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Abstract: The ISO 23150 standard defines the logical interface between sensors and fusion units. To
apply this standard to actual vehicles, software is required to convert sensor data into ISO 23150-
compliant sensor data. In this study, we developed sensor data processing software to provide
ISO 23150-compliant sensor data to autonomous vehicle software. The main contributions of this
study are as follows: First, the safety of the software is considered, and its structure and error
detection method are designed to minimize the impact of errors. Second, the software structure is in
accordance with the ISO 23150 standard, and a framework structure is designed with convenience in
mind. Third, we considered its compatibility with adaptive AUTOSAR by designing a data delivery
service using SOME/IP communication. We evaluated the security and data delivery delay of the
software on a controller used in an actual vehicle and noted high security and real-time performance.
The evaluation results demonstrated the feasibility of this method for real-world vehicles. Our
study can serve as a basis for advancing autonomous driving technology in the context of ensuring
software safety.

Keywords: autonomous vehicle software; data handler; multisensor; sensor interface; autonomous
driving

1. Introduction

Autonomous driving technology involves the perception and evaluation of the en-
vironment around a vehicle, with strong emphasis on the performance and reliability of
these perception capabilities [1,2]. For example, if a vehicle fails to accurately perceive
elements on the road, such as other vehicles, pedestrians, signals, and signs, it can lead to
misjudgment and accidents [3–5]. Advanced autonomous driving technologies employ
a variety of sensors, each with different sensing capabilities, to comprehensively assess
the environment around the vehicle [6–8]. This multisensor approach enhances perceptual
information, introduces redundancy, and ensures a high degree of accuracy and reliability
in understanding the environment [9–11].

However, the use of different sensor setups poses challenges when sensor-dependent
autonomous driving software is adapted to actual vehicles. With the increase in the size
and complexity of autonomous vehicles, there is a need to develop and validate them in
simulated environments to reduce development and testing costs [12]. Simulation environ-
ments cannot perfectly replicate the nuances of real-world sensor characteristics, leading
to differences between the simulated and actual vehicle environments [13]. Therefore,
adapting software to an actual vehicle environment is imperative when transitioning au-
tonomous driving software developed in simulation environments to real vehicles. This
transition is associated with significant cost and effort.
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To mitigate this problem and minimize sensor dependency in the software, the Inter-
national Organization for Standardization (ISO) has introduced the ISO 23150 standard [14].
This standard defines a sensor interface for data transfer between sensors and fusion units
or software components (SWCs). The sensor interface categorizes sensor data into different
levels, including detection, features, and objects, based on the characteristics of the various
sensors. By standardizing the exchange of sensor input and output data between sensors
and SWCs, this framework reduces sensor dependency in software development, resulting
in cost and time savings.

Owing to these benefits, the ISO 23150 standard was adopted by AUTOSAR and
OSI [15,16]. Linnhoff et al. used the ISO 23150 standard in their technology-independent
modular model architecture for autonomous driving perception sensors [17]. Kurzidem
et al. used ISO 23150 in their systematic methodology to analyze the logical system
architecture of an ADAS while considering uncertainties to determine the performance
limits [18]. Haider et al. also considered the ISO 23150 standard when developing a
LiDAR model for virtual testing and validation of an advanced driver assistance system
(ADAS) [19]. However, existing research does not address methods for applying the
ISO 23150 standard to real vehicles. The implementation of this standard in real vehicles
requires sensors that comply with the standard; such sensors have not been commercialized,
and incorporating sensor data processing functions into sensors can make them expensive.
Therefore, real vehicles require sensor data processing software that conforms to this
standard.

Research on sensor data processing methods has mainly focused on improving percep-
tion performance by studying methods for processing specific sensor data or by combining
data from different sensor sets [20–24]. In addition, much of the research on autonomous
driving software has aimed at improving the performance of autonomous driving software
platforms and architectures [25–28]. There is a lack of research on designing software for
processing sensor data in real vehicle systems and on the application of the ISO 23150
standard to real vehicles.

In this context, this study designed software to process sensor data and provide
ISO 23150-compliant sensor data to SWCs. The contributions of this study to the ISO
23150 standard are as follows: First, we designed the software to provide sensor data for
autonomous driving with convenience in mind. Specifically, a framework for sensor data
processing functions is designed to minimize the effort required when adding new sensors
or changing the sensor data processing algorithms.

Second, with software security in mind, the software design is based on a multi-
process approach. We designed a function that detects errors in the sensor data processing
in real time and notifies the autonomous driving software. This minimizes the impact of
possible errors in the sensor data processing process and ensures the safety of the software
by detecting them.

Third, to validate the applicability of the sensor data processing software, we per-
formed verification using a controller that is used in actual vehicles. In particular, we
evaluated the safety of the sensor data processing software and the real-time performance
of the data provision function to verify its applicability.

The rest of this paper is organized as follows: Section 2 describes the scope of the ISO
23150 standard and the proposed sensor interface. Section 3 describes the software structure
and functions of the interface. In Section 4, the proposed sensor interface is configured as a
controller for a real vehicle, and its applicability is verified. Finally, Section 5 presents the
conclusions and limitations of this work.

2. ISO 23150 Standard in Autonomous Driving Software

Figure 1 shows an example of autonomous driving software with the logical interface
of the ISO 23150 standard. The fusion unit configured in the autonomous driving software
receives sensor data in the format specified in the logical interface. The logical interface
specifies a modular semantic representation of the sensor data and sensor status informa-
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tion. It defines the detection, feature, and object-level interfaces for providing the sensor
data. The logical interface also defines the sensor performance and health information
interfaces for providing sensor information.
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Figure 1. Examples of autonomous driving software in accordance with the ISO 23150 standard.

The detection and feature interfaces used to provide sensor data are defined according
to the sensor characteristics. In particular, the camera and ultrasonic interfaces provide
shape and covariance as features, respectively. However, the LiDAR and radar interfaces
do not provide data to be used as features. The object interface is a common interface
used by all sensors and comprises interfaces that provide potentially moving objects, road
objects, and static objects.

The sensor performance and health information interfaces, which provide sensor
information, are used by all sensors. The sensor performance interface provides information
such as the sensor’s measurement direction, measurement range, installation location, and
object detection rate. Sensor health information includes sensor temperature, voltage,
defects, and calibration information. By standardizing the sensor data and information
provided to the fusion unit, these logical interfaces minimize the dependence of the fusion
unit on sensors, thereby minimizing the cost and effort required for development.

To maximize the effectiveness of the logical interface, the sensor must support a logical
interface, such as Sensor 3 in Figure 1. However, generally, raw or preprocessed sensor
data, such as those from Sensors 1 and 2, are provided through interfaces defined by each
developer. Therefore, to apply the ISO 23150 standard to current autonomous driving
software, a sensor data processing function is required to receive and process the sensor
data and provide it to the fusion unit through a logical interface.

Software that performs the sensor data processing function requires very high real-time
performance and reliability because it is responsible for providing sensor data. In addition,
it should be easy to add sensor models or modify the sensor data-processing algorithms to
minimize development costs and difficulty. In addition, to provide sensor data to the fusion
unit in compliance with the logical interface, an inter-process communication function
must be designed based on service-oriented communication. In particular, for the fusion
unit to provide only the required sensor data and information, the service providing the
data and information for each sensor must be configured independently.

3. Software Architecture Design

In this study, we designed software that processes sensor messages from a Linux-based
autonomous driving controller and provides them to a fusion unit in compliance with the
ISO 23150 standard. We designed the structure and function of the software considering
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the safety of the software and convenience of development. In this study, the software that
processes sensor messages and provides them to the fusion unit in compliance with the
ISO 23150 standard is called a data handler. The set of fusion units and SWCs constitutes
the autonomous driving software. Figure 2 shows the structure and functions of the data
handler designed in this study. The data handler comprises a set of processing units, a data
service, and a management unit.
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The processing unit set is responsible for receiving sensor messages and generating
sensor data at the detection, feature, and object levels, as specified in the ISO 23150 standard.
A processing unit set comprises multiple processing units, and a single processing unit
receives and processes messages from a single sensor. Therefore, the processing unit set
contains the same number of processing units as the number of sensors used in autonomous
driving. Each processing unit is executed in parallel, and in our study, it is executed as a
multiprocess unit to ensure software safety.

The management unit comprises a processing unit generator and a monitoring func-
tion. The processing unit generator creates as many processing units as the number of
sensors used in autonomous driving to form a set of processing units. The monitoring
function monitors the health status of the processing unit and detects defects caused by
runtime errors. To achieve this, the monitoring function receives a signal initiated when a
processing unit is terminated due to a runtime error and detects the fault. It also collects
the function execution count and timestamps delivered by the processing unit.

The data service is responsible for providing the detection, feature, and object data
generated by the processing unit, the fault detection information provided by the manage-
ment unit, and the health state of the processing unit to the autonomous driving software.
It also provides details of the processing units that comprise the processing unit set for the
autonomous driving software. In particular, a service that provides detection, feature, and
object data complies with the header and data formats of the logical interface of the ISO
23150 standard. Other services are transmitted in a brief and arbitrarily defined format.

The data service is described in detail in Section 3.1, the processing unit in Section 3.2,
and the management unit in Section 3.3.

3.1. Data Service

The data service of the data handler provides the sensor data and processing unit infor-
mation to the autonomous driving software. In this study, SOME/IP communication was
used to ensure compatibility with adaptive AUTOSAR-based autonomous driving software
and ease of development. Figure 3 shows the content configuration of the SOME/IP-based
data service and the service instance ID for subscribing to the content. The data service
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comprises a SOME/IP server. The data service comprises detection, features, objects,
HealthState, and FaultNotification content.
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The content of the data service is divided into data and information. Detection, feature,
and object contents are classified as Data, and HealthState and FaultNotification contents
are classified as Info. Content classified as data provides sensor data to the autonomous
driving software. Content categorized as info provides information from the processing
unit to the autonomous driving software. Each content provides sensor data processed
by a single processing unit and information from a single processing unit. Therefore, if
the number of sensors is n, each content comprises n pieces. The desired content can be
accessed through the Service Instance ID, which combines the type and model of the sensor
to be provided, the classification of the information to be provided, and the content name.

Detection, feature, and object contents provide each level of sensor data generated
periodically by the processing unit to the autonomous driving software. This content uses
SOME/IP event notifications to transmit each level of sensor data as generated. All the
data transmitted by the detection, feature, and object contents conform to the detection,
feature, and object interfaces of the logical interface of the ISO 23150 standard. Data services
that provide camera and ultrasonic sensor data are enabled for both detection, feature,
and object contents. For data services that provide LiDAR and radar sensor data, feature
content is disabled, and only detection and object contents are enabled.

The HealthState content provides the processing unit with health information. It peri-
odically provides the status information of the processing unit to the autonomous driving
software using the SOME/IP event notification transmission method. The HealthState
message, which provides the status information of the processing unit, contains headers
and data fields. The header field contains the sensor type, model, installation location,
sequence ID, and message transmission time. In particular, the header field is shared by all
the contents. The data field comprises health state data, which contains information about
sensor message reception events and data generation events with a time frame of 1 s. The
health data comprise a list of the number of times each event occurred in 1 s and the time
for which each event occurred. Each event occurrence time datum is stored in a list based
on the number of message reception events.

The FaultNotification content is used to notify the autonomous driving software when
the processing unit is forced to shut down due to a fault. The notification content notifies
the autonomous driving software of a fault in the processing unit in real time using the
event notification transmission method. Fault information is provided to the autonomous
driving software via a fault notification message. The fault notification message comprises
a header and a data field. The header field is common and the same as the other messages.
The data field contains information pertaining to the time at which the management unit
detects a fault in the processing unit.
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3.2. Management Unit

Algorithm 1 presents the pseudocode of the management unit. The management unit is
the entry point for the data handler and takes as input the configuration file Filecon f , which
contains the sensor information to be processed by the data handler. The management unit
comprises initialization and function execution phases. The initialization phase is shown in
Lines 2–5 of the pseudocode in Algorithm 1, and the function execution phase is shown in
Lines 6–14.

Algorithm 1. Management Unit

1: function ManagementUnit(Fileconf)
2: /* Read the information of the sensors used for autonomous driving. */
3: InfoList← ReadConfigureFile(Fileconf)
4: /* Initialize the shared memory to receive the status of the processing unit. */
5: KeyList← SharedMemoryInit(InfoList)
6: /* Read sensor information one by one (iterating for the number of sensors). */
7: for info in InfoList do
8: /* Execute the processing unit for a specific sensor. */
9: pid← ProcessExecution(ProcessingUnit, info, key)
10: /* Execute the fault monitoring unit to detect fault in the processing unit. */
11: ThreadExecution(FualtMonitoringUnit, info, pid)
12: end for

13:
/* Execute the Health Monitoring Unit to receive the status information of the processing unit.
*/

14: HealthMonitoringUnit(InfoList, KeyList)
15: return NULL

In the initialization phase, the data handler initializes the resources of the management
unit using the sensor information to be processed. To this end, we read f ilecon f with
the ReadCofigureFile function and initialized the sensor information list object InfoList.
Subsequently, the SharedMemInit function initializes the shared memory to be used to
receive the health state information from the processing unit set. At this time, the shared
memory has a size proportional to the number of sensors included in the InfoList.

In the functional execution step, as many processing and fault monitoring units as
the number of sensors in InfoList are executed. To achieve this, we sequentially extracted
single-sensor information, Info, from InfoList. Subsequently, using the ProcessExcution
function, a processing unit was executed to process the data of the sensor model stored
in the Info. At this time, the processing unit is executed as a process and returns the PID
of the executed processing unit. The returned PID is used by the fault-monitoring unit to
detect faults in the processing unit executed in the same step. The fault-monitoring unit is
executed as a thread using the ThreadExecution function. Finally, a health monitoring unit
is executed to monitor the health state of the processing unit set. The health monitoring
unit is not executed in parallel but in the main thread.

Algorithm 2 presents the pseudocode for the fault monitoring unit function. This
function is responsible for detecting faults in the processing units and notifying the au-
tonomous driving software about these faults. In this research, only faults resulting from
runtime errors in the processing units are detected. To achieve this, the function listens
for the SIGCHLD signal of a specific processing unit to detect faults. Detecting additional
types of faults would require monitoring signals other than SIGCHLD or implementing
additional fault detection methods.

The fault monitoring unit takes as input single sensor information and the PID of
the processing unit. When executed, it initializes the fault notification service based on
the sensor information contained in Info. It then receives a signal from the processing
unit with the PID and checks whether the signal is SIGCHLD. If it receives SIGCHLD, it
generates a timestamp t f ault and provides it to the autonomous driving software, along
with sensor information and information using the FaultNotificationServiceEvent function.
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The FaultNotificationServiceEvent service function generates and sends a fault notification
message; the fault-monitoring unit function ends when the transmission is complete.

Algorithm 2. Fault Monitoring Unit

1: function FaultMonitoringUnit(info, pid)
2: /* Initialize the service for notifying SWC of Processing Unit faults. */
3: FaultNotificationServiceInitialization(info)
4: /* Configured as an infinite loop to run until a fault occurs. */
5: while true do
6: /* Receive signals sent from the Processing Unit. */
7: SigNuim←WaitSignal(pid)

8:
/* If the received signal is the SIGCHLD signal, measure the fault detection time and

then notify SWC. */
9: if SigNum is SIGCHLD then
10: tfault ← timestamp()
11: FaultNotificationServiceEvent(info, tfault)
12: break
13: end if
14: end while
15: return NULL

Algorithm 3 shows the pseudocode for the health monitoring unit. The health-
monitoring unit takes as input an InfoList of sensor information and a KeyList to access
the shared memory. When the health monitoring unit is executed, it initializes a health
state service. It then reads the health state stored by the processing unit in the shared
memory using KeyList and stores it in HealthState. The HealthStateServiceEvent function
is used to provide the HealthState to the autonomous driving software. HealthStateSer-
viceEvent generates a health-state message and delivers the HealthState to the autonomous
driving software.

Algorithm 3. Health Monitoring Unit

1: function HealthMonitoringUnit(InfoList, KeyList)
2: /* Initialize the service for providing the status information of processing units to SWC. */
3: HealthStateServiceInitialization(InfoList)
4: while true do
5: /* Receive the status information of processing units stored in the shared memory. */
6: HealthState← ReadSharedMem(keyList)
7: /* Provide the status information of processing units to SWCs through a data service. */
8: HealthStateServiceEvent(HealthState)

9:
/* Provide the status information of processing units at approximately a 1-second

interval. */
10: Sleep(1)
11: end while
12: return NULL

3.3. Processing Unit

Algorithm 4 shows the pseudocode of the processing unit. The processing unit is
executed by the management unit. The processing unit receives single-sensor informa-
tion and a key to access shared memory. Single-sensor information comprises a sensor
model, network, installation location, and service-instance ID. The processing unit contains
initialization and data processing phases. In the initialization phase, the network, data
service, and shared memory are initialized using the input information and key. After the
initialization is completed, the data processing step is performed to provide the sensor data
to the autonomous driving software.
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Lines 2–7 in Algorithm 4 represent the initialization steps. A network was established
to receive sensor messages using the SocketInit function. The SocketInit function initializes
a CAN or UDP socket, depending on the network supported by the sensor to be processed
by the processing unit. The DataServiceInit function is used to initialize the data service to
provide processed sensor data to the autonomous driving software. The DataServiceInit
function initializes the detection, feature, and object contents on the server using the service
instance of information. The detection contents of the camera, Lidar, radar, or ultrasonic
sensor are used depending on the type of sensor being processed. Appropriate feature
content for the sensor is used only when processing the camera and ultrasonic sensors.

Lines 8–21 in Algorithm 4 represent the sensor data processing steps. The sensor data
processing step receives sensor messages and processes them to provide the autonomous
driving software, which is repeated infinitely. To perform this operation, we used the
ReadSensorMsg function to receive sensor messages. This function returns the sensor
data draw, message ID idrx, reception time trx, and reception count cntrx. If a CAN-based
sensor message is received, idrx returns the CAN ID, and if a UDP-based sensor message is
received, idrx returns the UDP port. The message reception time trx and reception count
cntrx are updated to the shared memory using the UpdateSharedMemrx function.

Algorithm 4. Processing Unit

1: function ProcessingUnit(info, key)
2: /* Initialize CAN or UDP sockets for receiving sensor data messages. */
3: SocketInit(info)

4:
/* Initialize a SOME/IP-based Data Service for transmitting sensor data compliant with ISO
23150. */

5: DataServiceInit(info)
6: /* Initialize Shared Memory for transmitting the status information of the Processing Unit. */
7: SharedMemoryInit(key)
8: while true do
9: /* Receive sensor messages transmitted from the sensor. */
10: draw, idrx, trx, cntrx ← ReadSensorMsg()
11: /* Provide the count of received sensor messages and their reception times. */
12: UpdateSharedMemrx(trx, cntrx)
13: /* Generate detection data. (User code.) */
14: dd, td, cntd, cmdd ← Parsing(draw, idrx)

15:
UpdateSharedMemd(td, cntd) /* Provide the count and timestamps of detection data

generation. */
16: SendDatadetection(dd, td, cntd, cmdd) /* Send detection data using SOME/IP. */
17: /* Generate feature data and object data. (User code.) */
18: df, do, to, cnt0, stateo ← processing(draw, idrx, dd, cmdd)

19:
UpdateSharedMemo(to, cnto) /* Provide the count and timestamps of detection data

generation. */

20:
SendDatafeature&object(df, do, to, cnto, cmdo) /* Send object data and feature data using

SOME/IP. */
21: end while
22: return NULL

Subsequently, the sensor data are processed using the parsing function to generate
the detection data. The Parsing function takes the detection data dd and message ID idrx as
inputs. The Parsing function returns the detection data dd, data generation time td, data
generation count cntd, and processing command cmdd. cmdd is used to control the function
using dd. For example, if a sensor sends the data it collects in one cycle in multiple messages,
a dd is generated when all the data collected in one cycle are received. In this situation,
cmdd indicates whether a dd has been generated and is used to determine the behavior of
functions that use dd. The time td and the number of times cmdd that the detection data are
generated are updated in the shared memory using the UpdateSharedMemd function. The
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SendDatadetection function is then used to provide the detection data dd to the autonomous
driving software.

Subsequently, the detection data are processed using a Processing function to generate
feature and object data. The Processing function receives the original data draw, message ID
idrx, detection data dd, and processing command cmdd. The original data draw is used as
the input when the sensor sends the processed object data. The processing unit outputs
the feature data d f , object data do, data generation time to, data generation count cnto, and
processing command cmdo. The creation time to and creation number cnto of the object data
are updated to the shared memory using the UpdateSharedMemo function. Subsequently,
the feature data d f and object data do are provided to the autonomous driving software
using the SendData f eature&object function.

The processing units were developed as independent software packages to handle
specific sensor models. Therefore, a new processing unit must be developed each time
a data handler adds a processing unit that processes data from a new sensor model.
Therefore, it is necessary to organize reusable functions into a framework to ensure ease of
development for the processing unit.

Figure 4 shows the structure of the processing unit framework. The framework
contains two templates, one class, and three functions. Templates are functions that change
according to the sensor model and are configured to select the functions required for
development. It comprises a data service and network templates that can be configured as
macros or C++ templates. It is configured to select an appropriate data service for the type
of sensor to be processed and the network supported by the sensor.
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One class comprises a shared memory function for transmitting the health state to
the management unit. Among the three functions, the main function is configured to
perform the pseudocode function shown in Figure 4. The parsing and processing functions
are configured as empty functions, with only the input and output defined. With the
framework configured in this manner, the developer needs to write code only for the
parsing and processing functions after selecting the data service and network for use.

4. Experiments

In this section, we evaluate the real-time performance and safety of the data handler
software designed in Section 3 to verify its applicability. We measured the delay in provid-
ing the sensor data to evaluate the real-time performance of the software. To evaluate its
safety, we checked the impact of possible faults in the processing unit set and evaluated
the fault detection capability of the management unit. An autonomous driving controller
was used to build an experimental environment similar to a real vehicle. The MCU of the
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autonomous driving controller was an NXP S32V, and the software platform was Linux
from the Yocto Project.

4.1. Real-Time Performance Evaluation

To evaluate the real-time performance of the proposed data handler, we measured
the delay of the data service in providing sensor data to the autonomous driving software.
As this study proposes the structure and function of the software, it does not include the
performance of the function that processes the sensor data. We only measured the delay
of the detection, feature, and object contents of the data service in the processing unit to
verify the real-time performance. In particular, to check the impact of the data size and the
number of active data services, we measured the delay in scenarios comprising various
sizes of data and processing units.

Table 1 lists the configurations of the performance evaluation scenarios. We configured
16 scenarios with different data sizes and numbers of processing units transmitted by the
data services. The scenarios comprised data services sending 400, 600, 800, and 1000 bytes
of data with four, six, eight, and ten processing units enabled.

Table 1. Composition of real-time performance evaluation scenarios.

Data Size
Number of Processing Units

4 6 8 10

400 scenario 4-400 scenario 6-400 scenario 8-400 scenario 10-400

600 scenario 4-600 scenario 6-600 scenario 8-600 scenario 10-600

800 scenario 4-800 scenario 6-800 scenario 8-800 scenario 10-800

10,000 scenario 4-1000 scenario 6-1000 scenario 8-1000 scenario 10-1000

In each scenario, all the processing units exhibited the same behavior. The processing
unit was repeatedly executed at intervals of 20 ms. Five milliseconds after the processing
unit was executed, the sensor data were provided to the autonomous driving software
through the detection content. Subsequently, 15 or 16 ms after the processing unit was
executed, the sensor data were provided to the autonomous driving software through
feature and object contents. To transmit the same amount of data in every cycle, the sensor
data were organized into dummy data of appropriate size for the scenario conditions. The
delay was calculated by measuring the time just before sending the data through each
content and the time when the data were received by the autonomous driving software
and then calculating the difference between the two values.

In this study, quartiles were used to exclude abnormal delays caused by factors such
as process scheduling and resource contention. Figure 5 shows a box plot of the delay of
the data service measured by running the processing unit 10,000 times in each scenario.
Figure 5 shows the box-plot graphs of the delay incurred by (a) detection content, (b) feature
content, and (c) object content. To analyze the latency of each content in the data service, we
combined the datasets measured at the same level of content. For example, if the number
of processing units is 10, the number of datasets used to analyze the delay of each content
will be 100,000.

The box-and-whisker plot shows the quartiles in the whisker box. The bottom of the
box is Q1, the line inside the box is Q2, and the top of the box is Q3. The horizontal line
at the end of the upper whiskers is the upper fence, and the horizontal line at the end of
the lower whiskers is the lower fence. Q1, Q2, and Q3 represent the top 25%, 50%, and
75% of the datasets, respectively, when sorted by size. The upper and lower fences are
calculated using Equations (1) and (2), respectively, and the interquartile range (IQR) used
in the calculation is calculated using Equation (3). Data greater than the upper fence or less
than the lower fence is classified as outliers.

upper f ence = Q3 + 1.5× IQR, (1)
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lower f ence = Q1 − 1.5× IQR, (2)

IQR = Q3 −Q1, (3)
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Figure 5. Box-plot graphs of the measured delay in each scenario: (a) Box plot of the measured delay
in the detection content; (b) box plot of the measured delay in the feature content; and (c) box plot of
the measured delay in the object content.

We analyzed outliers from the upper fence as abnormal delays. Abnormal delays
occur most often when sending 1000 bytes of data to ten processing units. They were
most prevalent in the object content of the data service, accounting for 4.58% of the total
delayed data. This is believed to be due to factors such as process scheduling and resource
contention and is expected to be minimized by optimizing the Linux kernel and IPC stack.
We used only normal delays to evaluate the real-time performance; therefore, we did not
show outliers in the box-plot graph in Figure 5.

Q2 is the median value of 50% of the dataset and is less affected by outliers, making
it more reliable than the average. We analyzed Q2 as the mean delay. The average delay
tends to increase in proportion to the amount of data transmitted through the data service
and the number of executed processing units. In particular, the variation is greater with
the number of processing units than with the size of the data transmitted by the data
service. This is believed to be due to the CPU load during parallel processing, which
increases with the number of executed processes. Therefore, in this study, we evaluated the
real-time performance of the data service by analyzing the results according to the number
of processing units when transmitting 1000 bytes of data.

When the numbers of processing units were 4, 5, 8, and 10, the maximum average
delay values were 3.14, 3.70, 4.98, and 5.12 ms, respectively. The upper fence took values of
4.61, 6.56, 7.27, and 9.71 ms, depending on the number of processing units. Under normal
circumstances, the upper fence, which is the maximum delay experienced by the data
service, has a delay of 10 ms or less under all conditions. This is the performance that can
provide a maximum of 2.86 MB of data to autonomous driving software with a delay of
10 ms or less in one second.

The experimental results show that each processing unit’s data service is composed
of three contents, always transmitting data of the same size. However, in a real vehicle
environment, two or three contents may be available, and there is a high likelihood that
not all contents will be subscribed to by the autonomous driving software. Therefore, the
actual number of active contents is likely to be even lower. Furthermore, the size of the
data transmitted varies depending on the type of sensor and the number of measured
objects. Therefore, it is believed that sensor data can be provided with even lower delays in
a real vehicle.
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However, in cases where the proposed Data Handler is not used, sensor data are
directly supplied to the autonomous driving software. Consequently, the delays incurred
by the Data Service are eliminated, potentially reducing the sensor data provisioning delay
by up to 10 ms. Nevertheless, this means that additional tasks are introduced within the
autonomous driving software to process the sensor data into a usable format.

One potential issue that may arise in situations where the Data Handler is not uti-
lized is when multiple components of the autonomous driving software are accessing
the same sensor data. If these components simultaneously receive and process sensor
data, redundant work may lead to a waste of software resources and potentially result in
significant delays. Additionally, the dependence of the autonomous driving software on the
sensors is heightened in such scenarios, which could have adverse effects on development
convenience and universality.

To summarize, the Data Handler can provide sensor data to autonomous driving
software with a delay of 10 ms or less. Additionally, using the Data Handler minimizes
redundancy in tasks. Particularly, autonomous driving software requires an execution time
of less than 100 ms to ensure a faster reaction time than humans [29,30]. In this case, the
Data Service occupies a maximum of 10% of the execution time, and this is likely to be
even lower when used in actual vehicles. Therefore, it is considered suitable for real-time
performance in practical vehicle applications.

4.2. Software Safety Evaluation

In this section, we evaluate the structural safety and fault-detection performance to
verify the software safety of the proposed data handler. A comparative evaluation was
conducted using a multithreaded data handler to evaluate the structural safety of the
proposed multiprocess-based data handler. Four processing units were executed for each
structure, and each processing unit was repeatedly executed 10 times with a 10 ms cycle.
We configured Processing Unit #4 to be abnormally terminated by a runtime error due
to an invalid memory reference on the fifth iteration. We then ran the data handler in
both structures to observe how the software defect in Processing Unit #4 affected the other
processing units.

Table 2 presents the execution results of the proposed multiprocess-based data handler
and multithread-based data handler for comparative evaluation. In the multiprocess-based
data handler, even if Processing Unit #4 is abnormally terminated due to a software glitch,
the other processing units complete 10 iterations. On the other hand, in the multi-threaded
data handler, if Processing Unit #4 is abnormally terminated due to a software glitch, the
processing units are affected and terminated. This leads to a failure to fulfill the target
number of iterations.

Table 2. Results of the stability comparison between a multi-process-based data handler and a
multi-thread-based data handler.

Processing Units Set Target Loop Count Test Loop Count
NoteMultiprocess Multithread

Processing Unit #1 10 10 5 Normal operation
Processing Unit #2 10 10 5 Normal operation
Processing Unit #3 10 10 5 Normal operation

Processing Unit #4 10 5 5 Runtime error on
5th loop

From this result, we find that the multithreaded approach to organizing the data
handler is less safe from a software perspective because a fault in a single processing unit can
affect other processing units. However, the proposed multiprocess method of organizing
the data handler has higher software safety because a fault in a single processing unit does
not affect the other processing units. This is due to the fact that each processing unit operates
entirely independently when executed as separate processes in a multiprocess approach.



Electronics 2023, 12, 4505 13 of 15

To evaluate the dual-detection performance, we measured the delay Dmanager for the
task manager in detecting the fault and the time Dswc for the SWC to recognize the fault
after it occurs. For this purpose, we configured four sensor tasks and one SWC running at
intervals of 10 ms. We generated timestamp t0 just before the fault occurred and timestamp
t1 after the fault was detected by the task manager. We then generated t2 immediately after
the SWC received the fault information and measured the delay by calculating Dswc and
Dmanager using Equations (4) and (5).

Dmanager = t1 − t0, (4)

Dswc = t2 − t0, (5)

Figure 6 shows a box-and-whisker plot of the results of 10,000 measurements of
Dmanager and Dswc. Dmanager had a normal delay range of a maximum of 0.730 ms and a
minimum of 0.650 ms per quartile, with approximately 7.45% of the total data being outliers
and outside the normal range. Dswc showed an interquartile range of 1.450 ms maximum
and a minimum of 1.10 ms, with approximately 1.39% of the data being outliers. In the
steady state, it took the SWC up to 1.450 ms to detect a software glitch in the sensor task.
However, with a 1.39% outlier, there was a delay of up to 3.370 ms.
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When software faults occur in the processing units, there is an increase in the delay it
takes for the SWC to detect them, which falls outside the normal range. This is attributed
to delays occurring in the fault notification service and the presence of 7.45% outliers in the
task manager. In particular, it is determined that the increased maximum delay is due to
the 7.45% outliers originating from the task manager. Such issues can likely be mitigated
through efforts to enhance real-time performance in the Linux kernel.

In summary, the proposed Data Handler is structured as a multi-process architec-
ture, ensuring that faults in processing units do not impact other tasks. This provides a
higher level of stability compared to using a multi-threaded structure. Furthermore, the
task manager can notify the SWC of faults caused by runtime errors in processing units
with a delay of up to 3.370 ms. Therefore, it can promptly inform the SWC of any faults.
However, reducing the occurrence of outliers in the task manager is essential to minimizing
maximum delays.
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5. Conclusions

We proposed an ISO 23150 standard-compliant sensor interface with the necessary
structure and function to provide the level of data required by the SWCs of autonomous
vehicle software. In particular, we designed a multiprocess-based software structure and
a fault-detection function to ensure safety. We additionally designed a service to provide
layered sensor data to SWC. The safety and applicability of the proposed sensor interface
were verified using a controller in a real vehicle.

The experimental results confirmed the software safety and applicability of the pro-
posed sensor interface. When 10 processing units of the proposed data handler are executed,
1000 bytes (or less) of data can be provided to the SWC via the data service with a delay of
less than 10 ms. This demonstrates the applicability of the proposed data handler by ensur-
ing real-time performance. In addition, the proposed software structure and fault-detection
function can minimize the impact of software faults on tasks and detect them in real time.
This confirmed the safety of the proposed sensor interface software.

The proposed software has certain limitations in terms of safety, performance, security,
and sensor data processing. These limitations are as follows:

• Dependence on the ISO 23150 standard: The software relies on the ISO 23150 standard,
which introduces constraints related to scalability and adaptability. To overcome these
limitations, our future plans include extending the standard or developing adaptable
layers to accommodate diverse requirements.

• Improvements in Linux-Based Software (Linux kernel 4.19.59-rt24): There is a need
for enhancing the performance and security of Linux-based software. Our future
research will address issues related to the performance and security of Linux-based
software. We plan to introduce optimizations at the kernel level and enhance security
mechanisms to stabilize the software.

• Handling Large Volumes of Sensor Data: Research is required to effectively handle
large volumes of sensor data and optimize their processing for autonomous driving
scenarios. Our plans involve researching data compression and distributed processing
technologies to overcome bottlenecks and enhance real-time processing capabilities.

Through these additional research plans, we anticipate overcoming the existing limita-
tions of the software and making improvements in terms of safety, performance, security,
and sensor data processing.
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