MammalClub: An Annotated Wild Mammal Dataset for Species Recognition, Individual Identification, and Behavior Recognition
Abstract
:1. Introduction
- This study constructed a publicly available, relatively comprehensive dataset of medium to large terrestrial mammals for the development of stable deep learning models. The dataset contains three sub-datasets: those for species identification, individual identification, and behavioral analysis. We acquired a large number of images by filming and downloading documentaries.
- Our species dataset is labeled for each image with the location of the mammalian target, i.e., bounding boxes, without delineating the species, as in existing species datasets. This annotation allows the dataset to be used directly for animal target detection, which is a prerequisite for individual identification and behavioral analysis.
- For the application of the animal behavior recognition model, this study spent much time collecting and organizing videos of mammalian behavior and used the DeepLabCut software (v2.1.9) to extract the animal skeleton in each frame and label the information of the point coordinates of the animal’s joints, which can be easily used as input for the daily animal behavior recognition model.
- Since wild animals are usually shy and their behavior is not under human control, it is difficult to obtain individual animal datasets. We took images from many different sides of animals’ bodies and collected internet documentary videos to construct the individual identification datasets for 15 species.
2. Related Works
3. Data Description
3.1. Species Recognition Sub-Dataset (SRSD)
3.1.1. Composition of the Species Recognition Sub-Dataset
3.1.2. Bounding Box Annotation
3.2. Behavior Recognition Sub-Dataset (BRSD)
3.2.1. Composition of the Behavior Recognition Sub-Dataset
3.2.2. Joint Annotation
3.3. Wild Mammal Individual Identification Sub-Dataset (IISD)
3.4. Comparison of Our Dataset with Notable Animal Datasets
4. Experiments
4.1. Experimental Results for Species Recognition
4.2. Experimental Results for Action Recognition
4.3. Experimental Results for Individual Identification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Viani, A.; Orusa, T.; Borgogno-Mondino, E.; Orusa, R. Snow Metrics as Proxy to Assess Sarcoptic Mange in Wild Boar: Preliminary Results in Aosta Valley (Italy). Life 2023, 13, 987. [Google Scholar] [CrossRef]
- Feng, L.; Zhao, Y.; Sun, Y.; Zhao, W.; Tang, J. Action Recognition Using a Spatial-Temporal Network for Wild Felines. Animals 2021, 11, 485. [Google Scholar] [CrossRef]
- Singh, A.; Pietrasik, M.; Natha, G.; Ghouaiel, N.; Brizel, K.; Ray, N. Animal Detection in Man-made Environments. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, 1–5 March 2020. [Google Scholar]
- Nguyen, H.; Maclagan, S.J.; Nguyen, T.D.; Nguyen, T.; Flemons, P.; Andrews, K.; Ritchie, E.G.; Phung, D. Animal Recognition and Identification with Deep Convolutional Neural Networks for Automated Wildlife Monitoring. In Proceedings of the 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Tokyo, Japan, 19–21 October 2017. [Google Scholar]
- Jia, J.; Fang, Y.; Li, X.; Song, K.; Xie, W.; Bu, C.; Sun, Y. Temporal Activity Patterns of Sympatric Species in the Temperate Coniferous Forests of the Eastern Qinghai-Tibet Plateau. Animals 2023, 13, 1129. [Google Scholar] [CrossRef]
- Zhang, X.; Huo, L.; Liu, Y.; Zhuang, Z.; Yang, Y.; Gou, B. Research on 3D Phenotypic Reconstruction and Micro-Defect Detection of Green Plum Based on Multi-View Images. Forests 2023, 14, 218. [Google Scholar] [CrossRef]
- Dai, X.; Xu, Y.; Song, H.; Zheng, J. Using image-based machine learning and numerical simulation to predict pesticide inline mixing uniformity. J. Sci. Food Agric. 2023, 103, 705–719. [Google Scholar] [CrossRef]
- Vinitpornsawan, S.; Fuller, T.K. A Camera-Trap Survey of Mammals in Thung Yai Naresuan (East) Wildlife Sanctuary in Western Thailand. Animals 2023, 13, 1286. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, X.; Xie, J.; Zhang, J. A Lightweight Automatic Wildlife Recognition Model Design Method Mitigating Shortcut Learning. Animals 2023, 13, 838. [Google Scholar] [CrossRef]
- Kays, R.; Lasky, M.; Allen, M.L.; Dowler, R.C.; Hawkins, M.T.; Hope, A.G.; Kohli, B.A.; Mathis, V.L.; McLean, B.; Olson, L.E.; et al. Which mammals can be identified from camera traps and crowdsourced photographs? J. Mammal. 2022, 103, 767–775. [Google Scholar] [CrossRef]
- Figueroa, K.; Camarena-Ibarrola, A.; García, J.; Villela, H.T. Fast Automatic Detection of Wildlife in Images from Trap Cameras. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 2nd ed.; Bayro-Corrochano, E., Hancock, E., Eds.; Springer Nature: Cham, Switzerland, 2014; Volume 8827, pp. 940–947. [Google Scholar]
- Alexander, G.V.; Augusto, S.; Francisco, V. Towards automatic wild animal monitoring: Identification of animal species in camera-trap images using very deep convolutional neural networks. Ecol. Inform. 2017, 41, 24–32. [Google Scholar]
- Janzen, M.; Ritter, A.; Walker, P.D.; Visscher, D.R. EventFinder: A program for screening remotely captured images. Environ. Monit Assess 2019, 191, 406. [Google Scholar] [CrossRef]
- Orusa, T.; Borgogno Mondino, E. Exploring Short-Term Climate Change Effects on Rangelands and Broad-Leaved Forests by Free Satellite Data in Aosta Valley (Northwest Italy). Climate 2021, 9, 47. [Google Scholar] [CrossRef]
- ENETWILD-consortium; Guerrasio, T.; Pelayo Acevedo, P.; Apollonio, M.; Arnon, A.; Barroqueiro, C.; Belova, O.; Berdión, O.; Blanco-Aguiar, J.A.; Bijl, H.; et al. Wild ungulate density data generated by camera trapping in 37 European areas: First output of the European Observatory of Wildlife (EOW). EFSA Support. Publ. 2023, 20, 7892E. [Google Scholar]
- Enetwild, C.; Blanco-Aguiar, J.A.; Acevedo, P.; Apollonio, M.; Carniato, D.; Casaer, J.; Ferroglio, E.; Guerrasio, T.; Gómez-Molina, A.; Jansen, P.; et al. Development of an app for processing data on wildlife density in the field. EFSA Support. Publ. 2022, 19, 7709E. [Google Scholar] [CrossRef]
- Falzon, G.; Lawson, C.; Cheung, K.-W.; Vernes, K.; Ballard, G.A.; Fleming, P.J.S.; Glen, A.S.; Milne, H.; Mather-Zardain, A.; Meek, P.D. ClassifyMe: A Field-Scouting Software for the Identification of Wildlife in Camera Trap Images. Animals 2020, 10, 58. [Google Scholar] [CrossRef]
- Marcella, J.K. Computer-Aided Photograph Matching in Studies Using Individual Identification: An Example from Serengeti Cheetahs. J. Mammal. 2001, 82, 440–449. [Google Scholar]
- Lyra-Jorge, M.C.; Ciocheti, G.; Pivello, V.R.; Meirelles, S.T. Comparing methods for sampling large- and medium-sized mammals: Camera traps and track plots. Eur. J. Wildl. Res. 2008, 54, 739–744. [Google Scholar] [CrossRef]
- Nan, Y.; Zhang, H.; Zeng, Y.; Zheng, J.; Ge, Y. Intelligent detection of Multi-Class pitaya fruits in target picking row based on WGB-YOLO network. Comput. Electron. Agric. 2023, 208, 107780. [Google Scholar] [CrossRef]
- Jin, X.; Liu, T.; Chen, Y.; Yu, J. Deep Learning-Based Weed Detection in Turf: A Review. Agronomy 2022, 12, 3051. [Google Scholar] [CrossRef]
- Yan, X.; She, D.; Xu, Y. Deep order-wavelet convolutional variational autoencoder for fault identification of rolling bearing under fluctuating speed conditions. Expert Syst. Appl. 2023, 216, 119479. [Google Scholar] [CrossRef]
- Saufi, S.R.; Ahmad, Z.A.B.; Leong, M.S.; Lim, M.H. Challenges and Opportunities of Deep Learning Models for Machinery Fault Detection and Diagnosis: A Review. IEEE Access 2019, 7, 122644–122662. [Google Scholar] [CrossRef]
- Graving, J.M.; Chae, D.; Naik, H.; Li, L.; Koger, B.; Costelloe, B.R.; Couzin, I.D. DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning. Elife 2019, 8, e47994. [Google Scholar] [CrossRef]
- Bala, P.C.; Eisenreich, B.R.; Yoo, S.B.M.; Hayden, B.Y.; Park, H.S.; Zimmermann, J. Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio. Nat. Commun. 2020, 11, 4560. [Google Scholar] [CrossRef]
- Yu, X.; Wang, J.; Kays, R.; Jansen, P.A.; Wang, T.; Huang, T. Automated identification of animal species in camera trap images. EURASIP J. Image Video Process. 2013, 2013, 52. [Google Scholar] [CrossRef]
- Rey, N.; Volpi, M.; Joost, S.; Tuia, D. Detecting animals in African Savanna with UA Vs and the crowds. Remote Sens. Environ. 2017, 200, 341–351. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Schneider, S.; Taylor, G.W.; Linquist, S.S.; Kremer, S.C. Past, present and future approaches using computer vision for animal re-identification from camera trap data. Methods Ecol. Evol. 2018, 10, 461–470. [Google Scholar] [CrossRef]
- Steven, J.B.C.; Ian, P.B.; Jessica, J.M.; Peter, P.G. Automated marine turtle photograph identification using artificial neural networks, with application to green turtles. J. Exp. Mar. Biol. Ecol. 2014, 452, 105–110. [Google Scholar]
- Nepovinnykh, E.; Eerola, T.; Kälviäinen, H. Siamese Network Based Pelage Pattern Matching for Ringed Seal Re-identification. In Proceedings of the 2020 IEEE Winter Applications of Computer Vision Workshops (WACVW), Snowmass, CO, USA, 1–5 March 2020. [Google Scholar]
- Norouzzadeh, M.S.; Nguyen, A.; Kosmala, M.; Swanson, A.; Palmer, M.S.; Packer, C.; Clune, J. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. USA 2018, 115, E5716–E5725. [Google Scholar] [CrossRef]
- Carl, C.; Schönfeld, F.; Profft, I.; Klamm, A.; Landgraf, D. Automated detection of European wild mammal species in camera trap images with an existing and pre-trained computer vision model. Eur. J. Wildl. Res. 2020, 66, 62. [Google Scholar] [CrossRef]
- Cheng, K.; Zhang, Y.; He, X.; Chen, W.; Cheng, J.; Lu, H. Skeleton-Based Action Recognition with Shift Graph Convolutional Network. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Song, Y.F.; Zhang, Z.; Shan, C.; Wang, L. Richly Activated Graph Convolutional Network for Robust Skeleton-Based Action Recognition. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 1915–1925. [Google Scholar] [CrossRef]
- Zhu, Q.; Deng, H. Spatial adaptive graph convolutional network for skeleton-based action recognition. Appl. Intell. 2023, 53, 17796–17808. [Google Scholar] [CrossRef]
- Song, Y.F.; Zhang, Z.; Shan, C.; Wang, L. Constructing Stronger and Faster Baselines for Skeleton-Based Action Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 1474–1488. [Google Scholar] [CrossRef]
- Hsing, P.; Hill, R.A.; Smith, G.C.; Bradley, S.; Green, S.E.; Kent, V.T.; Mason, S.S.; Rees, J.; Whittingham, M.J.; Cokill, J.; et al. Large-scale mammal monitoring: The potential of a citizen science camera-trapping project in the United Kingdom. Ecol. Solut. Evid. 2022, 3, 12180. [Google Scholar] [CrossRef]
- McCallum, J. Changing use of camera traps in mammalian field research: Habitats, taxa and study types. Mammal Rev. 2013, 43, 196–206. [Google Scholar] [CrossRef]
- David, J.A.; Pietro, P. Toward a science of computational ethology. Neuron 2014, 84, 18–31. [Google Scholar]
- Beery, S.; Agarwal, A.; Cole, E.; Birodkar, V. The iWildCam 2021 Competition Dataset. arXiv 2021, arXiv:2105.03494. [Google Scholar]
- Ziegler, L.V.; Sturman, O.; Bohacek, J. Big behavior: Challenges and opportunities in a new era of deep behavior profiling. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2021, 46, 33–44. [Google Scholar] [CrossRef]
- Cao, J.; Tang, H.; Fang, H.-S.; Shen, X.; Tai, Y.-W.; Lu, C. Cross-Domain Adaptation for Animal Pose Estimation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Horn, G.V.; Mac Aodha, O.; Song, Y.; Cui, Y.; Sun, C.; Shepard, A.; Adam, H.; Perona, P.; Belongie, S.J. The iNaturalist Species Classification and Detection Dataset. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; 2017; pp. 8769–8778. [Google Scholar]
- Xian, Y.; Lampert, C.H.; Schiele, B.; Akata, Z. Zero-Shot Learning—A Comprehensive Evaluation of the Good, the Bad and the Ugly. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2251–2265. [Google Scholar] [CrossRef]
- Wah, C.; Branson, S.; Welinder, P.; Perona, P.; Belongie, S.J. The Caltech-UCSD Birds-200-2011 Dataset. 2011. Available online: https://www.vision.caltech.edu/datasets/cub_200_2011/ (accessed on 6 March 2022).
- Gagne, C.; Kini, J.; Smith, D.; Shah, M. Florida Wildlife Camera Trap Dataset. arXiv 2021, arXiv:2106.12628. [Google Scholar]
- Swanson, A.; Kosmala, M.; Lintott, C.; Simpson, R.; Smith, A.; Packer, C. Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna. Sci. Data 2015, 2, 150026. [Google Scholar] [CrossRef]
- Yu, H.; Xu, Y.; Zhang, J.; Zhao, W.; Guan, Z.; Tao, D. Ap-10k: A benchmark for animal pose estimation in the wild. arXiv 2021, arXiv:2108.12617. [Google Scholar]
- Ng, X.L.; Ong, K.E.; Zheng, Q.; Ni, Y.; Yeo, S.Y.; Liu, J. Animal Kingdom: A Large and Diverse Dataset for Animal Behavior Understanding. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 19001–19012. [Google Scholar]
- Li, W.; Swetha, S.; Shah, D.M. Wildlife Action Recognition Using Deep Learning. 2020. Available online: https://www.semanticscholar.org/paper/Wildlife-Action-Recognition-using-Deep-Learning-Li-Swetha/3edcce3dd3d85da60115da988cf30253e3b59f19 (accessed on 6 March 2022).
- Li, S.; Li, J.; Tang, H.; Qian, R.; Lin, W. ATRW: A benchmark for Amur tiger re-identification in the wild. arXiv 2019, arXiv:1906.05586. [Google Scholar]
- Guo, S.; Xu, P.; Miao, Q.; Shao, G.; Chapman, C.A.; Chen, X.; He, G.; Fang, D.; Zhang, H.; Sun, Y.; et al. Automatic Identification of Individual Primates with Deep Learning Techniques. iScience 2020, 23, 101412. [Google Scholar] [CrossRef]
- Tang, J.; Zhao, Y.; Feng, L.; Zhao, W. Contour-Based Wild Animal Instance Segmentation Using a Few-Shot Detector. Animals 2022, 12, 1980. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Computer Vision, 2nd ed.; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland, 2014; Volume 8693, pp. 740–755. [Google Scholar]
- Liu, D.; Oczak, M.; Maschat, K.; Baumgartner, J.; Pletzer, B.; He, D.; Norton, T. A computer vision-based method for spatial-temporal action recognition of tail-biting behaviour in group-housed pigs. Biosyst. Eng. 2020, 195, 27–41. [Google Scholar] [CrossRef]
- Pistocchi, S.; Calderara, S.; Barnard, S.; Ferri, N.; Cucchiara, R. Kernelized Structural Classification for 3D Dogs Body Parts Detection. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014. [Google Scholar]
- Freytag, A.; Rodner, E.; Simon, M.; Loos, A.; Kühl, H.S.; Denzler, J. Chimpanzee faces in the wild: Log-euclidean CNNs for predicting identities and attributes of primates. In Proceedings of the German Conference on Pattern Recognition, Hannover, Germany, 12–15 September 2016; pp. 51–63. [Google Scholar]
- Zhao, Y.Q.; Feng, L.Q.; Tang, J.X.; Zhao, W.X.; Ding, Z.P.; Li, A.; Zheng, Z.Z. Automatically recognizing four-legged animal behaviors to enhance welfare using spatial temporal graph convolutional networks. Appl. Anim. Behav. Sci. 2022, 249, 105594. [Google Scholar] [CrossRef]
- Zheng, Z.X.; Zhao, Y.Q.; Li, A.; Yu, Q.P. Wild Terrestrial Animal Re-Identification Based on an Improved Locally Aware Transformer with a Cross-Attention Mechanism. Animals 2022, 12, 3503. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, R.; Jiang, Y.; Kong, T.; Xu, C.; Zhan, W.; Tomizuka, M.; Li, L.; Yuan, Z.; Wang, C.; et al. Sparse r-cnn: End-toend object detection with learnable proposals. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully Convolutional One-Stage Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850. [Google Scholar]
- Quispe, R.; Pedrini, H. Top-DB-Net: Top DropBlock for Activation Enhancement in Person Re-Identification. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021. [Google Scholar]
- Rao, Y.; Chen, G.; Lu, J.; Zhou, J. Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021. [Google Scholar]
- Staniszewski, M.; Foszner, P.; Kostorz, K.; Michalczuk, A.; Wereszczyński, K.; Cogiel, M.; Golba, D.; Wojciechowski, K.; Polański, A. Application of Crowd Simulations in the Evaluation of Tracking Algorithms. Sensors 2020, 20, 4960. [Google Scholar] [CrossRef]
- Ciampi, L.; Messina, N.; Falchi, F.; Gennaro, C.; Amato, G. Virtual to Real Adaptation of Pedestrian Detectors. Sensors 2020, 20, 5250. [Google Scholar] [CrossRef]
SRSD | IISD | BRSD | ||||
---|---|---|---|---|---|---|
Class Name | Number of Images | Species | Ids | Number of Images | Behavior Category | Number of Images |
Brown Bear | 415 | Brown Bear | 20 | 5493 | Chasing | 10,783 |
Cow | 351 | Elephant | 18 | 2371 | Eating | 11,577 |
Leopard | 471 | Giraffe | 20 | 2222 | Resting | 7210 |
Deer | 404 | Horse | 19 | 5295 | Walking | 34,415 |
Elephant | 404 | Kangaroo | 20 | 4323 | Watching | 16,114 |
Giraffe | 438 | Lion | 20 | 4078 | Species in BRSD | |
Horse | 400 | Giant Panda | 15 | 2891 | Antelope, Guanaco, Lion, Zebra, Hyena, Wild Boar, Leopard, Elephant, Tiger, Fox, Brown Bear, Polar Bear, Gnu, Wolf, Monkey, Deer, Cow | |
Kangaroo | 367 | Polar bears | 20 | 2088 | ||
Koala | 438 | Red Panda | 16 | 614 | ||
Lion | 397 | Tiger | 31 | 1093 | ||
Tiger | 399 | Zebra | 19 | 3144 | ||
Zebra | 400 |
Dataset | Publicly Available | Species Recognition | Action Recognition | Individual Identification | ||
---|---|---|---|---|---|---|
No. of Mammals | No. of Annotated | No. of Annotated Action Classes | No. of IDs | No. of Images or Clips | ||
PASCAL VOC [55] | √ | 5 | x | x | × | × |
COCO [56] | √ | 9 | × | × | × | × |
Pig Tail-biting [57] | × | 1 | 4396 | 2 | × | × |
Wildlife Action [51] | × | 11 | 4000 | 5 | × | × |
Dogs [58] | √ | 1 | 13 | 4 | × | × |
Animal Kingdom [50] | √ | 207 | NA | NA | × | × |
ATRW [52] | √ | 1 | × | × | 92 | 8076 |
C-ZOO [59] | √ | 1 | × | × | 24 | 2109 |
C-Tai [59] | √ | 1 | × | × | 78 | 5078 |
MammalClub (Ours) | √ | 24 | 2256 | 5 | 218 | 33,612 |
Methods | Backbone | AP | AP50 | AP75 |
---|---|---|---|---|
Sparse R-CNN [62] | ResNet-50 | 58.7 | 78.3 | 64.6 |
YOLOv8 [63] | CSPDarkNet-53 | 56.8 | 79.6 | 64.7 |
FCOS [64] | ResNet-50 | 34.9 | 56.1 | 37.1 |
CenterNet [65] | ResNet-101 | 40.1 | 63.4 | 42.4 |
Ours | ResNet-101 | 57.6 | 85.1 | 65.0 |
Architecture | Stream | Input Modality | Parameter | Accuracy |
---|---|---|---|---|
2s-AGCN | One-stream | Joint | 3.45 M | 83.91% |
Two-stream | Joint and Bone | 6.90 M | 84.27% | |
Shift-GCN | One-stream | Joint | 0.69 M | 75.16% |
Two-stream | Joint and Bone | 1.38 M | 77.21% | |
MS-G3D | One-stream | Joint | 2.99 M | 84.25% |
Two-stream | Joint and Bone | 5.98 M | 85.01% | |
ResGCN | One-stream | Joint | 0.73 M | 82.97% |
Two-stream | Joint and Motion | 0.78 M | 83.11% | |
Three-stream | Joint, Bone, and Motion | 0.89 M | 83.42% | |
Animal-Nas_s1 (ours) | One-stream | Joint | 0.56 M | 85.65% |
Bone | 0.56 M | 85.15% | ||
Motion | 0.56 M | 85.95% | ||
Two-stream | Joint and Bone | 0.71 M | 86.05% | |
Joint and Motion | 0.71 M | 86.30% | ||
Joint and Motion | 0.71 M | 86.25% | ||
Three-stream | Joint, Bone, and Motion | 0.82 M | 86.98% |
Methods | CAL + ResNet | Top-DB-Net | Our Method: CATLA Transformer | ||||
---|---|---|---|---|---|---|---|
Species | Rank 1 | mAP | Rank 1 | mAP | Rank 1 | mAP | |
Elephant | 100 | 87.2 | 100 | 93.1 | 100 | 100 | |
Bear | 100 | 89.1 | 100 | 94.9 | 100 | 100 | |
Giraffe | 100 | 89.5 | 100 | 91.7 | 100 | 100 | |
Horse | 100 | 97.5 | 100 | 98.9 | 100 | 99.97 | |
Kangaroo | 100 | 89.8 | 100 | 98.8 | 100 | 100 | |
Lion | 100 | 100 | 100 | 100 | 100 | 100 | |
Panda | 98.9 | 81.4 | 100 | 89.2 | 100 | 100 | |
Polar bears | 100 | 99.6 | 100 | 93.8 | 100 | 100 | |
Red Panda | 100 | 82.7 | 100 | 96.5 | 100 | 99.09 | |
Tiger | 100 | 93.2 | 99.3 | 95.6 | 99.33 | 99.25 | |
Zebra | 100 | 99.7 | 100 | 99.8 | 100 | 99.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Zhao, Y.; Wang, J.; Zheng, Z.; Feng, L.; Tang, J. MammalClub: An Annotated Wild Mammal Dataset for Species Recognition, Individual Identification, and Behavior Recognition. Electronics 2023, 12, 4506. https://doi.org/10.3390/electronics12214506
Lu W, Zhao Y, Wang J, Zheng Z, Feng L, Tang J. MammalClub: An Annotated Wild Mammal Dataset for Species Recognition, Individual Identification, and Behavior Recognition. Electronics. 2023; 12(21):4506. https://doi.org/10.3390/electronics12214506
Chicago/Turabian StyleLu, Wenbo, Yaqin Zhao, Jin Wang, Zhaoxiang Zheng, Liqi Feng, and Jiaxi Tang. 2023. "MammalClub: An Annotated Wild Mammal Dataset for Species Recognition, Individual Identification, and Behavior Recognition" Electronics 12, no. 21: 4506. https://doi.org/10.3390/electronics12214506
APA StyleLu, W., Zhao, Y., Wang, J., Zheng, Z., Feng, L., & Tang, J. (2023). MammalClub: An Annotated Wild Mammal Dataset for Species Recognition, Individual Identification, and Behavior Recognition. Electronics, 12(21), 4506. https://doi.org/10.3390/electronics12214506