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Abstract: Mammals play an important role in conserving species diversity and maintaining ecological
balance, so research on mammal species composition, individual identification, and behavioral analy-
sis is of great significance for optimizing the ecological environment. Due to their great capabilities
for feature extraction, deep learning networks have gradually been applied to wildlife monitoring.
However, training a network requires a large number of animal image samples. Although a few
wildlife datasets contain many mammals, most mammal images in these datasets are not anno-
tated. In particular, selecting mammalian images from vast and comprehensive datasets is still a
time-consuming task. Therefore, there is currently a lack of specialized datasets of images of wild
mammals. To address these limitations, this article created a mammal image dataset (named Mam-
malClub), which contains three sub-datasets (i.e., a species recognition sub-dataset, an individual
identification sub-dataset, and a behavior recognition sub-dataset). This study labeled the bounding
boxes of the images used for species recognition and the coordinates of the mammals’ skeletal joints
for behavior recognition. This study also captured images of each individual from different points of
view for individual mammal identification. This study explored novel intelligent animal recognition
models and compared and analyzed them with the mainstream models in order to test the dataset.

Keywords: mammal dataset; species recognition; individual identification; behavior recognition

1. Introduction

As the construction of ecological civilization and the protection of biodiversity are
being paid greater attention, the importance of wildlife diversity monitoring has become in-
creasingly prominent. Scientific management and continuous monitoring are prerequisites
for wildlife research, protection, and management. However, as they have been affected
by various factors, such as climate change, habitat fragmentation, and loss of habitats, the
numbers of many species of wild animals have sharply decreased, and the distribution of
wildlife populations has significantly shrunk [1]. Thus, it is urgently necessary to rapidly
track and assess population dynamics by using wildlife diversity monitoring. In particular,
the species identification, individual identification, and behavioral analysis of animals are
not only the premise of research on wildlife diversity monitoring [2,3], but they also help
animal management staff further understand the health and requirements of animals, thus
contributing to the improvement of animal welfare [4]. Mammals play an important role
in conserving species diversity and maintaining ecological balance. Medium and large
mammals, such as tigers and lions, which are at the top of the food chain, are especially
endangered due to habitat fragmentation. Therefore, it is particularly important to monitor
and study the diversity of mammals.

With the widespread application of infrared cameras in wildlife monitoring, intelligent
recognition methods for wildlife based on machine vision technology provide scientific
data for wildlife protection and management. However, training the intelligent recognition
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models requires a large number of annotated samples. In particular, due to the huge
workload involved in manually labeling skeletal data for the analysis of animal behavior,
data on animal skeleton labeling are particularly lacking, which largely restricts in-depth
and extensive research on intelligent mammalian recognition. Therefore, this article created
a publicly available, more comprehensive dataset for the intelligent recognition of mammals
(named MammalClub) and developed intelligent recognition models for the analysis and
testing of the dataset. The main contributions of this study are as follows.

• This study constructed a publicly available, relatively comprehensive dataset of
medium to large terrestrial mammals for the development of stable deep learning
models. The dataset contains three sub-datasets: those for species identification, indi-
vidual identification, and behavioral analysis. We acquired a large number of images
by filming and downloading documentaries.

• Our species dataset is labeled for each image with the location of the mammalian
target, i.e., bounding boxes, without delineating the species, as in existing species
datasets. This annotation allows the dataset to be used directly for animal target
detection, which is a prerequisite for individual identification and behavioral analysis.

• For the application of the animal behavior recognition model, this study spent much
time collecting and organizing videos of mammalian behavior and used the DeepLab-
Cut software (v2.1.9) to extract the animal skeleton in each frame and label the infor-
mation of the point coordinates of the animal’s joints, which can be easily used as
input for the daily animal behavior recognition model.

• Since wild animals are usually shy and their behavior is not under human control, it is
difficult to obtain individual animal datasets. We took images from many different
sides of animals’ bodies and collected internet documentary videos to construct the
individual identification datasets for 15 species.

In this article, we introduced a challenging dataset, and three sub-datasets are in-
cluded in this dataset for the species recognition, individual identification, and behavior
recognition of mammals. To test the practicality of the dataset, we explored novel in-
telligent recognition models and compared them with mainstream models. Our dataset
can provide important data support for the training and testing of wild mammal species
recognition models, individual identification models, and behavioral recognition models
with camera-trap images or surveillance videos.

2. Related Works

With the rapid development of machine vision in various fields [5–7], it has also been
used in wildlife diversity monitoring to provide important data support for the research,
conservation, and management of wildlife [8–11]. The images captured in various wildlife
reserves are accumulating in millions of units, and these images contain a large amount of
key information about wild species and populations [12], individual activities [13], illness
and injury [14], etc. Currently, these data mainly rely on artificial visual screening, which is
far behind the speed of image accumulation and seriously restricts the effective application
of data in research, protection, and management work. Therefore, many researchers have
explored methods for the intelligent recognition of wild animals by using image-processing
technologies [15–19]. Especially in the last decade, deep learning has rapidly evolved and
has been widely used in various fields, such as farm produce detection [20,21], equipment
fault diagnosis [22,23], animal monitoring [24,25], etc. In wildlife monitoring, most research
based on deep learning has focused on species recognition [26–28]. A few researchers have
reported their research findings on animal individual identification [29–33] and behavior
recognition [34–37].

In recent years, many studies have used deep learning models for the intelligent
recognition of wildlife images captured by camera traps [33,38,39]. Compared to the use of
computers with high-performance hardware configurations, the construction and labeling
of datasets are more important for model training, and they are also the prerequisite
and foundation for deep-learning-based animal recognition. Therefore, the training of
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intelligent recognition models based on deep learning requires a large number of animal
image samples [40–42]. Previous studies [43,44] on animal datasets have played important
roles in the development of robust deep learning models (e.g., iNaturalist [45], Animals
with Attributes [46], Caltech UCSD Birds [31], and Florida Wildlife Animal Trap [47]). The
creators of Snapshot Serengeti [48] collected standardized data on many reserves in Africa,
including about 2.65 million camera trap image sequences, for a total of 7.1 million images.
At the species level, 61 categories were labeled, but about 76% of the images were marked
as empty.

Although researchers have constructed some wildlife datasets, there are few datasets
for the intelligent identification of mammals. Moreover, the existing datasets have lim-
itations in multiple aspects: (1) Most animal datasets delineate the species of animals,
and they also contain some mammal images. For example, the PASCAL VOC dataset
only contains three kinds of livestock (cows, horses, and sheep), and the COCO dataset
includes a limited number of mammals (elephants, bears, zebras, giraffes, etc.). Although
the Snapshot Serengeti dataset contains a large number of mammalian images, it is not
annotated with animal targets. (2) In practice, animal research and conservation are more
concerned with the daily behavior of animals, such as feeding, resting, and hunting. There
are few datasets dedicated to the identification of daily animal behavior. The creators of
only a few datasets have collected and labeled information on mammalian posture, such as
the joint coordinates of an animal’s skeleton. However, the intelligent division benchmark
for these datasets is pose estimation, so it can only be used in recognition models for the
simple poses (e.g., standing or running) of animals. For example, AP-10K [49] is the first
large-scale benchmark for mammalian pose estimation; it includes 10,015 images that were
collected and filtered from 23 animal families and 54 species. Animal Kingdom [50] is a
large and diverse dataset for understanding animal behavior, and it contains 850 animal
species in a variety of scenarios, with the animal skeletons being annotated for some of the
videos. The VOC2011 dataset [43] contains a subset for animal posture estimation, though
it only contains five mammals. The action recognition dataset in [51] focused on seven
action categories. (3) Individual recognition datasets are scarce, and only a few are currently
available for specific animals. For example, ATRW [52] was first proposed to study the
individual identification of Amur tigers and monitor their number and distribution in the
wild; it includes over 8000 video clips from 92 Amur tigers with bounding boxes, pose
keypoints, and tiger identity annotations. Tri-AI [53] contains individual animals’ faces for
six species. Pictures of meerkats, lions, and red pandas were captured during the daytime,
whereas those of golden monkeys and tigers were captured at night.

3. Data Description

A large-scale dataset of wild mammals called MammalClub was constructed. The
dataset was mainly sourced from wildlife documentaries (such as https://www.05jl.com/
(accessed on 6 March 2022), https://tv.cctv.com/lm/ryzr/ (accessed on 11 August 2022),
https://www.bilibili.com/bangumi/play/ep661675 (accessed on 14 March 2023), etc.).
This study also recorded some mammal images in zoos. The dataset contains 24 mammal
species and has a total of 118,595 images. Many challenging images were taken from
different natural environments, such as rock cliffs, late autumn leaves, grassland forests,
and the Gobi desert, as well as during the late night and early morning, in rain and snow.
The dataset includes three sub-datasets, i.e., a species recognition sub-dataset (SRSD),
an individual identification sub-dataset (IISD), and a behavior recognition sub-dataset
(BRSD). The three sub-datasets are detailed in Table 1. As shown in Table 1, the SRSD
contains 12 mammal species. The IISD includes 11 mammal species, and the individual
numbers of each species range from 15 to 31. For each ID, the study selected images from
different sides of the individual mammals. The BRSD contains five kinds of behaviors (i.e.,
chasing, walking, eating, watching, and resting), adding up to 18 species. It is composed of
2058 labeled video clips, of which 435 clips are for animal Resting, 283 clips are for animal
Chasing, 373 clips are for animal Eating, 560 clips are for animal Walking, and 407 clips are
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for animal Watching. In fact, although different species of animals have fur with different
colors, for mammals, the skeletal joint movements involved in the same behaviors, such as
chasing and resting, are similar.

Table 1. Composition of the MammalClub dataset.

SRSD IISD BRSD

Class Name Number of Images Species Ids Number of Images Behavior
Category

Number of
Images

Brown Bear 415 Brown Bear 20 5493 Chasing 10,783
Cow 351 Elephant 18 2371 Eating 11,577

Leopard 471 Giraffe 20 2222 Resting 7210
Deer 404 Horse 19 5295 Walking 34,415

Elephant 404 Kangaroo 20 4323 Watching 16,114
Giraffe 438 Lion 20 4078 Species in BRSD
Horse 400 Giant Panda 15 2891

Antelope, Guanaco, Lion, Zebra,
Hyena, Wild Boar, Leopard,

Elephant, Tiger, Fox, Brown Bear,
Polar Bear, Gnu, Wolf, Monkey,

Deer, Cow

Kangaroo 367 Polar bears 20 2088
Koala 438 Red Panda 16 614
Lion 397 Tiger 31 1093
Tiger 399 Zebra 19 3144
Zebra 400

When deep learning algorithms are used for species recognition and behavior recogni-
tion in wild mammals, it is necessary to annotate the images in the datasets. Therefore, the
study used the Labelme 4.5.13 software to label the location coordinates of the bounding
boxes for the mammal objects in the images. This study also obtained the coordinates of
18 key joints of each mammal by using the DeepLabCut pose estimation software. The joint
coordinates were used as input for behavior recognition models. Of course, the mammal
individual identification sub-dataset did not need to be annotated. The study detailed the
image annotations for species identification and behavior identification as follows.

3.1. Species Recognition Sub-Dataset (SRSD)
3.1.1. Composition of the Species Recognition Sub-Dataset

The species recognition sub-dataset consists of 12 common wild mammal species,
with a total of 4884 images. Table 1 shows the details of the sub-dataset. There are
about 400 images in each species, so the dataset is balanced, which is beneficial when
training species recognition models. All of the images in the dataset are two-dimensional
RGB color images with a single resolution of 1280 × 720. As shown in Figure 1, the
sub-dataset contains not only whole-body images of wild mammals but also images of
their body parts, such as the limbs of leopards or the back of a zebra. In addition, some
images with camouflaged animals whose coat colors are similar to the background of
the natural landscape are included. These challenging images increase the difficulty of
species recognition.

3.1.2. Bounding Box Annotation

High similarity between consecutive frames leads to data redundancy; thus, the study
used the histogram method to calculate the similarity between images and eliminated
similar images in the same video clip [54]. The gray-scale histogram counts the number of
pixels at a certain grayscale level, as seen in Figure 2. Then, this study labeled the locations
of animal targets in the images and calculated the coordinates of the bounding boxes by
using the labeling software Labelme. The labeled results were saved as a file in the .json
format. The bounding boxes were visualized with the labeling software Labelme. The
study divided the annotated dataset into two parts, the training set and the testing set, at a
ratio of 0.85.
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3.2. Behavior Recognition Sub-Dataset (BRSD)
3.2.1. Composition of the Behavior Recognition Sub-Dataset

There are five categories of behaviors in the behavior recognition sub-dataset, namely,
chasing, eating, resting, walking, and watching. The same behaviors of different species
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of mammals have similar skeletal motion characteristics. Therefore, each category of
behaviors in the BRSD contained different mammal species, and the same species were also
classified in different behavioral categories. The sub-dataset is detailed in Table 1.

3.2.2. Joint Annotation

Though different species of mammals have different coats, the characteristics of their
skeletal movement when performing the same behavior, such as running, are similar.
Therefore, an animal posture algorithm based on DeepLabCut was adopted in order to
build a skeleton-based mammal behavior recognition dataset. This study only calibrated
the two-dimensional coordinates of the animal joints on the unobstructed side of their body
parts. The labeled joints are shown in Figure 3. The input of the behavior recognition model
is the coordinates of the marked joint points. When the animal’s body is obstructed, the joint
points cannot be detected correctly, so the animal in the dataset for behavior recognition
is not obstructed. Due to the different sizes and positions of the animal skeletons that
were labeled with DeepLabCut, the study conducted a normalization operation on the
original skeletons. First, it took the center of the animal’s body (i.e., the trunk) as the
coordinate origin and re-constructed the coordinate system in order to map the original
skeleton to a new coordinate system. Then, it normalized the new coordinates of the joints
to within the range [−1, 1], as shown in Figure 4. The labels were used to generate the
coordinates and confidence levels for each joint; therefore, during the labeling process, this
study removed all of the joint coordinates of the images, including the labeled joints, with
low confidence. Although the animal joints in some images had high confidence values,
sometimes, they were not correctly labeled. So, all of the joint coordinates in the images
needed to be removed. In fact, in a given video of a behavior, removing very few images
did not have much impact on mammalian behavior recognition due to the redundant
frames. Therefore, in addition to the original videos, the study also released an Excel file
that only contained the joint coordinates of the reserved images, which could be directly
used for the recognition of the behavior of wild mammals. The calibration results for some
example images are shown in Figure 5.
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3.3. Wild Mammal Individual Identification Sub-Dataset (IISD)

Individual recognition methods identify different individuals of a certain species
based on surface features of the animal body, which is an important way to obtain the
quantity of animal population. The wild mammal individual identification sub-dataset
contains 11 common mammal species, and each species is represented by 15–21 individuals,
as shown in Table 1. The number of the images belonging to each ID ranges from 40 to
280. The images were taken from the front, left, right, and rear of the individual animals in
order to better evaluate the robustness of the individual identification models. Due to the
small differences in body appearance characteristics such as fur color and markings among
different individuals, the animals in the individual recognition dataset are not obscured.
Figure 6 shows some example images in the individual identification dataset.
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Figure 5. The calibration results for some example images. The walking behavior of mammals is
shown as (a). The watching behavior of mammals is shown as (b). The resting behavior of mammals
is shown as (c). The chasing behavior of mammals is shown as (d). The eating behavior of mammals
is shown as (e).

3.4. Comparison of Our Dataset with Notable Animal Datasets

This study has summarized some of the notable animal datasets containing mammals
in Table 2. Compared with the existing datasets, the main advantage of our dataset is that
it includes the species recognition, behavior recognition, and individual identification of
mammals, while other datasets only include one of these. Moreover, these existing datasets
have a great number of images, and mammals occupy only a small portion of them; thus, it
is necessary to spend time and energy collecting the mammal images. In particular, the
images in each sub-dataset were also annotated, which provided great convenience for the
training of intelligent mammal recognition models based on deep learning.
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Table 2. Comparison of our dataset with notable animal datasets.

Dataset Publicly
Available

Species Recognition Action Recognition Individual Identification

No. of Mammals No. of
Annotated

No. of Annotated
Action Classes No. of IDs No. of Images

or Clips

PASCAL VOC [55]
√

5 x x × ×
COCO [56]

√
9 × × × ×

Pig Tail-biting [57] × 1 4396 2 × ×
Wildlife Action [51] × 11 4000 5 × ×

Dogs [58]
√

1 13 4 × ×
Animal Kingdom [50]

√
207 NA NA × ×

ATRW [52]
√

1 × × 92 8076
C-ZOO [59]

√
1 × × 24 2109

C-Tai [59]
√

1 × × 78 5078
MammalClub

(Ours)
√

24 2256 5 218 33,612

4. Experiments

We proposed novel methods based on deep learning for species recognition, individual
recognition, and action recognition, respectively [54,60,61]. We conducted experiments on
our dataset with the proposed methods and other state-of-the-art methods for a comparison
under the same experimental configuration.

4.1. Experimental Results for Species Recognition

In practice, training the intelligent mammal recognition models based on convolutional
neural networks requires a large number of samples. However, only a few wild mammal
images taken by camera traps are valid and useful because such cameras are triggered
irregularly. Similarly, it is quite difficult to capture close-up images of wild mammals in
artificial ways because their activities are not controlled by humans. Thus, in practical
applications, mainstream classification models are not suitable for classifying wildlife
species, especially for endangered wild mammals.
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In [54], we adopted ResNet and RPN for feature extraction and region proposals,
respectively. We allocated the training and evaluation set at a ratio of 0.85, and the details
are shown in [54]. In the training stage, we introduced the few-shot training strategy in a
convolutional neural network for FSOD (few-shot object detection) in order to recognize
new mammal species that had a small number of samples in the training set. The network
training was divided into two stages. In the first stage, we trained the learning abilities of
the network with abundant mammal images, and the trained parameters and weights were
transplanted directly into novel classes. In the second stage, we fixed them and fine-tuned
the weights of the box predictors.

We tested the performance of the proposed method based on the AP, AP50, and AP75
metrics and compared it with that of some state-of-the-art methods. As seen in Table 3, the
proposed method had higher values of AP, AP50, and AP75. Our SRSD included multiple
small targets, occluded or overlapped animal bodies, camouflaged backgrounds, and
incomplete bodies, which increased the difficulty of species identification. Our proposed
species recognition method showed superiority in the face of small sample sizes with
challenging images.

Table 3. Comparison of the results for the AP, AP50, and AP75 metrics on the SRSD.

Methods Backbone AP AP50 AP75

Sparse R-CNN [62] ResNet-50 58.7 78.3 64.6
YOLOv8 [63] CSPDarkNet-53 56.8 79.6 64.7

FCOS [64] ResNet-50 34.9 56.1 37.1
CenterNet [65] ResNet-101 40.1 63.4 42.4

Ours ResNet-101 57.6 85.1 65.0

4.2. Experimental Results for Action Recognition

Not only did we construct the first skeleton-based sub-dataset, but we also proposed a
GCN (graph convolutional network)-based mammal behavior recognition method [60]. We
randomly divided the animal behavior dataset into 10 subsets and selected nine subsets as
the training set and the remaining one as the validation set. First, we divided the animal’s
body into five parts, namely, the trunk, left forelimb, right forelimb, left hind limb, and right
hind limb, so as to convert joint-based graphs into part-based graphs, as shown in Figure 7.
On this basis, we built part-wise attention mechanisms that included the part attention
bottleneck, part share attention bottleneck, and part convolutional attention bottleneck. The
three part-based attention mechanisms were similar, except that their pooling layers were
different. After that, we constructed a graph-based search space that contained multiple
graph function operations, such as joint-based graph operations and part-based graph
operations. Then, we used a neural architecture search (NAS) to search for the best spatial–
temporal graph convolutional network. We conducted the experiments on our mammal
recognition sub-datasets.
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The results are shown in Table 4. Three modes of skeletal data, namely, those of the
joints, bones, and motion, were used as multi-modal inputs. We evaluated the proposed
method with state-of-the-art methods and proved that the proposed method could achieve
SOTA performance with fewer parameters.

Table 4. Comparison of multi-modal input algorithms.

Architecture Stream Input Modality Parameter Accuracy

2s-AGCN
One-stream Joint 3.45 M 83.91%
Two-stream Joint and Bone 6.90 M 84.27%

Shift-GCN
One-stream Joint 0.69 M 75.16%
Two-stream Joint and Bone 1.38 M 77.21%

MS-G3D
One-stream Joint 2.99 M 84.25%
Two-stream Joint and Bone 5.98 M 85.01%

ResGCN
One-stream Joint 0.73 M 82.97%
Two-stream Joint and Motion 0.78 M 83.11%

Three-stream Joint, Bone, and Motion 0.89 M 83.42%

Animal-Nas_s1
(ours)

One-stream
Joint 0.56 M 85.65%
Bone 0.56 M 85.15%

Motion 0.56 M 85.95%

Two-stream
Joint and Bone 0.71 M 86.05%

Joint and Motion 0.71 M 86.30%
Joint and Motion 0.71 M 86.25%

Three-stream Joint, Bone, and Motion 0.82 M 86.98%

4.3. Experimental Results for Individual Identification

Due to their similar fur and the complexity of field environments, it is a challenging
task to accurately identify the individual animals of a mammalian species. In order to
better extract and fuse global and local information on wild mammals, we first applied the
transformer network structure to the individual identification of wildlife [61]. In [61], we
introduced the locally aware transformer (LA transformer) and replaced its self-attention
module with a cross-attention mechanism block (CAB). The CAB was used to capture
the differences in the local features and global information of an animal’s appearance by
using inner-patch self-attention and cross-patch self-attention. Then, we utilized the locally
aware network of the LA transformer to fuse the local features and global features; next,
the hierarchical structure of the locally aware network was redesigned according to the
distribution of animal body parts in the standing posture.

We evaluated the proposed method and compared its performance with that of two
methods, Top-DB-Net [66] and CAL + ResNet [67], on our individual identification sub-
dataset. We allocated the training and evaluation set at a ratio of 0.7, and the details
are shown in [61]. To reduce the impact of background on recognition accuracy, object
detection was applied to intercept animal regions before individual recognition [66,67].
The results are shown in Table 5. Through the experiments on our datasets, we proved
that our dataset could be applied well to various individual identification tasks with
wild mammals. Specifically, after an image was divided into small blocks, some of them
contained background pixels, so the background of the image had a certain impact on
individual recognition. As seen in Figure 6 and Table 5, the different sites of a panda’s
activity resulted in different backgrounds, so the methods used for comparison, i.e., Top-
DB-Net and CAL + ResNet, had lower accuracy in identifying the individual pandas.
Compared with the two other methods, our individual identification method, the CATLA
transformer, improved upon the transformer by introducing a cross-attention mechanism
to capture the local features and the global information of the animal appearance; thus, the
proposed method was superior to the existing state-of-the-art methods.
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Table 5. Experimental results with the different methods.

Species

Methods CAL + ResNet Top-DB-Net Our Method: CATLA Transformer

Rank 1 mAP Rank 1 mAP Rank 1 mAP

Elephant 100 87.2 100 93.1 100 100
Bear 100 89.1 100 94.9 100 100

Giraffe 100 89.5 100 91.7 100 100
Horse 100 97.5 100 98.9 100 99.97

Kangaroo 100 89.8 100 98.8 100 100
Lion 100 100 100 100 100 100

Panda 98.9 81.4 100 89.2 100 100
Polar bears 100 99.6 100 93.8 100 100
Red Panda 100 82.7 100 96.5 100 99.09

Tiger 100 93.2 99.3 95.6 99.33 99.25
Zebra 100 99.7 100 99.8 100 99.95

5. Conclusions

We first introduced a challenging dataset for species recognition, individual identi-
fication, and behavior recognition for mammals. Three sub-datasets are included in this
dataset. In particular, in addition to annotating the dataset, we created labeling documents
for mammalian species recognition and behavior recognition that can be directly applied
to train models. We explored novel intelligent animal recognition models and compared
and analyzed them with mainstream models in order to test the dataset. Our dataset
provides important data support for the training and testing of wild mammal species
recognition models, individual identification models, and behavioral recognition models
with camera-trap images or surveillance videos.

In future work, we will further expand our datasets in terms of the number of species
and the number of individuals in each species. We will also increase the number of
types of daily behaviors of the mammals to expand the behavior recognition dataset. The
application of simulated data (from computer game environments) is becoming much more
popular [68,69]. We will try to utilize the photo-realistic graphical engine of the video
game to generate wild animal images based on a specific ecological environment and then
construct a virtual animal dataset, which will be used to train and test the generalization
ability of the model.
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