniques might offer a
broader perspective on the simulations of stock exchange operations, with an emphasis
on deep learning. Techniques like neural networks, support vector machines, or ensemble
approaches stand as promising candidates. For a more thorough assessment, subsequent
research endeavors should contemplate the inclusion of an expanded set of classifiers.

Author Contributions: Conceptualization, T.R.; Methodology, M.B. and T.R.; Software, M.B.; Formal
analysis, M.B. and T.R.; Data curation, M.B.; Writing—original draft, M.B. and T.R.; Writing—review
& editing, M.B.; Supervision, T.R. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Simulation Results

Table A1. Detailed data on the results of the DecisionTreeClassi f ier for all sets and architectures
testing set 3600s.

Classifier Architecture Training Set Training Time RMSE Accuracy (%)

DecisionTreeClassi f ier(replGroup)

8CPU_20RAM

10800s 0:00:34.986937 0.7723 46.83
21600s 0:00:54.439752 0.9312 20.17
32400s 0:01:16.815806 0.8311 37.22
43200s 0:01:16.469382 0.9369 17.88

12CPU_30RAM

10800s 0:00:39.825719 0.5759 69.62
21600s 0:01:01.368590 0.5749 70.58
32400s 0:01:13.763607 0.5940 68.41
43200s 0:01:34.441319 0.5759 70.32



Electronics 2023, 12, 4408 24 of 27

Table A1. Cont.

Classifier Architecture Training Set Training Time RMSE Accuracy (%)

DecisionTreeClassi f ier(reqGroup)

8CPU_20RAM

10800s 0:00:20.123496 0.3986 85.65
21600s 0:00:29.945958 0.4162 83.99
32400s 0:00:43.733756 0.3931 85.84
43200s 0:00:48.175765 0.4874 77.87

12CPU_30RAM

10800s 0:00:22.744081 0.2989 92.80
21600s 0:00:34.788500 0.3071 91.60
32400s 0:00:46.623340 0.3243 90.60
43200s 0:00:53.426306 0.3161 91.11

DecisionTreeClassi f ier(transGroup)

8CPU_20RAM

10800s 0:00:48.104969 0.4036 84.53
21600s 0:01:18.717683 0.4792 77.96
32400s 0:01:49.501914 0.4103 83.88
43200s 0:02:07.528890 0.5775 67.73

12CPU_30RAM

10800s 0:00:58.794141 0.3646 87.46
21600s 0:01:20.387759 0.3660 87.52
32400s 0:01:46.595474 0.3565 88.42
43200s 0:02:07.189466 0.3545 88.21

DecisionTreeClassi f ier(algGroup)

8CPU_20RAM

10800s 0:00:29.972032 0.6189 77.82
21600s 0:00:36.742987 0.4821 84.04
32400s 0:01:22.760551 0.5694 79.41
43200s 0:01:36.918402 0.8792 52.03

12CPU_30RAM

10800s 0:00:33.713402 0.5073 81.78
21600s 0:01:02.354790 0.4985 81.48
32400s 0:01:36.679365 0.6819 72.77
43200s 0:01:54.192953 0.5564 78.20

DecisionTreeClassi f ier (allGroup)

8CPU_20RAM

10800s 0:03:14.406778 0.5763 72.36
21600s 0:04:29.252131 0.6846 57.16
32400s 0:06:38.238973 0.5966 69.40
43200s 0:07:52.660749 0.8147 41.71

12CPU_30RAM

10800s 0:03:22.344505 0.5115 80.75
21600s 0:05:29.637108 0.4811 79.98
32400s 0:07:15.170395 0.5244 78.53
43200s 0:08:14.176908 0.4887 80.60

Table A2. Detailed data on the results of the RandomForestClassi f ier for all sets and architectures,
testing set 3600s.

Classifier Architecture Training Set Training Time RMSE Accuracy (%)

RandomForestClassi f ier (replGroup)

8CPU_20RAM

10800s 0:09:29.543525 0.7280 49.42
21600s 0:14:06.903750 0.9229 17.81
32400s 0:20:04.924134 0.7721 42.62
43200s 0:20:31.781063 0.9248 17.71

12CPU_30RAM

10800s 0:10:50.154513 0.5194 74.53
21600s 0:15:31.551499 0.5307 73.25
32400s 0:20:26.322707 0.5245 73.93
43200s 0:25:00.822369 0.5254 73.88

RandomForestClassi f ier (reqGroup) 8CPU_20RAM

10800s 0:05:42.055715 0.2841 92.50
21600s 0:08:32.000624 0.2392 94.83
32400s 0:11:59.553393 0.2083 96.34
43200s 0:13:30.167269 0.2222 95.69



Electronics 2023, 12, 4408 25 of 27

Table A2. Cont.

Classifier Architecture Training Set Training Time RMSE Accuracy (%)

RandomForestClassi f ier (reqGroup) 12CPU_30RAM

10800s 0:06:00.939572 0.1983 96.77
21600s 0:09:26.982251 0.2032 96.44
32400s 0:13:05.179014 0.2460 94.51
43200s 0:15:51.160394 0.2029 96.39

RandomForestClassi f ier (transGroup)

8CPU_20RAM

10800s 0:12:45.817922 0.1822 97.21
21600s 0:20:22.845458 0.2163 95.91
32400s 0:27:37.105359 0.1814 97.25
43200s 0:31:42.413660 0.4094 83.69

12CPU_30RAM

10800s 0:13:38.408349 0.1891 96.78
21600s 0:20:52.839725 0.1885 96.86
32400s 0:28:11.935400 0.1909 96.83
43200s 0:33:36.864503 0.1854 97.12

RandomForestClassi f ier (algGroup)

8CPU_20RAM

10800s 0:08:19.285584 0.5434 79.97
21600s 0:11:06.478485 0.4218 86.03
32400s 0:22:01.294937 0.5012 81.60
43200s 0:25:06.426455 0.8638 51.86

12CPU_30RAM

10800s 0:09:28.412199 0.3875 89.12
21600s 0:17:19.832858 0.3617 89.76
32400s 0:26:15.005879 0.3892 89.05
43200s 0:31:30.648198 0.4324 86.61

RandomForestClassi f ier (allGroup)

8CPU_20RAM

10800s 0:48:06.579417 0.4631 80.88
21600s 1:12:38.690408 0.5783 68.40
32400s 1:47:00.132287 0.4995 77.25
43200s 2:02:20.184634 0.7282 53.48

12CPU_30RAM

10800s 0:51:46.776513 0.3599 88.59
21600s 1:25:10.697075 0.3589 88.46
32400s 1:57:58.736369 0.3736 87.86
43200s 2:18:42.194523 0.3759 87.55

Table A3. Detailed data on the results of the XGBoostClassi f ier for all sets and architectures, testing
set 3600s.

Classifier Architecture Training Set Training Time RMSE Accuracy (%)

XGBoostClassi f ier (replGroup)

8CPU_20RAM

10800s 0:03:58.421692 0.7218 49.86
21600s 0:05:33.294647 0.1745 91.94
32400s 0:07:03.088863 0.7609 43.76
43200s 0:08:03.088018 0.9141 18.73

12CPU_30RAM

10800s 0:03:58.975168 0.5189 74.31
21600s 0:05:47.078507 0.5268 73.58
32400s 0:07:12.973395 0.5233 74.01
43200s 0:08:59.050727 0.5232 74.00

XGBoostClassi f ier (reqGroup)

8CPU_20RAM

10800s 0:03:49.245706 0.2116 96.02
21600s 0:04:35.172833 0.2054 96.29
32400s 0:06:22.755428 0.2020 96.61
43200s 0:06:22.109829 0.2179 9573

12CPU_30RAM

10800s 0:03:56.780152 0.1907 96.98
21600s 0:05:13.352767 0.2035 96.64
32400s 0:06:43.256127 0.1953 96.95
43200s 0:08:16.894138 0.1939 96.96



Electronics 2023, 12, 4408 26 of 27

Table A3. Cont.

Classifier Architecture Training Set Training Time RMSE Accuracy (%)

XGBoostClassi f ier (transGroup)

8CPU_20RAM

10800s 0:04:33.408865 0.1747 97.40
21600s 0:06:55.326464 0.2005 96.46
32400s 0:09:29.015630 0.1692 97.48
43200s 0:10:12.453611 0.2128 95.85

12CPU_30RAM

10800s 0:04:55.955008 0.1835 97.00
21600s 0:07:19.408696 0.1733 97.31
32400s 0:09:35.824810 0.1666 97.53
43200s 0:11:31.594331 0.1679 97.54

XGBoostClassi f ier (algGroup)

8CPU_20RAM

10800s 0:04:27.968699 0.4993 82.16
21600s 0:06:47.001467 0.3854 89.17
32400s 0:11:37.481838 0.4872 82.86
43200s 0:16:00.839239 0.7680 56.37

12CPU_30RAM

10800s 0:05:03.113526 0.3652 89.98
21600s 0:09:09.650705 0.3518 90.38
32400s 0:13:22.461536 0.3800 88.88
43200s 0:16:54.233545 0.4138 87.66

XGBoostClassi f ier (allGroup)

8CPU_20RAM

10800s 0:17:32.660420 0.4325 83.08
21600s 0:28:10.735969 0.5056 75.91
32400s 0:45:46.727284 0.4709 79.62
43200s 1:06:06.665074 0.7299 51.04

12CPU_30RAM

10800s 0:19:40.868466 0.3533 89.27
21600s 0:33:45.990203 0.3478 89.52
32400s 0:49:51.013151 0.3615 88.97
43200s 3:10:31.882921 0.3582 89.12

References
1. Räth, T.; Bedini, F.; Sattler, K.U.; Zimmermann, A. Demo: Interactive Performance Exploration of Stream Processing Applications

Using Colored Petri Nets. In Proceedings of the 17th ACM International Conference on Distributed and Event-Based Systems,
DEBS’23, Neuchatel Switzerland, 27–30 June 2023 ; Association for Computing Machinery: New York, NY, USA, 2023; pp. 191–194.
[CrossRef]

2. Borowiec, M.; Piszko, R.; Rak, T. Knowledge Extraction and Discovery about Web System Based on the Benchmark Application
of Online Stock Trading System. Sensors 2023, 23, 2274. [CrossRef] [PubMed]

3. Bhargavi, M.; Sinha, A.; Desai, J.; Garg, N.; Bhatnagar, Y.; Mishra, P. Comparative Study of Consumer Purchasing and Decision
Pattern Analysis using Pincer Search Based Data Mining Method. In Proceedings of the 2022 13th International Conference on
Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 3–5 October 2022; pp. 1–7. [CrossRef]

4. Giebas, D.; Wojszczyk, R. Detection of Concurrency Errors in Multithreaded Applications Based on Static Source Code Analysis.
IEEE Access 2021, 9, 61298–61323. [CrossRef]

5. Wang, S.; Ren, J.; Fang, H.; Pan, J.; Hu, X.; Zhao, T. An advanced algorithm for discrimination prevention in data mining. In
Proceedings of the 2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), Dalian, China, 11–12
December 2022; pp. 1443–1447. [CrossRef]

6. Ma, J.; Liu, Y.; Wan, H.; Sun, G. Automatic Parsing and Utilization of System Log Features in Log Analysis: A Survey. Appl. Sci.
2023, 13, 4930. [CrossRef]

7. Eirinaki, M.; Vazirgiannis, M.; Varlamis, I. SEWeP: using site semantics and a taxonomy to enhance the Web personalization
process. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’03, Washington, DC, USA, 24–27 August 2003; p. 99. [CrossRef]

8. Hochenbaum, J.; Vallis, O.S.; Kejariwal, A. Automatic Anomaly Detection in the Cloud Via Statistical Learning. arXiv 2017,
arXiv:1704.07706.

9. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey. ACM Comput. Surv. 2009, 41, 1–58. [CrossRef]
10. Maciąg, P.; Kryszkiewicz, M.; Robert, B.; López Lobo, J.; Del Ser, J. Unsupervised Anomaly Detection in Stream Data with Online

Evolving Spiking Neural Networks. Neural Netw. 2021, 139, 118–139. [CrossRef] [PubMed]
11. Kotsiantis, S. Supervised Machine Learning: A Review of Classification Techniques. Inform. (Slovenia) 2007, 31, 249–268.
12. Akoglu, L.; Tong, H.; Koutra, D. Graph based anomaly detection and description: a survey. Data Min. Knowl. Discov. 2015,

29, 626–688. [CrossRef]

http://doi.org/10.1145/3583678.3603280
http://dx.doi.org/10.3390/s23042274
http://www.ncbi.nlm.nih.gov/pubmed/36850870
http://dx.doi.org/10.1109/ICCCNT54827.2022.9984410
http://dx.doi.org/10.1109/ACCESS.2021.3073859
http://dx.doi.org/10.1109/TOCS56154.2022.10015960
http://dx.doi.org/10.3390/app13084930
http://dx.doi.org/10.1145/956755.956765
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1016/j.neunet.2021.02.017
http://www.ncbi.nlm.nih.gov/pubmed/33689918
http://dx.doi.org/10.1007/s10618-014-0365-y


Electronics 2023, 12, 4408 27 of 27

13. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, San Francisco, CA, USA, 13–17 August 2016; Association for
Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [CrossRef]

14. Srivastava, J.; Cooley, R.; Deshpande, M.; Tan, P.N. Web Usage Mining: Discovery and Applications of Usage Patterns from Web
Data. SIGKDD Explor. Newsl. 2000, 1, 12–23. [CrossRef]

15. Meng, X.; Bradley, J.; Yavuz, B.; Sparks, E.; Venkataraman, S.; Liu, D.; Freeman, J.; Tsai, D.; Amde, M.; Owen, S.; et al. MLlib:
Machine Learning in Apache Spark. J. Mach. Learn. Res. 2016, 17, 1–7.

16. Quille, R.; Almeida, F.; Ohara, M.; Corrêa, P.; Gomes de Freitas, L.; Alves-Souza, S.; Almeida, J.; Davis, M.; Prakash, G. Architecture
of a Data Portal for Publishing and Delivering Open Data for Atmospheric Measurement. Int. J. Environ. Res. Public Health 2023,
20, 5374. [CrossRef] [PubMed]

17. Wandri, R. Prediction of Student Scholarship Recipients Using the K-Means Algorithm and C4.5. Indones. J. Comput. Sci. 2023, 12,
74–88. . [CrossRef]

18. Zatwarnicki, K. Providing Predictable Quality of Service in a Cloud-Based Web System. Appl. Sci. 2021, 11, 2896. [CrossRef]
19. Bernstein, D. Containers and Cloud: From LXC to Docker to Kubernetes. IEEE Cloud Comput. 2014, 1, 81–84. [CrossRef]
20. Rak, T. Performance Evaluation of an API Stock Exchange Web System on Cloud Docker Containers. Appl. Sci. 2023, 13, 9896.

[CrossRef]
21. Karthikeyan, R. DATA and WEB MINING. Int. Sci. J. Eng. Manag. 2023, 2, 1–6. [CrossRef]
22. Gheisari, M.; Hamidpour, H.; Liu, Y.; Saedi, P.; Raza, A.; Jalili, A.; Rokhsati, H.; Amin, R. Data Mining Techniques for Web Mining:

A Survey. Artif. Intell. Appl. 2023, 1, 3–10. [CrossRef]
23. Ishida, A.; Katsuno, Y.; Tozawa, A.; Saito, S. Automatically Refactoring Application Transactions for Microservice-Oriented

Architecture. In Proceedings of the 2023 IEEE International Conference on Software Services Engineering (SSE), Chicago, IL,
USA, 2–8 July 2023; pp. 210–219. [CrossRef]

24. Oliner, A.; Ganapathi, A.; Xu, W. Advances and Challenges in Log Analysis. Commun. ACM 2012, 55, 55–61. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/846183.846188
http://dx.doi.org/10.3390/ijerph20075374
http://www.ncbi.nlm.nih.gov/pubmed/37047988
http://dx.doi.org/10.33022/ijcs.v12i1.3145
http://dx.doi.org/10.3390/app11072896
http://dx.doi.org/10.1109/MCC.2014.51
http://dx.doi.org/10.3390/app13179896
http://dx.doi.org/10.55041/ISJEM00303
http://dx.doi.org/10.47852/bonviewAIA2202290
http://dx.doi.org/10.1109/SSE60056.2023.00035
http://dx.doi.org/10.1145/2076450.2076466

	Introduction
	Related Work
	Experimental Environment
	OSTS
	Conducted System Simulations

	Examination of Web Application Logs
	Types of Logs
	Log Dataset Analysis

	User Action Prediction
	Classification of Actions in the replGroup Log Group
	Classification of Actions in the transGroup Log Group
	Action Classification in the Log Group reqGroup
	Action Classification in the Log Group algGroup
	Classification of All Logs (allGroup)
	Influence of Architecture and Datasets on Classification Accuracy

	Conclusions
	Simulation Results
	References

