Machine Learning with Adaptive Time Stepping for Dynamic Traffic Load Prediction in 6G Satellite Networks
Abstract
:1. Introduction
2. Related Works
3. Architecture Design
3.1. Satellite Routing
3.2. Traffic Load Prediction
3.3. Overview of Architecture Design
4. Model Design
4.1. Mathematical Description
4.2. Adaptive Time-Stepping Forecasting Method
4.3. Linear Predictor with Adaptive Time Stepping
4.4. RNN and GRU
4.5. The Proposed ATS-GRU Model
- (1)
- a way to accurately calculate and predict network traffic load;
- (2)
- a method to determine and predict the appropriate length of time stepping at any given time, whether long or short step sizes are required.
5. Numerical Results
5.1. Evaluation Setup
5.2. Analysis of Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaur, J.; Khan, M.A.; Iftikhar, M.; Imran, M.; Haq, Q.E.U. Machine Learning Techniques for 5G and Beyond. IEEE Access 2021, 9, 23472–23488. [Google Scholar] [CrossRef]
- Chen, C.; Ekici, E. A routing protocol for hierarchical LEO/MEO satellite IP networks. Wirel. Netw. 2005, 11, 507–521. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Champagne, B.; Zhu, W.-P.; Al-Dhahir, N. Secrecy-Energy Efficient Hybrid Beamforming for Satellite-Terrestrial Integrated Networks. IEEE Trans. Commun. 2021, 69, 6345–6360. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- An, K.; Lin, M.; Ouyang, J.; Zhu, W.-P. Secure Transmission in Cognitive Satellite Terrestrial Networks. IEEE J. Sel. Areas Commun. 2016, 34, 3025–3037. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, J.; Chen, X.; Hu, J.; Zheng, X.; Min, G. Computation Offloading and Task Scheduling for DNN-Based Applications in Cloud-Edge Computing. IEEE Access 2020, 8, 115537–115547. [Google Scholar] [CrossRef]
- Khan, P.W.; Abbas, K.; Shaiba, H.; Muthanna, A.; Abuarqoub, A.; Khayyat, M. Energy efficient computation offloading mechanism in multi-server mobile, edge computing—An integer linear optimization approach. Electronics 2020, 9, 1010. [Google Scholar] [CrossRef]
- Song, G.; Chao, M.; Yang, B.; Zheng, Y. TLR: A traffic light-based intelligent routing strategy for NGEO satellite IP networks. IEEE Trans. Wirel. Commun. 2014, 13, 3380–3393. [Google Scholar] [CrossRef]
- Nishiyama, H.; Tada, Y.; Kato, N.; Yoshimura, N.; Toyoshima, M.; Kadowaki, N. Toward optimized traffic distribution for efficient network capacity utilization in two-layered satellite networks. IEEE Trans. Veh. Technol. 2013, 62, 1303–1313. [Google Scholar] [CrossRef]
- Gamvros, I.; Raghavan, S. Multi-period traffic routing in satellite networks. Eur. J. Oper. Res. 2012, 219, 738–750. [Google Scholar] [CrossRef]
- Moscholios, I.D.; Vassilakis, V.G.; Sarigiannidis, P.G.; Sagias, N.C.; Logothetis, M.D. An analytical framework in LEO mobile satellite systems servicing batched Poisson traffic. IET Commun. 2018, 12, 18–25. [Google Scholar] [CrossRef]
- Di, B.; Zhang, H.; Song, L.; Li, Y.; Li, G.Y. Ultra-dense LEO: Integrating terrestrial-satellite networks into 5G and Beyond for Data Offloading. IEEE Trans. Wirel. Commun. 2018, 18, 47–62. [Google Scholar] [CrossRef]
- Li, N.; Hu, L.; Deng, Z.-L.; Su, T.; Liu, J.-W. Research on GRU Neural Network Satellite Traffic Prediction Based on Transfer Learning. Wirel. Pers. Commun. 2021, 118, 815–827. [Google Scholar] [CrossRef]
- Zhao, J.-H.; Wang, M.-X.; Qu, H.; Xie, Z.-Y.; Liu, X. An Adaptive KLMS Traffic Prediction Algorithm for Satellite Network. Beijing Youdian Daxue Xuebao/J. Beijing Univ. Posts Telecommun. 2018, 41, 51–55. [Google Scholar] [CrossRef]
- Liu, Z.; Li, W.; Feng, J.; Zhang, J. Research on Satellite Network Traffic Prediction Based on Improved GRU Neural Network. Sensors 2022, 22, 8678. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Gu, X.; Shi, H. A Noval Satellite Network Traffic Prediction Method Based on GCN-GRU. In Proceedings of the 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 21–23 October 2020; pp. 718–723. [Google Scholar] [CrossRef]
- Zhu, F.; Liu, L.; Lin, T. An LSTM-based Traffic Prediction Algorithm with Attention Mechanism for Satellite Network. In Proceedings of the AIPR 2020: 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition, Xiamen, China, 26–28 June 2020; pp. 205–209. [Google Scholar]
- Liu, Z.; Han, J.; Wang, Y.; Li, X.; Chen, S. Performance analysis of routing algorithms in satellite network under node failure scenarios. In Proceedings of the IEEE Global Communications Conference (GLOBECOM’14), Austin, TX, USA, 8–12 December 2014; IEEE: New York, NY, USA, 2014; pp. 2838–2843. [Google Scholar]
- Fan, J.; Mu, D.; Liu, Y. Research on Network Traffic Prediction Model Based on Neural Network. In Proceedings of the 2019 2nd International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, 28–30 September 2019; pp. 554–557. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development. OECD Digital Economy Outlook 2015. Available online: https://www.broadbandcommission.org/Documents/reports/bb-annualreport2015.pdf (accessed on 11 September 2023).
- Kawamoto, Y.; Nishiyama, H.; Kato, N.; Kadowaki, N. A traffic distribution technique to minimize packet delivery delay in multilayered satellite networks. IEEE Trans. Veh. Technol. 2014, 62, 3315–3324. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, G.; Jin, F.; Song, Y.; Fu, Y.; Ni, G. A novel routing design in the IP-based GEO/LEO hybrid satellite networks. Int. J. Satell. Commun. Netw. 2016, 35, 179–199. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In NIPS. 2012. Available online: https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html (accessed on 11 September 2023).
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bougares, F.; Schwenk, H.; Bahdanau, D.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Wu, L.; Kong, C.; Hao, X.; Chen, W. A short-term load forecasting method based on GRU-CNN hybrid neural network model. Math. Probl. Eng. 2020, 2020, 1428104. [Google Scholar] [CrossRef]
Hyperparameters Name | Value |
---|---|
Initial Learning Step Size | 100 |
Number of Epochs | 100 |
GRU Hidden States | 64 |
GRU Hidden Layers | 5 |
Optimization Algorithm | Adam |
Loss Function | MAE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, X.; Yu, P.; Yuan, X. Machine Learning with Adaptive Time Stepping for Dynamic Traffic Load Prediction in 6G Satellite Networks. Electronics 2023, 12, 4473. https://doi.org/10.3390/electronics12214473
Zhang Y, Zhang X, Yu P, Yuan X. Machine Learning with Adaptive Time Stepping for Dynamic Traffic Load Prediction in 6G Satellite Networks. Electronics. 2023; 12(21):4473. https://doi.org/10.3390/electronics12214473
Chicago/Turabian StyleZhang, Yangan, Xiaoyu Zhang, Peng Yu, and Xueguang Yuan. 2023. "Machine Learning with Adaptive Time Stepping for Dynamic Traffic Load Prediction in 6G Satellite Networks" Electronics 12, no. 21: 4473. https://doi.org/10.3390/electronics12214473
APA StyleZhang, Y., Zhang, X., Yu, P., & Yuan, X. (2023). Machine Learning with Adaptive Time Stepping for Dynamic Traffic Load Prediction in 6G Satellite Networks. Electronics, 12(21), 4473. https://doi.org/10.3390/electronics12214473