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Abstract: Self-organizing map (SOM) is a type of artificial neural network that provides a nonlinear
mapping from a given high-dimensional input space to a low-dimensional map of neurons for
clustering. The clustering of high-dimensional vectors is too slow for SOM when implemented
in software. In such cases, an application-specific hardware SOM accelerator is highly desirable.
Field-programmable gate array (FPGA) implementation is a popular platform to implement hardware
SOM. In our previous work, a nested hardware SOM architecture, which has a homogeneous modular
structure to enhance expandability, was proposed. This paper investigates the impact of the nested
hardware SOM on FPGA implementation tools that perform logic synthesis, place, and route (PAR).
Experiments revealed that the nested architecture provided better results in resource usage and
performance. FPGA resource usage of the nested architecture was 97.2% of that of the flat design on
average. Importantly, the nested architecture operated at 10% higher clock frequencies compared to
flat SOM designs. In addition, the pipeline computation was improved by increasing the pipeline
stages so that it operates with a higher clock frequency. The operable clock frequency was 81 MHz,
which was 21 MHz higher than its predecessor.

Keywords: self-organizing map; field-programmable gate array; logic synthesis; VHDL; clustering

1. Introduction

Clustering is the task of grouping sets of objects so that objects in the same group are
more similar to each other than objects in other groups. Each group is referred to as a cluster,
and this task is called clustering. Clustering results can be used for statistical data analysis
that is used in many applications. Researchers and engineers have employed a variety
of cluster models and clustering algorithms. Hierarchical clustering [1] was the earliest
clustering method that is based on distance connectivity. The expectation-maximization
algorithm [2] is one of the probability model-based approaches using statistical distribu-
tions, such as multivariate normal distributions. The k-means algorithm [3] is another
popular alternative for clustering, in which each cluster is represented by a single mean
vector. K-means clustering has been widely studied with various extensions and applied in
a variety of substantive areas.

The self-organizing map (SOM) [4] is a type of unsupervised artificial neural network.
The main feature of SOM is the nonlinear mapping of high-dimensional vectors onto a
low-dimensional map of neurons, which has similar characteristics to the conventional
clustering methods. With this feature, SOMs have been successfully used in a wide range
of applications. Brito et al. [5] proposed a method for cluster visualization using the
SOMs. Zhang et al. [6] presented a visual tracking of objects in video sequences. Gorzal-
czany et al. [7] applied SOM to complex cluster analysis problems. Campoy et al. [8]
proposed a time-enhanced SOM and applied it to low-rate image compression.

The size of a SOM, i.e., the number of neurons, depends on the type of application,
and certain applications require a large SOM. For some applications, SOM must handle
high-dimensional vectors. For SOMs to process an image, the image is converted into
vectors, but even a small image becomes a high-dimensional vector. Simulating SOMs

Electronics 2023, 12, 4523. https://doi.org/10.3390/electronics12214523 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12214523
https://doi.org/10.3390/electronics12214523
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2609-3500
https://doi.org/10.3390/electronics12214523
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12214523?type=check_update&version=1


Electronics 2023, 12, 4523 2 of 18

in software is efficient because its flexibility makes it possible to easily change the SOM
configurations, such as the number of neurons and vector dimensions. However, the
computational cost of the large SOM and high-dimensional vector computation are too
high for software SOMs. In such cases, an application-specific hardware SOM accelerator is
highly desirable, and various custom hardware SOMs have been proposed [9].

In our previous work, nested architecture for the SOM was proposed [10]. The
architecture is based on a homogeneous modular structure to provide easy expandability.
The nested hierarchical architecture consists of multiple modules, and each module is
made up of sub-modules. All modules have a similar structure, which makes it easier for
designers to design a large hardware SOM.

Field-programmable gate array (FPGA) is a suitable and commonly used platform for
implementing hardware SOMs, and hardware description languages (HDLs) are widely
used. It is recommended to divide the large HDL model into hierarchies so that the
synthesis tools can run more efficiently, and the hierarchical design makes it easier to write
smaller modules if the design is broken up into smaller modules [11]. In our previous
work, performance analysis of the nested SOM architecture under various place-and-route
(PAR) implementation strategies was not carried out. The PAR result can be evaluated by
the worst negative slack (WNS) against the target clock constraint, which estimates the
operation speed.

The previous work [10] was designed to do the clustering of high-dimensional vectors
by processing the vector elements sequentially. The sequential computation requires many
clocks to process the one input vector, which significantly reduces overall throughput. The
throughput can be improved by taking advantage of the parallelism embedded in the SOM
computation. Therefore, parallel computing architectures are suitable for implementing
SOM. Parallel computing systems can be constructed using temporal parallelism, spatial
parallelism, or both. The pipelining of calculations is one of the common approaches
to speed up calculations. It exploits temporal parallelism, where the processing task is
partitioned into multiple steps, and the task is parallelized by executing the partitioned
steps by different computing elements sequentially. To cope with the problem, the previous
SOM incorporated simple pipeline computing. The learning process of the SOM consists of
a winner search and a weight vector update. This pipeline operation of the architecture
made it possible to compute the winner search and the weight update concurrently.

As stated above, designing a nested SOM architecture must consider WNS or the
critical path more carefully, which motivates the paper to analyze various WNS-oriented
implementation strategies and to add a pipeline stage. The contributions of this paper are
summarized as follows:

(1) Analysis of the nested architecture’s impact on the PAR
Hardware SOMs with nested and flat architectures are described by VHDL, and their
implementations are carried out by FPGA development tools. Then, their results are
compared to reveal the efficiency of the nested architecture. In addition, the operating
speeds of the two SOMs are compared through FPGA experiments to confirm the
nested architecture efficiency.

(2) Enhancement of the pipeline computation
The higher the clock frequency, the higher the SOM’s performance becomes. To allow
operation at the higher clock frequency, pipeline stages are increased in the winner
search and the weight update.

The remainder of this paper is organized as follows. Section 2 describes the SOM
algorithm, and related hardware SOMs in the literature are briefly surveyed in Section 3.
The details of the nested SOM architecture are discussed in Section 4. The results of the
FPGA implementations and experiments are presented in Section 5, and the results are
discussed in Section 6. Finally, the paper is concluded in Section 7.
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2. Self-Organizing Map Algorithms

The SOM consists of neurons typically placed in a two-dimensional grid, and all
neurons include weight vectors. Neuron-k includes a D-dimensional weight vector ~mk,
which is made up of vector elements µ’s.

~mk = {µk,0, µk,1, · · · , µk,D−1} ∈ <D (1)

The operation of the SOM can be divided into two phases: learning and recall. In
the learning phase, a map is trained with a set of training vectors. Afterward, the weight
vectors of neurons are retained, and the map is used in the recall phase.

The learning phase starts with an appropriate initialization of the weight vectors.
Subsequently, the input vectors, ~x ∈ <D, are presented to the map in multiple iterations.

~x = {ξ0, ξ1, · · · , ξD−1} ∈ <D (2)

For each input vector, the distances to all weight vectors are calculated, and neuron-C
with the shortest distance is searched. This neuron-C is called the winner neuron.

C = arg min
k
{dk} (3)

dk = ||~x− ~mk||

Euclidean distance was originally used for the vector distance dk, but its hardware
cost is too high. Thus, many hardware SOMs utilize the following Manhattan distance [9].

dk =
D−1

∑
i=0
|ξi − µk,i| (4)

After the winning neuron is determined, the weight vectors of neurons in the vicinity
of the winner neuron-C are adjusted toward the input vector.

~mk(t + 1) = ~mk(t) + h(c, k, t){~x(t)− ~mk(t)}. (5)

Here, h(c, k, t) is called the neighborhood function and is defined as follows:

h(c, k, t) = α(t) exp
(
− dCk

2σ2(t)

)
(6)

dCk = ||~rC −~rk||

where α(t) is the learning rate and σ(t) defines the size of the neighborhood, both of
which decrease as the learning progresses (t is the number of learning iterations).~rC ∈ <2

and ~rk ∈ <2 are position vectors of the winner neuron-C and neuron-k, respectively.
With this neighborhood function, vectors that are close to each other in the input space
are also represented closer to each other on the map. This topology-preserving nature
is a very important feature of the SOM. Like the Euclidean distance computation, the
neighborhood function in Equation (6) is too complicated for hardware implementation, so
many hardware SOM utilize simplified neighborhood functions such as negative powers
of two or a step function [9].

3. Related Work

The researchers implemented the SOM algorithm on parallel computing hardware
consisting of many processing elements (PEs). Such parallel architectures include those
that consist of PEs that operate in a single-instruction-multiple-data (SIMD) manner.
Porrmann et al. [12] implemented a SOM on the universal rapid prototyping system RAP-
TOR2000, which consists of SIMD PEs. Multiple neurons could be implemented in each PE.
The RAPTOR2000 system consisted of Xilinx Virtex FPGAs. Then, Porrmann et al. [13] pro-
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posed another hardware accelerator. They developed the NBX neuro processor with CMOS
technology, which was made up of eight PEs and worked in SIMD mode, and the Multi-
processor System for Neural Applications (MoNA) was developed by integrating the NBX
neuro processors. The original SOM algorithm was modified to facilitate implementation
in parallel hardware. Specifically, the Manhattan distance was used. Lachmair et al. [14]
proposed gNBXe, a hardware SOM based on a modular architecture. This work was based
on the principles of NBX [12]. It consisted of a global controller (GC) and the PEs that
executed the neurons. The system could be easily extended by adding the gNBXe modules
to the system bus. The instruction set of the PE was modified to implement Conscience
SOM (CSOM).

Array processor is another parallel processing system in which the PEs are placed
in an array structure. The array processor is suitable for the implementation of the SOM
algorithm, too. Ramirez-Agundis et al. [15] proposed a modular, massively parallel hard-
ware SOM. The hardware architecture was divided into a processing unit array, an address
generator, and a control unit. The processing unit array was distributed into modules, with
16 units each and a maximum of 16 modules (up to 256 neurons). The proposed system was
applied to a vector quantizer for real-time video coding. Tamukoh et. al. [16] proposed a
winner search circuit, which was a modified version of bit-serial comparison. The proposed
winner search performed a rough comparison in the early stage and a strict comparison in
the later stage, which provided faster learning for massively parallel SOM architectures.

Kung [17] proposed the systolic array, which is a homogeneous network of PEs. The
PEs communicate only with their neighboring PEs to receive and deliver the computing
data. As its name suggests, the propagation of data through a systolic array resembles
the pulse of the human circulatory system. Like other parallel computing systems, the
systolic array can be used to implement the hardware SOM. Manolakos et al. [18] designed
a modular SOM systolic architecture. The proposed array was made up of two types of
PEs: the recall mode PE (PER) and the weights update PE (PEU). The proposed SOM was
implemented on an FPGA, and a real-time vector classification problem was performed.
They also developed a soft IP core in synthesizable VHDL, where the network size, vector
dimension, etc. were configured by parameters. Jovanovic et al. [19] implemented a
hardware SOM that used network-on-chip (NoC) communication. NoC is a network-based
communication subsystem on an integrated circuit. Its key feature is that the architecture
can perform different applications in a time-sharing manner by dynamically defining the
use of neurons and their interconnections. The proposed hardware SOM architecture
also utilized the systolic way of data exchange through the NoC, which provided high
flexibility and scalability. Ben Khalifa et al. [20] proposed a modular SOM architecture
called systolic-SOM (SSOM). The proposed architecture is based on the use of a generic
model inspired by systolic movement and was formed by two levels of nested parallelism
of neurons and connections. The systolic architecture was based on a concept in which a
single data path traversed all neural PEs and was extensively pipelined.

In the hardware SOM, the winner search is the key process that governs overall
SOM’s computing speed because it must compare all vector distances of the neurons
to find the smallest one. Researchers focused on effective methods to implement the
winner search. de Abreu de Sousa et al. [21] compared three different FPGA hardware
architectures—centralized, distributed, and hybrid—for executing SOM learning and recall
phases. The centralized architecture used a central control unit that found the global
winner and controlled all computation units. In the distributed architecture, local winners
of neuron groups were identified, and the global winner was selected from them. The
hybrid model combined the two architectures. Three architectures were compared in
terms of chip area occupation and maximum operating frequency, and the results revealed
that the centralized model outperformed the other models. All Winner-SOM (AW-SOM)
proposed by Cardarilli et al. [22] did not require the identification of the winner neuron,
which is a crucial operation in terms of propagation delay. Experimental results showed
that if the neurons were initialized using a uniform or random distribution, the results
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of AW-SOM and traditional SOM clustering were comparable in 92% of the cases. The
absence of the comparator tree for the winner neuron selection considerably improved the
system performance.

Various applications were applied to the hardware SOMs in the literature, such as
image enlargement [16], image compression [15,20,22] and image clustering [10]. Applica-
tions other than image processing were applied to the hardware SOMs, too. A hardware
SOM called SOMprocessor was proposed by de Sousa et al. [23], which used two different
computational strategies to improve the data flow and flexibility to implement different
network topologies. The first improvement was achieved by implementing multiplex
components, which supported alternating processing of neuron sets by the arithmetic
circuits. This strategy enables more flexible use of the chip so that larger networks can be
processed in low-density FPGAs. The second improvement was the inclusion of a pipeline
architecture for the training algorithm so that different parts of the circuit could process
data at the same time. SOMprocessor was used to categorize videos of human actions for
autonomous surveillance. Quadrature amplitude modulation (QAM) has been applied
in many communication systems. Abreu de Sousa et al. [24] proposed an FPGA-based
hardware SOM to detect 64-QAM symbols. The use of a SOM in Quadrature/In-phase pair
detection enabled the QAM constellation to be adjusted continuously with no supervision.
Thus, bandwidth could be saved, and training data retransmission was no longer necessary.
Tanaka et al. [25] developed a single-layer deep SOM network and a fully connected neural
network (FCNN). Hardware for the deep SOM network and the FCNN were designed
and implemented on an FPGA. Then, an amygdala model, which is an area of the brain
associated with classical fear conditioning, was implemented and applied to a robot waiter
task in a restaurant.

4. Hardware SOM Architecture with Nested Structure
4.1. Nested Architecture

The nested SOM, including M×M neurons, consists of a single M×M module. The
module’s structure is hierarchical; thus, the M×M module is made up of four M/2×M/2
modules, and the modules in the lowest layer consist of four neurons [10]. The number of
neurons can be extended by adding a new layer. The number of neurons is quadrupled
because the additional layer has four sub-modules. The modules in all layers are essentially
the same in their configuration; this homogeneous modular structure makes it easier for
designers to write a new module using VHDL. Figure 1A shows an example of the nested
SOM with 256 (16× 16) neurons, which is made up of a single 16× 16 module. As depicted
in Figure 1B, the 16× 16 module is made up of four 8× 8 modules, each of which contains
four 4× 4 modules. Likewise, the 4× 4 module consists of four 2× 2 modules, and the
2× 2 module contains four neurons.

The nested SOM targets high-dimensional vectors by sequentially processing vector
elements. Two input signals (xS and xU) feed two vector elements of ~x(n− 1) and ~x(n),
respectively. ξi(n) denotes the i’th vector element of n’th vector ~x(n). Those buses provide
the SOM with pipeline computation capability, where the winner search and weight update
are carried out concurrently.

Each module outputs~rk and dk, where~rk is the position vector of the local winner
neuron and dk is the minimum vector distance of that neuron. The minimum search
circuit compares the four vector distances (d0, d1, d2, d3) to determine the shortest one dL
and the corresponding winner’s position vector~rL. Then dL and~rk are sent to the upper
layer. Figure 2 shows the minimum search circuit, which is based on a binary search
algorithm. A series of comp2 circuits selects the winner candidates in a tournament format.
The centralized architecture used a central global search unit to select the global winner.
This needed to be redesigned when the number of neurons increased [26]. In the nested
architecture, SOM can be extended without modifying the winner search circuit because the
winner search is distributed among the modules. Because the 16× 16 module in Figure 1A
is the top module, its local winner is the global winner. Therefore,~rL is fed back to the
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sub-modules as the global winner’s position vector~rC.~rC is used for all neurons to compute
the distance dCk to the winner neuron, which is then used to update their weight vectors.
Signals A and R are control signals for the neighborhood function. The signal A determines
the magnitude of the function, and R governs the radius of the neighbors. Those parameters
are discussed later.

16× 16 SOM (16× 16 Module)

8× 8 module

✻

d0, ~r0
8× 8 module

✻

d1, ~r1

8× 8 module

❄

d2, ~r2
8× 8 module

❄

d3, ~r3

Minimum search

r
~rL

✛dL
(dC)

xS , xU

A,R, SE , i
✲ r✻

❄

r✻

❄

~rC ✛ r
✻

❄

r
✻

❄

(A)
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✲

✲
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❄ ❄

❥ ❥ ❥ ❥❥ ❥ ❥ ❥❥ ❥ ❥ ❥❥ ❥ ❥ ❥

4× 4 module

✲

✲
❥ ❥❥ ❥2× 2 module

❄❥
Neuron

(B)

Figure 1. 16 × 16 SOM with nested architecture, (A) Top module, (B) Modules in SOM.

MUX

❄
dS

Comparator

dA

❄

r
❄

dB

❄
r

❄

r✻ ✻

MUX

~rA

❄

~rB

❄

❄
~rS

(B)

comp2

d0

❄

d1

❄

~r0

❄

~r1

❄
comp2

d2

❄

d3

❄

~r2

❄

~r3

❄

comp2
❄ ❄ ❄ ❄

❄
dL

❄
~rL
(A)

Figure 2. Minimum search circuit, (A) 4-input minimum circuit for SOM module, (B) comp2 circuit.

4.2. Neuron

As shown in Figure 3, the neuron consists of a vector distance computing unit, a
weight update unit, and an update control unit. Block diagrams of these units are shown
in Figures 4–6, respectively. The vector distance computing unit calculates the Manhattan
distance between ~x(n) and ~m. µi(n), i.e., the weight vector element of ~m(n), is given
from the weight update unit through signal mS, and signal xS carries ξi(n). Then, the
vector distance element is computed by a subtractor and an absolute circuit (ABS), and
it is accumulated in register-A. Signal SE becomes ‘1’ when the last vector elements are
processed, and the content of register-A is transferred to register-B. Consequently, the
output dk is the Manhattan distance expressed by (4) and is fed to the minimum search
unit in the module. The 2× 2 module in the bottom layer has four neurons, and the four
vector distances are fed to the minimum search circuit, which determines a local winner
neuron and the shortest vector distance. As discussed before, the shortest vector distance
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and local winner in the module are sent to the upper layer, and the global winner is finally
determined at the top module.

Weight update unit

mS

✻

✲i

✲xU

Vector distance
computing unit

✲xS ✲ dk

Update control unit

✛ Q

✛ S

✛ ~rC

✛ ~rk

Figure 3. Neuron.

❥+
xS

❄

−
mS

✻
✛ABS✛❥+

+
dBr✛ ✲

Register-A

Clearr

✲dA

Register-B

Load

SE

❄
dk

Figure 4. Vector distance computing unit.

Once the winner neuron C is determined, its position vector~rC = (xC, yC) is broadcast
to all neurons. Then, the updated control unit of neuron k shown in Figure 5 computes
position distance dCk between the winner neuron C and the neuron k.

dCk = ||~rC −~rk|| =| xC − xk | + | yC − yk | (7)

where~rk = (xk, yk) is the position vector of the neuron k and dCk is the Manhattan distance
between (xk, yk) and (xC, yC). Parameters Q and S, which govern the amount of the weight
update, are computed from dCk.

Q = dCk + A (8)

S =

{
1 if dCk ≤ R
0 otherwise.

(9)

Q and S are fed to the weight update unit shown in Figure 6. This unit consists of memory,
a barrel shifter, pipeline registers, and a multiplexer (MUX). Addresses in the memory
for reading and writing are specified by input ports RAdrs and WAdrs, respectively. The
weight update unit updates the neuron’s weight vector element. The vector element update
circuit consists of a multiplexer, a barrel shifter, and memory. Weight vector elements are
stored in the memory. The input vector element ξ(n− 1) is fed via the input signals xU
while signal mU contains µ(n− 1) from the memory. The barrel shifter shifts the difference
value ξi(n− 1)− µi(n− 1) to the right by Q bits, thus its output value ∆µ can be given
as follows:

∆µ =
ξ(n− 1)− µi(n− 1)

2Q (10)

The signal S from the update control unit is used as a select signal for the multiplexer. If
the distance between the winner C and a neuron K is within R, then ∆µ is added to µ in
signal MU ; otherwise, no update is made. The weight vector update is represented by:

µi(n) =


µi(n− 1) + 2−(dCk+A) · {ξ(n− 1)− µ(n− 1)}

if dCk ≤ R
µi(n− 1) otherwise.

(11)
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The signal mT in Figure 6 feeds µi(n) to the memory and the pipeline register. The register
output is used for the vector element distance computation in the following pipeline
stage. As this equation shows, a powers-of-two-type neighborhood function is realized,
in which the amount of update decreases as the distance to the winner increases as in the
original neighborhood function in (6). This function can be further controlled by A and
R, which change the update magnitude and the effective neighborhood size where the
update is carried out. The parameters A and R correspond to α(t) and σ(t) in Equation (6),
respectively.

~rC✌✎ ✍ ☞
xC

❄❧+

−
✲ ABS

❄❧+
+

✲
dCk

s
✻

❧
+

+
A✛

✻
Q

Comparator

U V R✛

U ≤ V

❄
S

✻

xk

yC

❄❧+

−
✲ ABS

✻

✻

yk

~rk

☞✍ ✎ ✌
Figure 5. Update control unit.

xU ✲ ❥
−

+

❄

Barrel
shifter

✲Q ✲(xU − mU) × 2−Q

MUX
0 ✲ 0

1

✛ S

✻
❥
+

+

mT ✲ Pipeline
register

✻

mS

s✛
Memory (µi)

RAdrs

i

❄
WAdrs

i − 1

❄

✛
mUs

✲

Figure 6. Weight update unit.

4.3. Pipeline Operation

The proposed architecture extends the pipeline computation proposed in [10]. Figure 7
shows the timing chart of the pipeline operation. Input vector elements of ~x(n− 1) are
given through xU , and the weight vector elements are updated from ~m(n − 1) to ~m(n)
based on (5). The updated weight vector elements are immediately used to compute the
vector distance to the input vector elements of ~x(n) given in xS, and the winner search and
weight update are carried out in the same timing.
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❉☎
☎ ~m(n) ⇒ ~m(n + 1) ❉

❉☎
☎ ~m(n + 1) ⇒ ~m(n + 2) ❉

❉☎
☎

✄
✄
✄
✄✄✎

✄
✄
✄
✄✄✎

✄
✄
✄
✄✄✎

xS ❉
❉☎
☎ ~x(n) ❉

❉☎
☎ ~x(n + 1) ❉

❉☎
☎ ~x(n + 2)

❄ ❄ ❄Vector distance
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☎ r
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✄
✄
✄✄✗

❉
❉☎
☎ |~x(n+2) − ~m(n+2) | ❉❉☎☎

Figure 7. Pipeline processing.

A detailed timing chart is shown in Figure 8. In time slot A, weight vector element
µ0(n− 1) is updated to be µ0(n) using input vector element ξ0(n− 1) in signal xU . Here,
µi(n) and ξi(n) denote the i’th vector element of the n’th vectors ~m(n) and~x(n), respectively.
The updated µ0(n) is stored in the pipeline register in the weight update unit in Figure 6 as
well as the memory. The stored updated vector element µ0(n) appears on the signal mS in
the time slot B, and is used to compute the vector element distance to ξ0(n) that is given in
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the signal xS. The distance value is added to register-A in Figure 4 and appears in signal
dA as d̂0(n) at time slot C. During the same time slot, the next vector element µ1(n− 1)
is updated to µ1(n). Please note that xU and xS carry vector elements of the (n− 1)’th
and n’th input vectors, respectively. Meanwhile, xU and xS carry i’th and (i− 1)’th vector
elements, respectively. With this scheme, the vector element update and the vector element
distance calculation are carried out in a two-stage pipeline. The operating clock frequency
depends on the delay of the circuits for the weight update and vector element distance
computation. Because the update of each vector element and the calculation of the vector
element distance is performed in different time slots, the clock frequency depends only on
the longer delay of the two calculation circuits. Meanwhile, in the pipeline computation
proposed in [10], these two calculations were carried out in the same time slot, so the clock
frequency depended on the sum of delays of the two circuits. Thus, the proposed pipeline
computation is expected to allow for a higher clock frequency.
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Figure 8. Detailed timing chart.

When the last vector element is processed, the vector distance dk is determined, and the
winner neuron C(n) for the input vector ~x(n) is searched. The winner search is performed
by the binary-tree search circuit distributed among the modules. Wait states are inserted for
the circuit to finish the search. After the winner neuron C(n) is found, its position vector
~rC(n) is broadcast, and the weight vector ~m(n) is updated to ~m(n + 1). In this way, the
vector distance calculation and the weight vector update are carried out concurrently by
the two-stage pipeline.

5. Experiments

Here, we examine the impact of the nested architecture on logic synthesis, place, and
route (PAR). The non-hierarchy flat structured SOM model shown in Figure 9 was prepared
for comparison. Please note that flat architectures also incorporate the same pipelined
computation circuitry as the nested architecture. Both SOMs were described in VHDL, and
the results of logic synthesis and PAR were compared.

The experimental configuration for testing the SOM is shown in Figure 10. The system
consists of the proposed SOM, a signal generator, and dual-port memory, where N is the
number of training vectors. The entire system was written using VHDL for the FPGA
implementation. The signal generator generates the necessary signals for the SOM to
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perform learning. The memory contains high-dimensional training vectors, and the dual-
port memory is used for the pipeline computation. The precision of the vector elements
in the memory was 8-bit while the weight vector elements stored in the neurons were
represented by 16-bit fixed point format (8-bit integer and 8-bit fractional parts). The
number of training iterations was 16 epochs, and the neighborhood function parameters A
and R were implemented as follows:

A = 1 + E/4, R = 15− E (12)

where E is number of epochs (E = 0 · · · 15).
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Figure 9. Flat SOM architecture.
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Figure 10. FPGA configuration for the learning experiment.

In the experiment, the clustering problem was applied to the SOMs. Clustering is
a segmentation problem in which the objective is to gather similar data together. It can
be extended to vector quantization, where a large data set can be downsized to a smaller
set by substituting a prototype that represents the corresponding cluster instead of the
data that belongs to the cluster. Image samples of handwritten digits taken from the
Modified National Institute of Standards and Technology (MNIST) database [27] were used
as training data. Each sample is a 28× 28 grayscale image, making the dimension of the
vector D = 28× 28 = 784. The MNIST data set consists of ten classes of handwritten digits,
and 100 samples were randomly taken from each class for training. The memory shown in
Figure 10 stores these training data, which is 1000 in total (N = 1000).

First, the nested SOM and flat SOM were described by VHDL and were processed by
Quartus prime targeting Aria 10 FPGA. With clock constraints set to 20 ns (50 MHz), six
implementations were performed with different strategies. The strategies in Table 1 are
provided by Quartus prime. A properly selected strategy optimizes the FPGA implementa-
tion in speed, area, or power consumption. The implementation results are summarized in
Table 1. The better results using the same strategy are highlighted in bold. The table shows
that the nested architecture yielded faster and smaller hardware SOMs in five out of six
strategies.
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Table 1. Results of synthesis by Quartus Prime.

Nested Architecture Flat Architecture

Implementation Strategy
Logic

Utilization Fmax Logic
Utilization Fmax

(in ALMs) (MHz) (in ALMs) (MHz)

Balanced 40,020 36.21 40,122 34.51

Performance (High effort—increases runtime) 40,358 37.82 40,098 38.25

Performance (Aggressive—increases runtime and area) 45,045 37.82 45,051 37.44

Power (High effort—increases runtime) 40,020 37.47 40,122 35.87

Power (Aggressive—increases runtime, reduces perf.) 40,020 37.24 40,122 36.27

Area (Aggressive—reduces performance) 33,646 33.52 33,831 30.46

Average 39,851.5 36.68 39,891 35.47

The same implementation experiment was carried out with AMD Vivado design
tools. These tools are provided by the FPGA vendor, i.e., AMD, for users to develop their
FPGA designs. Virtex-7 VC709 Evaluation Platform (xc7vx690tffg1761-2) was used for
the implementation. We tested three different versions of Vivado (Vivado 2019, 2020, and
2021) for the implementations, using a 20 ns (50 MHz) clock constraint. The Vivado design
tool does synthesis and implementation steps for the FPGA design. The synthesis is the
process of transforming a register transfer level (RTL) design into a gate-level representa-
tion, and place-and-route the netlist onto the FPGA device resources is carried out in the
implementation step. The synthesis and implementation steps include various strategies
for optimizing speed, area, runtime, or power consumption. For the synthesis strategy,
Flow_PerfOptimized_high, which optimizes the performance, was chosen. Since Vivado
has many implementation strategies, 24 performance-related strategies were tested to find
one that better fits SOM architecture.

The WNS was used to estimate the operation speed. Various constraints, such as clock
period, are predefined to help the synthesis tools run efficiently. The tools do the PAR while
trying to meet all constraints. The WNS is the difference between the target clock period
that is defined in the constraint and the estimated clock period. Figure 11A shows the WNS,
where labels ‘a’ ∼ ‘x’ on the x-axis represent the implementation strategies. Positive WNS
means that the implemented design’s clock period is less than the target period. Because
all WNSs are negative, the closer the WNS is to zero, the higher clock frequency can be
expected. This figure indicates that the speed of the circuit generated using the nested
architecture was faster than that of the flat architecture for all implementation strategies.
Figure 11B shows the slice utilization of the implemented designs. Slice is a basic logic
element included in FPGA and constitutes a configurable logic block. Each slice contains
lookup tables (LUTs), registers, a feed chain, and multiplexers. The result revealed that the
nested architecture produced a smaller design.

a: Vivado Implementation Defaults, b: Performance Explore,
c: Performance_ExplorePostRoutePhysOpt, d: Performance_ExploreWithRemap,
e: Performance_WLBlockPlacement, f: Performance_WLBlockPlacementFanoutOpt,
g: Performance_EarlyBlockPlacement, h: Performance_NetDelay_high,
i: Performance_NetDelay_low, j: Performance_Retiming,
k: Performance_ExtraTimingOpt, l: Performance_RefinePlacement,
m: Performance_SpreadSLLs, n: Performance_BalanceSLLs,
o: Performance_BalanceSLRs, p: Performance_HighUtilSLRs,
q: Congestion_SpreadLogic_high, r: Congestion_SpreadLogic_medium,
s: Congestion_SpreadLogic_low, t: Congestion_SSI_SpreadLogic_high,
u: Congestion_SSI_SpreadLogic_low, v: Area_Explore,
w: Area_ExploreSequential, x: Area_ExploreWithRemap.
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Next, we experimentally examined the operable highest clock frequency. Using the top
five strategies that performed well on each architecture with Vivado 2021 in Figure 11, SOMs
with two architectures were implemented on the FPGA, and operable clock frequencies
were measured. Table 2 summarizes the operating clock frequencies and slice usages of
the two SOM architectures. The larger the WNS, the higher the operating clock frequency
becomes, which improves the operating speed. In terms of the circuit size, a smaller number
of slices is desired. The better results using the same strategy are highlighted in bold.
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Figure 11. Logic synthesis results, (A) Worst negative slack (WNS), (B) SLICE usage.

Figure 12 shows the neuron maps after training with different clock frequencies, as
well as the maps generated by the software and VHDL simulations. The neuron map
is a set of visualized weight vectors that were read out from the FPGA. Until the clock
frequency reached 81 MHz, the generated maps and quantization errors were the same as
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those that the VHDL simulation generated, and a different map was generated at 82 MHz
clock frequency. The diversity of the maps in the figure is likely due to calculation errors
in the SOM circuit. Each computation circuit completes its calculation with a certain
delay. Therefore, this delay must be less than the period of the clock signal. Otherwise,
incorrect and incomplete calculation results will be output. For the 82 MHz clock, this
timing violation appears to have occurred in the winner search circuit since the 82 MHz
map is different from the 81 MHz map. Since the 83 MHz and 82 MHz maps are different,
it is thought that the output results of the winner search circuit became unstable in this
frequency range. Meanwhile, the vector update circuit seems to have worked correctly
because the clear clustering can be observed in the map. Finally, the map collapsed at
88 MHz clock, as shown in Figure 12F because the weight update circuit apparently failed
to work. The map obtained with an 82 MHz clock shows the topology-preserving nature of
the SOM, and its quantization error (QE) is the same level as that of the 81 MHz map, so
the SOM appears to be operating at a clock frequency above 82 MHz. Hence, we need a
criterion to determine the highest operable clock frequency. Here, the operating frequency
was taken as the highest frequency that produced the same map as the VHDL simulation.
Therefore, 81 MHz is the highest operable clock frequency in this case.

(A) (B) (C)

(D) (E) (F)

Figure 12. Neuron map after training, (A) Software SOM (Quantization error (QE): 1231.3),
(B) VHDL Simulation (QE: 1683.6), (C) fCK = 10 MHz (QE: 1683.6), (D) fCK = 81 MHz (QE: 1522.5),
(E) fCK = 82 MHz (QE: 1507.2), (F) fCK = 88 MHz (QE: 1811.5).

To further demonstrate the impact of the nested architecture, we implemented the
nested and flat architecture SOMs on different FPGAs and compared the implementation
results. The design tool processed the implementations for Virtex7, Virtex ultrascale, Kintex,
Kintex ultrascale, and Zynq ultrascale FPGAs with the same constraints as the previous
experiment. For synthesis and implementation strategies, Flow_PerfOptimized_high and
Performance explore were used, respectively.
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Table 2. Comparison between the nested SOM and flat SOM, (A) Top five strategies for nested
architecture, (B) Top five strategies for flat architecture.

(A)

Proposed nested architecture Flat architecture

Implementation WNS Slice Clock WNS Slice Clock
strategy (ns) (MHz) (ns) (MHz)

p: (1) −0.689 16,368 81 −2.595 17,075 66

r: (2) −0.918 17,327 75 −2.506 17,920 72

e: (3) −0.934 16,498 74 −2.473 17,100 72

f: (4) −0.934 16,498 74 −2.793 17,005 69

c: (5) −0.959 16,425 79 −2.276 17,040 70

Average −0.887 16,623.2 76.6 −2.529 17,228 69.8

(B)

Proposed nested architecture Flat architecture

Implementation WNS Slice Clock WNS Slice Clock
strategy (ns) (MHz) (ns) (MHz)

l: −1.251 16,420 79 (1) −2.258 17,063 71

c: −0.959 16,425 79 (2) −2.276 17,040 70

h: −1.097 16,375 75 (3) −2.300 16,997 67

s: −1.628 16,841 75 (4) −2.334 17,355 67

m: −1.251 16,420 79 (5) −2.447 17,029 72

Average −1.237 16,496.2 77.4 −2.323 17,096.8 69.4

Table 3 summarizes the results, including WNS estimation, a lookup table (LUT),
Elapsed time, and Total on-chip power estimation. For the hardware size estimation, we
used the number of LUTs for the designs because some of the FPGAs are configured using
a configurable logic block (CLB) instead of the Slice. Both the Slice and CLB contain the
LUTs for the logic implementation. The Elapsed time is the amount of time for the tool
to complete the implementation. We used a PC with an i9-12900K processor running at
3.19 GHz clock frequency. Same as the other tables, the better results are highlighted in
bold. As this table shows, the nested architecture provided a smaller and faster design
implementation with smaller power consumption while it required the tool to have a longer
processing time.

Table 3. Nested SOM and flat SOM on various FPGAs.

Platform vc709 vcu128 kc705 kcu116 zcu111

FPGA Virtex7 Virtex ultrascale Kintex7 Kintex ultrascale Zynq ultrascale
xc7vx690 xcuv737p xc7k325 xcku5p xczu28dr

Architecture Nested Flat Nested Flat Nested Flat Nested Flat Nested Flat

WNS (ns) −1.181 −2.636 1.905 1.586 −1.301 −1.733 4.000 2.226 2.036 0.543

LUT 56,605 57,868 52,364 53,717 55,591 57,891 52,472 53,725 53,187 57,815

Elapsed time 24 m 46 s 31 m 51 s 14 m 54 s 11 m 07 s 37 m 06 s 32 m 45 s 12 m 53 s 8 m 40 s 13 m 36 s 9 m 23 s

Total on-chip power (W) 1.611 1.731 4.052 4.123 1.473 1.564 1.378 1.387 2.134 2.144

6. Discussion

As Table 2 indicates, the nested architecture resulted in a smaller and better performing
SOM in all cases, even though flat architecture-friendly strategies were used. The highest
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clock frequency in Table 2 is 81 MHz. The operating clock frequency of the previous
research [10] was 60 MHz, but the frequency has been improved by 20 MHz. This is thought
to be due to improved pipeline processing. Embedded counter counted 12,617,184 clocks
during the learning. Therefore, the training time can be calculated as 0.1558 s with 81 MHz
clock frequency. The total number of vector element updates during the training was
3.2113× 109, which translates to 21.6117× 109 vector elements were updated in one second.
Since the connection update is equivalent to the vector elements update in the SOM, the
81 MHz clock frequency resulted in a learning rate of 21.61 giga connection updates per
second (GCUPS).

Regarding the quantization error, the SOM implemented in the FPGA had the same
quantization error at 10 MHz, but the error decreased at about 80 MHz. Since this phe-
nomenon occurred in the higher frequency region, it is thought that small calculation errors
within the circuit caused the reduction of the quantization error, as discussed before. As
shown in Figure 12A shows, the quantization error of software SOM is much smaller than
that of hardware SOMs implemented on the FPGA. This is because the software SOM used
floating-point calculations and a traditional Gaussian neighborhood function, while all
variables in the hardware SOMs are integers.

Tables 1–3, and Figure 11 clearly show that the nested architecture results in a faster
and smaller design over the flat architecture. The advantage of the nested architecture is
due to its structure, as both architectures incorporate the same pipeline computation. Here,
from Table 2, we examine more detailed implementation results for both architectures. The
average values of the characteristics of both architectures are compared.

WNS (estimated performance) (−0.887)/(−2.323) = 0.382

Slice (resource utilization) 166, 23.2/17, 096.8 = 0.972

Clock freq. (physical performance) 76.6/69.4 = 1.103

The WNS is the estimated delay difference from clock constraints (20 ns). Thus, the
smaller, the better. On average, the WNS of the nested architecture is only 38.2% of the
WNS of the flat design. The number of slices indicates the size of the hardware design;
thus, fewer slices are desired. The nested architecture’s slice usage is, on average, 97.2% of
the flat design. The frequency of the clock determines the physical operating speed of the
hardware SOM; thus, the clock frequency is more important than WNS. The comparison
reveals that the nested architecture SOM can operate with 10% higher clock frequency
compared to the flat SOM design.

Execution speeds of existing hardware SOMs in the literature are summarized in
Table 4. Due to the modification to the pipeline computation method in this paper, the
performance of the SOM with the MNIST training vector reached 20.6 GCUPS, which is
higher than its predecessor [10] by 5 GCUPS. However, the clock frequency of the state-
of-the-art SOM exceeds 100 MHz, which is much higher than this work. The proposed
architecture made use of only temporal parallelism by the pipeline computing, but the
SOM algorithm is made of independent tasks such as the vector distance computation
and weight vector update. In addition, the vector distance computation and the vector
update computation can be done with fewer clocks by processing multiple vector elements
simultaneously. Therefore, the performance of the proposed architecture can be further
improved by exploiting spatial parallelism, where multiple computing units are employed.
For example, if the number of the vector distance computing unit and the weight update
unit is four, the performance would be quadrupled. Since the cost of the spatial parallel
architecture is very high, a novel implementation method would be required.
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Table 4. Comparison with other hardware SOMs.

Work SOM Size Vector
Dimension

Precision
(bit) Technology GCUPS Application Data Set

[13] 16× 8 128 8 CMOS 1.32 NA

[25] 272 16 (1st)
256 (2nd) NA FPGA (xczu9eg) 2.80 Amygdala model

[18] 100 2048 8, 12 FPGA (xc2v6000) 3.47 NA

[12] 250× 250 9 16 FPGA (xcv3200e) 5.70 NA

[21] 25 2 8 FPGA (xc6vlx75t) 5.85 Artificial data set

[15] 256 16 8 FPGA (xc2v6000) 6.37 Image compression

[24] 64 2 16 FPGA (u-xcku035) 8.05 QAM detection

[10] 16× 16 784 16 FPGA (xc7vx690) 15.01 MNIST clustering

[16] 16× 16 128 16 FPGA (xc2v6000) 17.50 Image enlargement

[14] 6050 194 16 Five FPGAs (Virtex-4FX100s) 20.60 LCVF data

[20] 16× 16 32 8 FPGA (xc7vx485t) 24.00 Image compression

[23] 10× 10 79 16 FPGA (xcvu440) 37.62 Video categorization

[19] 16× 16 256 NA FPGA (VC707) 77.39 NA

[22] 256 3 16 FPGA (xc7vx690) 109.80 Image compression

This work 16× 16 784 16 FPGA (xc7vx690) 20.62 MNIST clustering

7. Conclusions

In this paper, we investigated the impact of nested hardware SOMs on FPGA im-
plementations and improved its performance by modifying pipeline computation. The
nested hardware SOM architecture has a hierarchical homogeneous modular structure that
facilitates the design of larger hardware SOMs. The implementation experiments revealed
that the nested architecture provided a smaller and faster design implementation with
smaller power consumption while it required the tool to have a longer processing time. The
FPGA resource usage of the nested architecture was 97.2% of that of the flat design, and the
generated design operated at 10% higher clock frequencies compared to flat SOM designs.
The original pipeline computing circuit was improved to have an additional pipeline stage,
which increased its working clock frequency by 21 MHz from the previous work, and the
proposed SOM reached 21.6 GCUPS.

The experimental results revealed that the quantization performance of the hardware
SOM was inferior to that of the software-implemented SOM with floating-point compu-
tation, and the possibility of further parallel processing was suggested. The reduction
of the quantization error is left for future research. The experimental results revealed
that the architecture still needs improvement in its performance because it is inferior to
other hardware SOMs in its operating speed. The parallel computation in this work only
exploited temporal parallelism, omitting spatial parallelism. Spatial parallel computing is
expected to improve the performance of the hardware SOM, but the required hardware cost
is much higher. As another future work, we plan to improve performance by introducing
spatial parallel processing, the hardware cost of which is lowered.
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