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Abstract: This paper investigates a method for the multi-threshold segmentation of grayscale imaging
using the local minimum points of a histogram curve as the segmentation threshold. By smoothing
the histogram curve and judging the conditions, the expected peaks and valleys are identified,
and the corresponding minimum points are used as segmentation thresholds to achieve fast multi-
threshold image segmentation. Compared to the OTSU method (maximum between-class variance)
for multi-threshold segmentation and the region growing method, this method has less computational
complexity. In the recognition and segmentation process of solder pads with adhesion of underfill
in LED Chips, the segmentation time is less than one percent of that of the OTSU method and the
region growing method. The segmentation effect is better than the OTSU method and the region
growing method, and it can achieve fast multi-threshold segmentation of images. Moreover, it has
strong adaptability to the differences in the overall grayscale of images, meeting the requirements for
high UPH (Units Per Hour) in industrial production lines.

Keywords: multi-threshold segmentation; OTSU algorithm; histogram; curve extremum method

1. Introduction

Image segmentation is an important image analysis technique in computer vision; it
is commonly used in applications such as image recognition and 3D reconstruction. Its
purpose is to extract meaningful features or required characteristics from images. Some
image segmentation theories believe that an image is actually composed of information
and noise, and the purpose of segmentation is to strip away the noise. However, there
are many applications where it is necessary to segment a part of the foreground image
in order to find the boundary of the scene of interest [1–5]. Segmented regions within an
image share similar internal features or exhibit significant differences from other regions.
For example, the most widely used medical image segmentation currently utilizes image
segmentation algorithms to separate tumor regions from normal tissue regions, thereby
achieving tumor localization and diagnosis. Currently, commonly used segmentation
algorithms can be categorized based on the segmentation criteria: threshold-based image
segmentation, such as the OTSU method [6–10]; clustering-based image segmentation, such
as the fuzzy C-means algorithm [11–13]; and region growing-based image segmentation,
such as the watershed algorithm [14]. The region growing method is a traditional image
segmentation algorithm based on regions. Region growing starts from a set of initial
seed points, and, through pre-defined region growing rules, domain pixels with similar
properties to the seed points are continuously added to each seed point, and the final
growth region is formed when the termination conditions for region growth are met [15,16].
In addition, the deep learning-based image segmentation, such as the visual big model
SAM (segment anything model) proposed by Meta Company on 6 April 2023, can achieve
image segmentation based on text instructions and other methods, similar to the interactive
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segmentation, solving the difficulty of training set labeling in deep learning. It claims to be
able to segment everything and quickly achieve multi-target segmentation [6–10].

Although researchers have proposed various segmentation theories and methods,
there is currently no universal segmentation method, and there is no standard for selecting
suitable methods in practical applications. Moreover, there is no segmentation algorithm
that can achieve satisfactory segmentation results for all images. The performance of
image segmentation methods is influenced by target size, mean difference, contrast, target
variance, background variance, and noise. Generally, segmentation performance is still
evaluated based on subjective visual effects. For grayscale image segmentation, segmenta-
tion quality evaluation is divided into subjective and objective evaluation criteria based on
whether reference images are needed [17–22].

These algorithms have achieved good segmentation results when the processing speed
is not a critical requirement. For instance, clustering segmentation and region growing
algorithms have been widely applied in the fields of medical and remote sensing image
processing [23,24]. However, the clustering algorithm and region growing algorithm be-
long to iterative algorithms, and as image pixels increase, the computational load will
increase exponentially. They are not suitable for scenarios with high computational speed
requirements and large images [25–30]. The OTSU method obtains an optimal threshold by
minimizing the weighted sum of intra-class and inter-class variances in the image, thereby
achieving the goal of automatically calculating the binarization threshold. Due to its ability
to avoid subjective and cumbersome threshold selection operations, and its superior com-
putational speed compared to the clustering algorithm and region growing algorithm, the
OTSU method is widely used in fields such as image segmentation, character recognition,
and facial recognition [31–33]. Histogram-based threshold segmentation has been widely
used in applications that focus on operational efficiency due to its simple implementation
and ability to compress data and reduce storage. If there are two distinct peaks separated
from each other in the histogram information of the image, threshold segmentation should
binarize the image based on the threshold points between the two peaks. However, in real
images, there may be a wide overlapping range between the target and the background,
and the image histogram will not have obvious separated peaks. Moreover, the small sam-
ple nature of pixel count in pixel estimation histogram information makes the histogram
itself noisy. Therefore, threshold segmentation often faces many difficulties in practical
applications [34–37]. The deep learning image segmentation technology represented by
the SAM model has high adaptability. In theory, as long as sufficient training samples are
provided, it can be applied where traditional image segmentation methods are applicable.
The actual situation is that the SAM algorithm has achieved significant results in natural
image segmentation but currently faces significant challenges in medical image processing.
It has significant application value only in interactive medical image segmentation [38–42].
However, the current deep learning segmentation technology not only requires extremely
high technical requirements but also requires a large number of samples for training and
great computational power support, making them generally unsuitable for industrial fields
that require fast segmentation. Therefore, when the speed of image segmentation is high
and the computational cost is limited, it is necessary to design segmentation algorithms
based on traditional features such as image pixels.

In industrial applications, such as on production lines, image segmentation often
serves as the first step in image processing tasks like quality inspection. It helps avoid
blind searching across the entire image during processing. Such applications often require
extremely fast speed and high-accuracy processing to meet the highly demanding UPH
(Units Per Hour) requirements in the industrial field. Meanwhile, due to factors such as
lighting, equipment aging, and machine differences, the overall color and grayscale values
of images collected at different times and production lines may have significant differences,
making it impossible to predict the differences between foreground and background pixels
in advance. Therefore, the image segmentation algorithms must have a certain degree
of adaptability to this situation. In order to meet the requirements of processing speed
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and adaptability in industrial production, this paper adopts a threshold-based image
segmentation method. Due to the fact that the foreground and background of the processed
image do not belong to a single-pixel range, it is necessary to achieve multi-threshold image
segmentation. The paper adopts a segmentation method similar to the OTSU method with
multiple thresholds while integrating Prewitt’s threshold selection algorithm based on
bimodal histograms [43,44]. Compared to the bimodal histogram method, it expands the
number of peaks in the image histogram and determines the number of peaks based on the
actual pixel composition and segmentation needs of the image. In order to improve the
processing speed, the extreme points of the image histogram curve are used to determine
the image segmentation threshold, which meets the extremely high UPH requirements
through threshold segmentation.

2. The Image Histogram

Most threshold segmentation algorithms utilize the valleys of the grayscale image
histogram curve to select the segmentation threshold [45,46]. For grayscale images, the
histogram counts the occurrence number of each pixel and reflects the function between the
image’s gray-scale statistical characteristics and the gray-scale. Due to its low computational
cost, the image histogram has been widely used in image processing, particularly in
threshold segmentation of gray-scale and histogram equalization to achieve image feature
enhancement, etc. [47,48]. Histogram equalization is computationally efficient and fast, and
it yields significant enhancement of image features, especially for human visual perception.
The following Figures 1–3 show the original image, the image after histogram equalization,
and the histograms before and after histogram equalization.
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The use of a histogram for image threshold segmentation has been widely applied,
with the most typical approach being the OTSU method, also known as the maximum
between-class variance method, which aims to maximize the variance between the fore-
ground and background after segmentation. Most computer vision software currently
integrates the OTSU algorithm API, such as the cv2.threshold() function parameter type in
OpenCV, which uses cv2.THRESH_OTSU and can achieve image threshold segmentation
by using the OTSU method. Figures 4–6 show the original image and the binarized image
using the OTSU method, with a threshold segmentation value of 92.0 for binarization. The
OTSU method can effectively segment ships, using them as the foreground and unifying
the sky and seawater as the background. If it is necessary to segment the seawater or
sky, the OTSU method will face significant difficulties and cannot simply use the sky or
seawater as the foreground or background. In this case, a multi-threshold segmentation
method needs to be used.
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3. Threshold Segmentation Based on the OTSU Algorithm
3.1. The OTSU Algorithm

In image processing, it is common to segment an image into its foreground and back-
ground. Threshold segmentation is the binarization of the image, so it is necessary to
determine the threshold segmentation point. Currently, the OTSU algorithm is a widely
used method for determining the optimal threshold. The OTSU algorithm determines
the optimal threshold by maximizing the between-class variance. Based on the grayscale
characteristics of the image, the image is divided into background and foreground re-
gions. The segmentation with the maximum between-class variance means the minimal
misclassification probability.

Denoting the threshold for foreground and background segmentation as threshold, the
ratio of background pixels to the total pixels number as ω0, the average grayscale value of
background pixels as µ0, the ratio of foreground pixels to the total pixels number asω1, the
average grayscale value of foreground pixels as µ1, and the overall average grayscale value
of the image as µ, the between-class variance is calculated as σ2

max. The OTSU algorithm
iterates through each pixel value ∈ [0,255] to find the optimal segmentation threshold that
maximizes the between-class variance, as shown in the following formula [49,50]. The
algorithm principle of this method is simple, and all types of CV software have mature
APIs that can be called, which has been widely applied.

σ2
max =ω0 × (µ0 − µ)2 +ω1 × (µ1 − µ)2 (1)

Among whichω0 +ω1 = 1,ω0 × µ0 +ω1 × µ1 = µ.

3.2. Multi-Threshold Segmentation Based on the OTSU Algorithm

For some images, the foreground contains multiple grayscale ranges, such as cats,
dogs, chickens, and ducks, in the same image, and each animal needs to be segmented.
If we want to segment a specific foreground, such as dogs, we need to perform multiple
segmentations based on different foreground grayscale values, which is referred to as multi-
threshold segmentation. The OTSU algorithm can also be applied to multi-threshold image
segmentation. For example, if we want to segment an image into three regions, including a
background and two foreground regions with different grayscale ranges, we only need to
modify the inter-class variance of the two classes to accommodate three classes.

Assuming the image is composed of background 0, foreground 1, and foreground 2,
the proportion of pixels belonging to the background in the entire image pixels is denoted
asω0, the average grayscale value of background pixels is denoted as µ0, the proportion
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of pixels belonging to foreground 1 is denoted as ω1, the average grayscale value of
foreground 1 pixels is denoted as µ1, the proportion of pixels belonging to foreground 2
is denoted asω2, the average grayscale value of foreground 2 pixels is denoted as µ2, the
overall average grayscale value of the image is denoted as µ, and the inter-class variance
is denoted as σ2

max. We then traverse each pixel value ∈ [0,255] to find the two values
that maximize the inter-class variance, which corresponds to the optimal segmentation
thresholds for foreground 1 and foreground 2, as shown in the following formula [51,52].

σ2
max =ω0 × (µ0 − µ)2 +ω1 × (µ1 − µ)2 +ω2 × (µ2 − µ)2 (2)

Among whichω0 +ω1 +ω2 = 1,ω0 × µ0 +ω1 × µ1 +ω2 × µ2 = µ.

3.3. Limitations of OTSU Algorithm for Multi-Threshold Segmentation

In most industrial fields, threshold segmentation is just the first step in image process-
ing to segment the parts of interest and, subsequently, achieve more complex processing,
thus requiring fast image segmentation. The principle of the OTSU algorithm is clear
and simple, and it is easy to implement in practical applications, but there are multiple
shortcomings. Firstly, the OTSU algorithm involves the difference processing of each image
pixel and exhaustive calculations for each grayscale value, resulting in relatively large
computational complexity. When the image is large, especially when the multi-threshold
segmentation is adopted, it will take a longer time. Secondly, the OTSU algorithm requires a
significant proportion of the image to be occupied by the foreground to accurately calculate
the segmentation threshold. Thirdly, the OTSU algorithm only considers the grayscale
values of each pixel in segmentation, without considering its spatial distribution. When the
number of grayscale levels to be segmented increases, the rationality of the segmentation
decreases. Although many researchers have proposed improvements and optimizations
to address the limitations of the OTSU algorithm, such as the two-dimensional OTSU
algorithm [53,54]. However, the OTSU algorithm has a large computational complexity
and time-consuming nature, which does not meet the requirements of fast segmentation,
and still restricts its wider application [55,56].

The X-ray image of the underfill under white LED is shown in Figure 7. Each circle
represents an LED chip, and the image covers a total of 15 LED chips in a 3× 5 arrangement.
The objective is to detect the adhesion of the underfill in each chip, specifically detect
whether the middle solder pad (the square part in the middle) of the chip is missing, and
detect the void rate of the solder pad. Since the relative positions of the chips in the image
are not fixed during X-ray photography, and some chips may be partially outside the field
of view, only 3 × 4 LED chips are visible in the image. Therefore, it is not possible to
quickly identify the positions of the solder pads based on pixel locations. The segmentation
of each solder pad image is required to evaluate the adhesion. The single image size is
1452 × 1000 pixels, with a 24-bit depth field for a single channel, and the average grayscale
of the image in Figure 7 is 159.7. If the OTSU algorithm is used for multi-threshold
segmentation, the image segmentation would take about 0.5 s per image. Considering
image acquisition, transmission, and post-processing, the overall throughput UPH would
not exceed 36 K, which does not match the production line speed.

Since the accuracy requirement for image segmentation is not high, the boundary of
the solder pad is a regular rectangle, and the boundary can be accurately determined using
other methods. The main function of threshold segmentation is to determine the presence
and relative position of the solder pad. In order to achieve fast image segmentation with
multiple thresholds and quickly identify the positions of solder pads, this paper proposes
using the extremum points of the histogram curve as the segmentation threshold to reduce
the computational complexity and achieve fast segmentation and high UPH.
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4. Fast Segmentation Based on the Histogram Technology
4.1. Histogram Curve

This paper proposes using the extremum points of the histogram curve to achieve quick
image segmentation with multiple thresholds. Firstly, the histogram curve of the image
depicting the adhesion of underfill in LED chips is obtained, as shown in Figure 8. The
histogram curve exhibits multiple peaks and valleys. Based on the principles of histogram
analysis, these peaks correspond to different grayscale value ranges in the original image.
Each peak represents an image component within a specific grayscale range. If the image is
divided into multiple grayscale ranges based on multiple peaks of the histogram curve,
image segmentation can be achieved based on the grayscale range. Theoretically, the peak
closest to the grayscale value of 0 in the histogram curve corresponds to the darkest regions
in the original image. As shown in Figure 7, the corresponding part of the solder pads (the
rectangular regions) are the darkest regions. By segmenting the image based on the first
peak of the histogram curve, the solder pads can be extracted.
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The histogram curve contains multiple peaks, and to separate each peak, the positions
of the valleys in the curve are determined, which represent the minimum points. These
minimum points serve as thresholds for image segmentation. By using each adjacent
two minimum points, the corresponding peaks can be identified. Different combina-
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tions of minimum points can be selected based on specific requirements to segment the
desired parts.

4.2. Threshold Segmentation Based on the Minimum Point of the Histogram Curve

In order to find the extremum points of the histogram curve, an average filter is
first applied to perform a certain degree of convolutional smoothing on the histogram
curve to remove some burrs. As shown in Figure 9, the blue curve represents the original
histogram curve, while the red curve represents the smoothed curve, and a total of seven
minimum points are identified from left to right, while the small peak between the fourth
and fifth minimum points contains very few image components. Peaks that meet a certain
threshold can be set as true peaks, one can be eliminated at either the fourth or the fifth
minimum point, or the sixth or seventh minimum point, which do not meet the criteria for
true peaks. Therefore, there are three effective segmentation extreme points in Figure 9,
which are the second, third, and fifth extreme points, corresponding to four peaks, and
a total of four grayscale components in the image. Alternatively, a low-pass filter can
be applied repeatedly until the desired number of peaks remains in the histogram, and
then the threshold can be determined using the extremum points. In practical processing,
the reasonable number of peaks in the histogram can be determined based on the actual
situation. Small peaks and valleys can be filtered out by applying appropriate filtering
or setting judgment conditions to select valuable minimum points. Finally, based on the
corresponding peaks associated with the desired segmentation parts, the segmentation
threshold can be selected from the retained minimum points to achieve fast multi-threshold
segmentation of the image.
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In the entire image, the LED solder pad is the darkest region with a gray value closest
to 0. Therefore, this part belongs to the peak component with a gray value closest to 0
in the image histogram. Thus, the first and second minimum points are selected as the
segmentation thresholds for the solder pad. The portion of the grayscale value in the
image segmented using the threshold segmentation method between extremum point 1
and extremum point 2 happens to be the main body and some noise points of the LED
pad in the image, as shown in Figure 10. The segmented image can be used to quickly
determine the presence of 3 × 5 solder pads, among which the pads in the second row and
third column are missing. At the same time, the approximate position of each pad can be
quickly determined, providing support for subsequent precise determination of the solder
pad boundaries. On a normal PC (Intel Core i5-8250U CPU, 8G RAM), all program codes
for image segmentation and processing in the paper are written in Python language. And
the total time for image adaptive finding extreme points and split pads is 0.0129 s, which is
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significantly lower than the time required for the multi-threshold segmentation based on
the OTSU algorithm.
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Figure 10. Solder pad images obtained by fast threshold segmentation based on the extremum points
of the histogram curve.

4.3. Result of Threshold Segmentation Based on the Minimum Point of the Histogram Curve

After determining the missing situation and approximate position of the solder pads,
the subsequent image processing involves accurately determining the solder pad bound-
aries and calculating the adhesion of the underfill in the solder pad. As shown in Figure 11,
the final calculation and determination outcomes represent the adhesion of the solder
pad. This method achieves fast segmentation of solder pads with processing accuracy
comparable to the multi-threshold segmentation based on the OTSU algorithm and lower
than the region growing method. The entire processing process, including the subsequent
calculation of the adhesion of underfill in solder pads, can achieve a UPH of over 70 K,
significantly improving efficiency.
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In this example, the images of the underfill in white LED chips under X-ray be-
long to grayscale images with clear boundaries. In this paper, the multi-threshold seg-
mentation based on OTSU and the region growing method are respectively adopted for
image segmentation.

4.4. Result of Multi-Threshold Segmentation Based on OTSU

In this example, the image cannot be split out of the pad using the OTSU single
threshold method, and the result of using the OTSU double threshold processing is shown
in Figure 12. The image is split into 3 pixel components, and it takes 2.936 s to process
a single picture on the same PC, and the OTSU double-threshold segmentation method
takes hundreds of times longer than the histogram multi-threshold segmentation. It can be
seen from the results that the double threshold method cannot accurately determine the
presence or absence of pads, and according to the grayscale pixel composition of the image
in Figure 9, at least the three-threshold segmentation method is required to accurately
segment the pad image. If more threshold segmentation is used, the complexity and
processing time of the algorithm will be greatly improved, the processing efficiency will be
extremely low, and the value will be lost in industrial applications and UPH requirements
will not be met.
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4.5. Result of the Region Growing Segmentation Method

In this example, the LED pads in the image are the darkest color parts. Multiple LED
pads are distributed in one image, and the pad images with a good adhesion effect have
similar overall grayscale values, belonging to the connected area with similar features.
Therefore, it is suitable to use the region growing method for pad image segmentation.

In theory, if the number of pads is known, the number of seed points can be determined.
As shown in Figure 7, a solder pad includes two parts of the PN electrode. There are a total
of 30 pad areas in the figure, and the number of seed points is set to 30. The termination
condition for region growing is the maximum area pixel value. However, when the seed
point is set to 30, the actual segmentation effect is not good because there is a missing pad
in the image, and there are areas around the non-fitting area that are similar to the pixels of
the fitting area, as well as some incomplete pads. Therefore, we would consider increasing
the seed point to 36, and the termination condition for region growing is the maximum
region area of 10,800 pixels. This algorithm has the best segmentation effect, and processing
a single image on the same PC takes 9.016 s, as shown in Figure 13.
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5. Discussion
5.1. Comparison of Different Segmentation Algorithms

As analyzed earlier, both the OTSU multi-threshold segmentation method and the
region growing method have achieved a good segmentation effect on solder pads. In
particular, the region growing method has the best segmentation effect, but it belongs
to iterative algorithms. The more seed points, the greater the computational complexity,
and the processing time required for a single image exceeds 9 s, which is significantly
lower than the UPH requirements for industrial production. The segmentation effect of
the OTSU algorithm meets the requirements. The OTSU double thresholds segmentation
of a single image takes 2.936 s, and the comprehensive UPH is less than 1 K, which still
does not meet the UPH requirements of industrial production. The segmentation method
proposed in this article utilizes histogram curves to achieve a multi-threshold segmentation
of images, with a UPH of over 70 K, which greatly facilitates the improvement of industrial
production efficiency.

For the region growing algorithms, if too many seed points are set, there is a risk
of excessive segmentation, and the calculation time is the longest, which is three times
longer than the OTSU double-thresholds method. Although the segmentation accuracy is
high, the comprehensive UPH will be less than 400, which is unacceptable for industrial
production. In addition, if there is a significant difference in the overall grayscale value
of images collected by different working conditions or X-ray machines on the industrial
production line, the seed points need to be manually set. Table 1 lists the characteristics of
the four segmentation methods proposed in this paper.

Table 1. Characteristics of different image segmentation methods.

No. Methods Segmentation Time UPH Segmentation
Accuracy

1 the OTSU double threshold 2.936 s <1 K poor
2 Multi-threshold segmentation based on OTSU >2.936 s <1 k good
3 Region growing segmentation method 9.016 s <0.4 K best

4 Threshold segmentation based on the
minimum point of the histogram curve 0.0129 s ≥70 K good
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5.2. Adaptability of Images with Different Grayscale Values

When the overall grayscale values of the images are different between different work-
ing conditions or different X-ray machines on the industrial production lines, the threshold
segmentation based on the minimum point of the histogram curve can still adapt to the
change of the grayscale value and quickly realize the multi-thresholds segmentation of
the image. As shown in Figure 14, the overall average grayscale value of the image
is 226.5, while the overall grayscale value of Figure 7 is 159.7. Figure 15 is an image
processed by using the histogram curve extremum method, which determines the seg-
mentation threshold according to the image histogram and does not need to predict the
segmentation range of foreground pixels and background in advance, which can realize the
adaptive segmentation.
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6. Conclusions

In this article, the OTSU multi-threshold segmentation method and the region growing
method were used for the solder pad image segmentation of the adhesion of underfill in
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LED chips. Both methods achieved a good segmentation effect of solder pads, but the time
consumption of both methods did not meet the UPH requirements of industrial production.

In response to the high computational complexity and slow processing speed of
the OTSU multi-threshold segmentation method and the region growing method when
processing large images, this paper proposes the use of extreme points on the histogram
curve as segmentation thresholds to achieve a multi-threshold segmentation of images. The
processing accuracy of this method meets most of the requirements of image processing,
and the processing speed is significantly improved. In the segmentation process of solder
pads for the cohesion of underfill in LED chips, the time consumption is less than 1/100
of the OTSU multi-threshold algorithm, which significantly improves the efficiency of
image post-processing. The entire processing process has a UPH of up to 70 K and has
strong adaptability for images with significant differences in grayscale values, which better
meets the comprehensive requirements of achieving the fastest efficiency with appropriate
accuracy in industrial production.

Although the OTSU algorithm, the clustering algorithm, and the region growing
algorithm have all achieved significant results in some image processing fields, when the
segmentation threshold is greater than two, the processing speed significantly decreases.
The method proposed in this article has significant advantages in processing images with
clear boundaries, or when the background is not smooth or the accuracy requirements
for image segmentation are not high. Especially for multi-threshold segmentation, it can
quickly achieve image multi-threshold segmentation with low computational power re-
quirements. For example, in industrial production, when processing images of metal
product processing surfaces, this method can quickly segment products. When the image
boundary is unclear or the foreground area is not coherent enough in the grayscale distri-
bution, it can be understood that there are no obvious minimum points at the expected
segmentation points of the histogram curve, and the two peaks of the curve are relatively
horizontal. This method may not achieve accurate segmentation.
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