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Abstract: With aggressive technology scaling, soft errors have become a major threat in modern
computing systems. Several techniques have been proposed in the literature and implemented in
actual devices as countermeasures to this problem. However, their effectiveness in ensuring error-free
computing cannot be ascertained without an accurate reliability estimation methodology. This can
be achieved by using the vulnerability metric: the probability of system failure as a function of the
time the program data are exposed to transient faults. In this work, we present a gemV-tool, a
comprehensive toolset for estimating system vulnerability, based on the cycle-accurate gem5 simulator.
The three main characteristics of the gemV-tool are: (i) fine-grained modeling: vulnerability modeling
at a fine-grained granularity through the use of RTL abstraction; (ii) accurate modeling: accurate
vulnerability calculation of speculatively executed instructions; and (iii) comprehensive modeling: vul-
nerability estimation of all the sequential elements in the out-of-order processor core. We validated
our vulnerability models through extensive fault injection campaigns with <3% correlation error
and 90% statistical confidence. Using the gemV-tool, we made the following observations: (i) the
vulnerability of two microarchitectural configurations with similar performance can differ by 82%;
(ii) the vulnerability of a processor can vary by more than 10×, depending on the implemented algo-
rithm; and (iii) the vulnerability of each component in the processor varies significantly, depending
on the ISA of the processor.

Keywords: soft error; transient fault; fault tolerance; embedded systems; protection technique

1. Introduction

A soft error is a change of value in a storage cell or on a circuit line induced by external
sources. This commonly occurs when energy-carrying particles, such as alpha particles,
protons, low-energy neutrons, and cosmic rays, collide with the chip [1,2]. When the
charge caused by the collision exceeds the critical charge, which is proportional to the chip
size and supply voltage, a soft error can occur. Therefore, soft error rates are inversely
proportional to the critical charge, and they are increasing exponentially due to aggressive
and continuous technology scaling. Even though soft errors are only temporary defects,
they are no less dangerous than permanent hardware malfunctions. For instance, soft errors
in embedded systems used for satellites [3], automotives [4], or healthcare systems can be
critical to human life.

Many techniques have been presented in various design layers to protect computing
systems against soft errors [5]. These protection methods have severe overhead in terms
of area, performance, and energy consumption. Despite these disadvantages, protection
schemes are neither always useful nor continuously robust against soft errors, and some-
times fail to protect systems [6]. Thus, protection techniques should be carefully chosen by
considering the trade-off between reliability and performance. While performance can be
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estimated or quantified using runtime or the number of instructions executed per cycle, no
widespread methods exist that estimate reliability in both an accurate and timely manner.

Traditionally, neutron beam testing [7,8] and fault injection campaigns [9] have been
used to estimate the reliability of a system against soft errors. Neutron beam testing uses a
cyclotron to expose computing systems to neutron-induced soft errors. These experiments
are very costly, and the environments that support the experiments are severely limited.
Even though [8] can estimate the vulnerability against soft errors at the early stage using
bare-metal applications, they still suffer from expensive facility setups for neutron beam
testing. Fault injection campaigns intentionally inject errors into specific bits in a processor
at specific cycles during the runtime. However, exhaustive fault injection campaigns need to
inject faults into all bits of the entire computing system at every cycle of the execution time,
which is almost impossible [10]. Statistical fault injection campaigns based on probability
theory have been presented to minimize the number of experiments, but the number of
injections required to obtain meaningful results is still large [11]. In addition, fault injection
campaigns and beam testing are not only costly and challenging to set up but are also often
flawed [12,13].

The vulnerability metric [14,15] has been presented as an alternative to slow, expensive
neutron beam testing and fault injection. This metric is measured in bit × cycles, and
it calculates the number of bits that are vulnerable, or may incur system failures in the
presence of an error, and the duration of time the bits are vulnerable. For example, assume
that bit b in a microarchitectural component is written at time t, and is read by the CPU
at time t + n. In this simple scenario, bit b is not vulnerable before time t because even
if its data before the write operation are corrupted, they would be overwritten to the
correct value. On the other hand, bit b is vulnerable during the time interval between t
and t + n, because errors in this interval cause the corrupted data to be read by the CPU.
The vulnerability of the entire processor is the summation of these intervals for all the
microarchitectural components. Unlike fault injection campaigns, which require a large
number of trials, vulnerability estimation can be performed in a single simulation by tracing
the read/write behaviors in each component. Thus, vulnerability modeling is an effective
and quick way to explore the design space in terms of reliability and performance [16,17]
for hardware configuration, software engineering, and system design.

Several vulnerability estimation modeling techniques based on cycle-accurate simu-
lators have been presented [15,18,19]. However, these techniques are inaccurate, incom-
prehensive, and inflexible. First, the accuracies of the previous vulnerability estimation
schemes are limited because they estimate the vulnerability at a coarse-grained granularity.
In addition, their modeling techniques ignore the vulnerability of speculatively executed
instructions (i.e., squashed instructions due to misspeculation), even though their presence
in the pipeline can, in some cases, cause failures. Note also that their accuracies have not
been comprehensively validated or published. Second, existing vulnerability modeling
techniques are not comprehensive as they model only a subset of the microarchitectural
components in a processor. Finally, the techniques provide only a specific configuration of
vulnerability estimation, which is limited to the ISA and core of the underlying simulator.

In this work, we present gemV-tool [20], a toolset for comprehensive vulnerability
estimation based on gem5 [21] (a popular cycle-accurate simulator) [22]. Unlike other
simulators, gem5 explicitly models all the microarchitectural components of an out-of-
order processor, various ISAs (ARM, ALPHA, SPARC, etc.), and even many system calls.
Some of the critical features of the gemV-tool that enable accurate vulnerability estimation
are as follows: (i) fine-grained modeling of hardware components through the use of RTL
abstraction inside the gem5 simulator, (ii) accurate modeling of the vulnerability of both
committed and squashed instructions, and (iii) comprehensive vulnerability modeling
for all the microarchitectural components of out-of-order processors. We also performed
extensive fault injection campaigns and validated that the gemV-tool has 97% accuracy
with a 90% confidence level.
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2. Related Works
2.1. Vulnerability Estimation from Different Layers

Seifert et al. [23] presented the timing vulnerability factor (TVF) for a circuit envi-
ronment in which sequential elements are typically placed. All particle strikes do not
necessarily propagate to soft errors in the architecture due to electrical, logical, and latch-
window masking effects. For example, if the latch accepts data only during half of the
lifetime, the corrupted data at the circuit level will be masked by approximately 50%. Such
circuit-level vulnerability factors are related to the raw device fault rate and, thus, it is
difficult to consider the characteristics of each microarchitectural component. TVF also
ignores the architectural masking effects because it is unaware of the behaviors of the
microarchitectural components. In conclusion, the TVF is too conservative to express the
vulnerability of each microarchitectural component.

Sridharan et al. [24] analyzed and proposed a software-level vulnerability evaluation
method called the program vulnerability factor (PVF). PVF estimates the vulnerability
of software resources, such as architectural registers based on the given assembly code.
Compared to conventional vulnerability estimation metrics, the PVF can be calculated
quickly, and it functions as a decent predictor for estimating the vulnerability of hardware
components. However, PVF estimation does not use clock cycles: instead, it uses the
order of instructions as a single-time quantum. This undermines the accuracy of PVF
vulnerability estimation.

The instruction vulnerability factor (IVF) [25] evaluates how many faults in the instruc-
tions affect the final program output. IVF experiments inject faults into static instructions
to estimate the vulnerability of the software to soft errors. However, it is challenging to
mimic the effects of soft errors by modifying static instructions because soft errors occur
at the architectural level rather than at the instruction level. Furthermore, both PVF and
IVF are unaware of the hardware architectures because they are only based on software or
assembly-level analysis.

Mukherjee et al. [15] presented the AVF (architectural vulnerability factor), which
calculates the probability that a state change (soft error or transient bit flip) in the device
leads to an architecturally visible error. It traces architecturally correct execution (ACE)
bits or bits that induce system failures if they change, and the time ACE bits reside in
microarchitectural components. Thus, AVF estimation is faster than the register–transfer
level simulation [26] and more accurately reflects the effects of soft errors that occur at the
microarchitectural level. This study also leverages the AVF concept to accurately estimate
each microarchitectural component’s reliability.

2.2. Limitations of Previous Vulnerability Estimation Schemes

To estimate the vulnerability of a system, previous works exploited cycle-accurate,
system-level, and software-based simulators, as described in Table 1. Mukherjee et al. [15]
proposed the architectural vulnerability factor (AVF) based on Asim [27], which simulates
Itanium 2-like IA64 processors. Li et al. [18] proposed SoftArch, which models the error
generation and propagation based on the probabilistic theory in the Turandot simulator [28].
Sim-SODA [19] was presented to estimate the vulnerability of microarchitectures based on
the Sim-Alpha simulator [29]. However, these methods lack accuracy, comprehensiveness,
and availability.

First, the existing techniques estimate vulnerability at a coarse-grained granularity. In
Sim-SODA, several hardware structures in instruction fetch and issue logic are modeled as
a combined single hardware structure called “instruction window”. Hardware structures,
such as pipeline queues, instruction queues, and load/store queues, are not modeled
individually, and their vulnerabilities cannot be evaluated. Problems still exist even if the
hardware structures are modeled individually. In AVF and SoftArch, microarchitectural
components, such as the instruction queue, are modeled as bulk structures. However, not
all bits of a component are vulnerable or non-vulnerable at the same time. For instance, the
predicted next PC address is not vulnerable because it cannot affect the program output;
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however, the current PC address is vulnerable because it can cause incorrect program flow.
These coarse-grained calculations may underestimate or overestimate the vulnerability of
the processor.

Table 1. Comparison between vulnerability estimation tools.

Tool Accuracy Comprehensiveness Extensibility Validation

AVF
[15]

Inaccurate: Instruction
window is treated as a
coarse-grained bulk Only
committed instructions are
considered for
vulnerability modeling

Register file and
instruction queue are
modeled for vulnerability
estimation

IA-64 based architecture
based on proprietary
Asim [27] simulator

No
published results

SoftArch
[18]

Inaccurate: Instruction
window is treated as a
coarse-grained bulk Only
committed instructions are
considered for
vulnerability modeling

Register file and
instruction queue are
modeled for vulnerability
estimation

POWER architecture
based on proprietary
Turandot [28] simulator

No
published results

Sim-SODA
[19]

Inaccurate: Several
hardware structures in the
instruction fetch and issue
logic are modeled as a
single hardware structure
Only committed
instructions are
considered for
vulnerability modeling

Register file, instruction
queue, reorder buffer, and
the load store queue are
modeled for vulnerability
estimation

ALPHA architecture
based on open-source
Sim-Alpha [29] simulator

No
published results

gemV-tool
(Proposed tool)

Every structure is
modeled based on fields
that are actually used
(Section 3.1) Squashed
instructions are also
considered for
vulnerability modeling
(Section 3.2)

Register file, instruction
queue, reorder buffer, load
store queue, pipeline
queues, and renaming
units are modeled for
vulnerability estimation
(Section 3.3)

ARM, ALPHA, POWER,
X86, SPARC architectures
with various
configurations based on
open-source gem5 [21]
simulator (Section 3.4)

Validated through
extensive fault injection
(Section 4)

Second, previous works ignored squashed instructions in their vulnerability estima-
tion. In an out-of-order processor, instructions can be squashed because of misspeculation.
Because these instructions are not executed, it can be assumed that all bits in the instruction
are non-vulnerable, but this is not the case. For instance, the rename map holds the index
mapping between architectural and physical registers and uses a history buffer to maintain
the previous mapping of an architectural register. When instructions are squashed due
to branch misprediction, the processor state must be rolled back to the last committed
instruction. Then, the previous mapping in the history buffer is vulnerable because the pro-
cessor may roll back to the wrong register if the mapping is corrupted. However, previous
vulnerability estimation tools consider all squashed instructions to be non-vulnerable and
miss out on these vulnerabilities.

Third, previous tools do not provide comprehensive vulnerability modeling because
they consider only a subset of the microarchitectural components rather than all the compo-
nents in a processor. In [15,18], the authors did not model register files, memory hierarchy,
or pipeline structures in their vulnerability estimation. Sim-SODA includes more microar-
chitectural components, but it still does not consider pipeline queues and renaming units
in its vulnerability estimation.

Lastly, previous tools are inflexible, because of the limitations of the simulators they
use. Vulnerability estimation techniques in [15,18] use proprietary and private simulators
that model Intel’s Itanium 2-processor and IBM’s POWER ISAs, respectively. Sim-SODA
estimates the vulnerability on a publicly available Sim-Alpha simulator. These techniques
can only estimate the vulnerability of their designated processors. Moreover, the accu-
racy of their vulnerability estimation suffers due to the inaccuracies of the simulators.
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Ref. [30] shows that the runtime of Sim-Alpha can reach up to 43% compared to real Alpha
architectures.

3. gemV-tool: Fine-Grained and Comprehensive Vulnerability Estimation

The main goal of the gemV-tool is to quickly and accurately estimate the vulnera-
bility of the system to soft errors based on microarchitectural behaviors. For this pur-
pose, the gemV-tool relies on the gem5 simulator [21], which provides cycle-accurate
microarchitecture-level simulations with several hardware configurations. Figure 1 illus-
trates a technical overview of the gemV-tool with its input and output. Given the hardware
and software configurations, the gemV-tool traces the read/write behaviors of each hard-
ware component based on the gem5 simulation. After the simulation, the gemV-tool
produces quantitative component-wise vulnerabilities with runtime results. In summary,
the gemV-tool can provide hardware and software design space exploration in terms of
performance and reliability.
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Figure 1. Comprehensive vulnerability estimation modeling on the gem5 simulator. (Green: Write,
Red: Read).

To estimate the vulnerabilities of hardware components, the gemV-tool uses the
architectural vulnerability factor (AVF) concept [15]. Vulnerability is a quantitative metric
that represents the reliability of microarchitectural components and is measured in a
bit × cycles to consider both the temporal and spatial domains. If a soft error occurs in a
particular bit b during time t and results in a system failure, the specific bit b is considered
vulnerable at the particular time t. Otherwise, bit b is considered non-vulnerable. Based
on this classification, the gemV-tool defines the system vulnerability as the sum of these
vulnerable bits in the microarchitectural components of a processor. For example, if two
bits in a microarchitectural component are vulnerable for five cycles each, the vulnerability
of the microarchitectural component is 10 bit × cycles (=2 bits × 5 cycles).

The dotted region in Figure 1 shows an example of the vulnerability estimation for
register 0. In this example, the CPU writes a new value to register 0 at cycle 1 and reads
the value of register 0 at cycle 2. If a soft error corrupts the value of register 0 between
cycles 1 and 2, the CPU reads the corrupted value of register 0 at cycle 2, which may lead
to system failures in the worst case. Therefore, register 0 is vulnerable during cycles 1–2.
Similarly, cycles 2–3 are also vulnerable because of the read operation at cycle 3. On the
other hand, even if a soft error corrupts register 0 between cycles 3 and 4, the corrupted
value will be overwritten at cycle 4. Therefore, register 0 is not vulnerable during cycles
3–4. Similarly, register 0 is not vulnerable during cycles 4–5 due to the write behavior
at cycle 5. Consequently, register 0 is vulnerable for two cycles (1–2 and 2–3). Because
register 0 consists of 32 bits in this example, the quantitative vulnerability of register 0 is
64 bit × cycles.
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Note that the gemV-tool can estimate the vulnerability in just a single simulation
without additional simulations or preliminary experiments. This is because the gemV-tool
can capture and analyze the microarchitectural behaviors of every hardware component
with a single gem5 simulation.

3.1. Fine-Grained Vulnerability Modeling by Tracing Microarchitectural Behaviors

The gemV-tool implements fine-grained vulnerability modeling in its estimation in
contrast to the previous vulnerability estimation models, which calculate vulnerability in
large chunks. In the actual hardware, only specific bits that are read are vulnerable to soft
errors, and even they are vulnerable only during the specific time that they are accessed.
Therefore, the gemV-tool produces better results compared to previous works by estimating
vulnerability using smaller units in both the spatial and temporal domains.

Consider Figure 2, which shows an example of fine-grained vulnerability estimation
of the rename queue and IEW (issue, execute, and writeback) queue for add and store
instructions. In the processor, an instruction usually goes through the fetch, decode,
rename, IEW, and commit stages in a pipeline. Pipeline queues (note that our vulnerability
modeling on pipelinequeues is based on the gem5 simulator. Given that the gem5 simulator
represents pipeline registers differently from the RTL approach modeling, it can result in
inaccurate vulnerability compared to the RTL modeling) transfer information about the
instructions between stages. For example, the rename queue transfers useful data between
the rename stage and IEW stage, such as the sequence number (SeqNum), flags, source
register indexes, and the destination register index. However, different types of instructions
require different amounts of data. For instance, an add instruction adds register values of
the source registers and writes the result to the destination register. On the other hand, a
store instruction updates the memory using data from the source registers, but does not
require the destination register. This can lead to inaccuracies when estimating vulnerability
in a coarse-grained manner.
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. . .
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Figure 2. Fine-grained vulnerability tracking for pipeline queues for simple instructions.

In the spatial aspect, the fine-grained vulnerability estimation of the gemV-tool tracks
only the accessed fields in the pipeline queues. For example, all pipeline queues in proces-
sors that use branch prediction hold the predicted next PC address for better performance.
Even if this field is corrupted by a soft error, the system does not crash but only has a minor



Electronics 2023, 12, 4573 7 of 20

degradation in performance. Thus, the predicted next PC is not vulnerable, regardless of
the instructions in the queue. In addition, the vulnerability of the fields differs depending
on the instructions executed. An add instruction updates the destination register and, there-
fore, induces vulnerability to the destination register field of the rename queue (Rdestination
in Figure 2). On the other hand, a store instruction does not update the destination register
and, therefore, it does not have vulnerable periods in the destination register field.

In the temporal aspect, the gemV-tool tracks only the vulnerable duration of the
accessed fields. For example, only the sequence number is vulnerable after the IEW stage
because the other fields are not used at the commit stage. In memory operations (load and
store), the memory addresses and data are not vulnerable between the fetch and rename
stages because the memory reference is calculated by accessing physical registers after the
rename stage. Thus, even if the bits in these fields become flawed, they are overwritten
to correct values. In contrast, vulnerability estimation at a coarse-grained level would
incorrectly define all the fields in the pipeline queues as vulnerable from the fetch to
commit stages.

Considering these fields separately leads to a much more accurate estimation of the
vulnerability. To do this, every hardware component in the gemV-tool instruments is
modeled in the gem5 out-of-order processor with a vulnerability tracker. The vulnerability
tracker is a data structure that records the read/write accesses of each field in the hardware
and the type of instruction accessing the field. This information allows for instruction-
specific vulnerability modeling in the finest-level granularity (bit level).

3.2. Accurate Vulnerability Modeling of Committed and Squashed Instructions

The gemV-tool achieves accurate vulnerability estimation by considering a particular
case of the squashed instructions. Because squashed instructions are not actually executed,
soft errors in these instructions do not easily culminate in system failures. Therefore,
previous studies did not calculate the vulnerability of squashed instructions. However, we
found that certain bits in specific microarchitectural components are indeed vulnerable,
and the gemV-tool updates the vulnerability even for squashed instructions.

The rename map holds the current and previous mappings between architectural and
physical registers. The rename map uses a history buffer to maintain changes in these
mappings. Figure 3 depicts this process for an exemplary instruction: load r1, r2. Assume
that the architectural register r1 is first mapped to the physical register indexed as 11 and
then is renamed (remapped) to the physical register indexed as 21. Then, for architectural
register r1, the old physical register index in the history buffer is updated to 11, and the
new physical register index is updated to 21. This information is needed to roll the system
back to its original state when the instruction is squashed.

Instruction SeqNum State

load r1, r2 100 committed

Sequence

Number

Architectural

Register Index

Old Physical

Register Index

New Physical

Register Index

100 1 11 21

Architectural

Register

Index

Physical

Register

Index

1 21

Index State

11
Assigned

 Not Assigned

21 Assigned

History Buffer

Register FileRename Map

3 4

Vulnerable Non-Vulnerable

1

2

(a)

Instruction SeqNum State

load r1, r2 100 squashed

Sequence

Number

Architectural

Register Index

Old Physical

Register Index

New Physical

Register Index

100 1 11 21

Architectural

Register

Index

Physical

Register

Index

1 21  11

Index State

11 Assigned

21
Assigned

 Not Assigned

History Buffer

Register FileRename Map

1

2

3 4

Vulnerable Non-Vulnerable

(b)

Figure 3. Accurate vulnerability estimation by considering both committed and squashed instructions.
(a) If load instruction (load r1, r2) is committed, the history buffer does not have to restore the rename
map. (b) If load instruction (load r1, r2) is squashed, the history buffer must restore the rename map.
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Figure 3a shows the vulnerable and non-vulnerable parts of the history buffer when
the instructions causing the renaming are committed. In this case, the architectural register
index and new physical register index in the history buffer are not vulnerable, because
the rename map holds the mapping between them (marked as 3©, 4©). On the other hand,
the sequence number and the old physical register index are still vulnerable because these
values need to be used to free the previously used physical register (marked as 1©, 2©
in Figure 3a). If an error occurs in the sequence number (SeqNum), the entry cannot be
accessed and the physical register is not released. If the old physical register index is
corrupted, other registers currently in use may be released.

If the instruction causing the renaming is squashed, all four fields in the history buffer
become vulnerable. As shown in Figure 3, the sequence number, architectural register index,
and old physical register index are vulnerable because these values are used to undo the
register renaming (marked as 1©, 3©, 4©). The sequence number is used to index the entry
in the history buffer, and the register indices are used to undo the mapping in the rename
map. The new physical register index is also vulnerable because it is accessed to free the
corresponding physical register (marked as 2©). Interestingly, the sequence number and old
physical register index in the history buffer are always vulnerable, regardless of whether the
instruction is committed. Still, even for a simple benchmark, matrix multiplication, ignoring
the vulnerability of squashed instructions, results in ignoring 35% of the total vulnerability
of the history buffer.

For accurate vulnerability estimation, the gemV-tool adds a special data structure
named history to gem5 and keeps track of recent accesses to every field of every entry in
each microarchitectural component. The data structure history consists of tick, operation,
and sequence number. tick holds the timing information of when access to a microarchitec-
tural component takes place. operation holds the type of operation that took place, such as
invalid, incoming, read, write, or eviction. sequence number holds the order of instructions
executed and is used to trace whether an instruction is committed or squashed. With the
help of this additional data structure, the gemV-tool correctly calculates the vulnerability
of each instruction (both committed and squashed).

3.3. Comprehensive Vulnerability Modeling of All Microarchitectural Components

The gemV-tool provides comprehensive vulnerability modeling, including all microar-
chitectural components of an out-of-order processor. Other work in this area failed to
include some microarchitectural components in their simulations. However, to break down
vulnerabilities at the system level, comprehensive vulnerability modeling is required.

Consider the case in which the budget allows for the protection of only a few mi-
croarchitectural components. With the gemV-tool, we can find the hardware structures
that contribute most to the overall system vulnerability. Figure 4 shows how vulnerability
is distributed between microarchitectural components in the default configuration of the
gem5 out-of-order processor running the stringsearch benchmark in ARM architecture (In
this work, we omit the cache to compare the vulnerability of microarchitectural components.
Because the size of the cache is much more significant than that of other components, the
vulnerability of the cache is much larger than that of other components, and overshadows
the differences between the vulnerabilities of other components). In this example, pipeline
queues and renaming units contribute to more than half of the total system vulnerability
and, therefore, should have a higher priority when applying protection techniques. These
results could not have been derived from previous techniques that do not comprehensively
model all microarchitectural components.

3.4. Versatile Vulnerability Modeling on Gem5 Simulator

Compared to previous tools, the gemV-tool excels in its ability to perform vulnerability
modeling in a versatile environment. First, the gemV-tool supports multiple ISAs and,
therefore, is able to estimate the vulnerability of a system independent of the underlying
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ISA. It can be used to measure the vulnerability of the same application across different
ISAs such as X86, ARM, SPARC, and ALPHA.
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Figure 4. Comprehensive vulnerability modeling by considering all the microarchitectural components.

The gemV-tool also supports vulnerability modeling with various hardware configura-
tions. Thus, it can be used to compare the vulnerabilities and performances of two different
processors with the same ISA. For instance, both ARM Cortex-A5 and Cortex-A7 processors
use the same ISA, ARM v7-A. However, Cortex-A7 provides better performance than
Cortex-A5 because it supports the dual-issue superscalar pipeline unit [31]. The question
of which processor guarantees better reliability against soft errors is more challenging.
The gemV-tool can answer these difficult questions due to its ability to model different
hardware configurations on a fixed ISA.

Further, the gemV-tool can provide accurate vulnerability modeling for various off-
the-shelf commodity processors. Butko et al. [22] reported that gem5 can simulate the
widely-used ARM Cortex-A9 architecture (one of the most commonly used embedded
processors) with up to 99%. The accuracy of vulnerability modeling techniques relies on
the accuracy of the baseline simulator used. If a microarchitectural component’s behavior
is not simulated correctly, the vulnerability cannot be estimated accurately. The gem5
simulator is also actively updated by both developers and engineers because it is based on
an open-source infrastructure.

4. gemV-tool Validation

To validate the vulnerability estimations made by the gemV-tool, we performed
extensive fault injection campaigns in all the microarchitectural components in gem5, as
listed in Table 2. For each microarchitectural component, we inject a single bit-flip in a
randomly chosen microarchitectural bit at a randomly selected cycle per each execution of a
program in gem5. We inject 300 faults per component for each of the 10 benchmarks selected
from MiBench [32] and SPEC CPU2006 [33]. Note that the gem5 simulator shares the same
information on instructions among ROB, LSQ, and IQ; a bit flip into one component can
affect the behavior of all three components. Thus, we modify gem5 by duplicating the
fields so that a single-bit flip only impacts one particular component.

We ran 300 simulations per microarchitectural component for each benchmark in our
fault injection campaigns. We have also experimentally validated that 300 runs provide
stable results for all components such as register file, rename map, history buffer, instruction
queue, reorder buffer, load-store queue, fetch queue, decode queue, rename queue, I2E
(IEW to Execute) queue, and IEW queue on the gem5 simulator with ARM syscall emulation
mode. For each component in a benchmark, we ran 2000 experiments, each consisting
of 1 to 2000 fault injection simulations on ARM architecture. The results varied largely
between experiments with fewer than 300 runs. However, the results became stable for the
experiments with 300 or more runs, differing by less than 2% among all the experiments
with over 300 runs. Thus, fault injection campaigns with 300 runs per microarchitectural
component are sufficient to validate the accuracy of the gemV-tool.
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Table 2. gemV-tool validation by fault injection campaigns; 300 faults were injected per component
for each of the following 10 benchmarks: hello world, stringsearch, perlbench, gsm, qsort, jpeg, matrix
multiplication, bitcount, fft, and basicmath.

Component Faults Injected Matched Results Mismatched Results Accuracy (in %)

Register file 3000 2899 101 96.63
Rename map 3000 2748 252 91.60
History buffer 3000 2781 219 92.70
Instruction queue 3000 2978 22 99.27
Reorder buffer 3000 2760 240 92.00
Load-store queue 3000 2979 21 99.30
Fetch queue 3000 2890 110 96.33
Decode queue 3000 2902 98 96.73
Rename queue 3000 2827 173 94.23
I2E queue 3000 2959 41 98.63
IEW queue 3000 2873 127 95.77

Overall Accuracy 96.78

Note that we only consider single-bit soft errors in our experiments. With technology
scaling, the rate of multi-bit soft errors is increasing as well as soft error rates in general.
However, the rate of multi-bit errors is still much lower than that of single-bit errors. For
instance, the rate of double-bit soft errors is just 1/100 compared to that of single-bit soft
errors [34]. Thus, we do not consider multiple-bit soft errors in this work.

We classify the 3000 simulations for each microarchitectural component (300 injections
× 10 benchmarks) as matched or mismatched cases. For example, Table 2 shows 2899
matched and 101 mismatched results for the register file. A simulation is classified as
a match if the results of the injection and gemV-tool agree: if the injected fault causes a
failure and gemV-tool returns that the selected bit is vulnerable at the injected cycle, or if
the fault does not result in failure and gemV-tool returns non-vulnerable. Otherwise, the
simulation was classified as a mismatch. The fault injection experiment is declared as a
failure if the system crashes, halts, or produces an incorrect output. For example, if the
gemV-tool predicts that a bit is vulnerable at a specific cycle, then the corresponding fault
injection experiment should result in an incorrect output or program failure to be classified
as a match. The vulnerability is estimated by the gemV-tool, as described in Section 3.
The accuracy of the gemV-tool with fault injection simulations for each component was
defined as TheNumber o f Matched Cases

Total Number o f Simulations . For the register file, we observed that 2899 out of 3000
simulations matched, as shown in Table 2, resulting in an accuracy of 96.63%.

Further, we performed additional experiments for one benchmark matmul to validate
the accuracy of each hardware component in a single application. We randomly injected
3000 faults for 11 hardware components: register file, rename map, history buffer, instruc-
tion queue, reorder buffer, load-store queue, fetch queue, decode queue, rename queue,
I2E (IEW to Execute) queue, and IEW queue (a total of 33,000 fault injections for the single
benchmark). And the accuracy is 96% on average. Thus, our gemV-tool is validated for
applications and hardware components.

Note that we need to adjust our results for individual components to calculate the
overall accuracy of the gemV-tool for the entire processor. The soft error rate of each
component is proportional to the size of each component; therefore, the simulation results
of each component must be scaled to its size. For instance, if the sizes of components A and
B are 99 and 1, respectively, the soft error rate of A is 99 times larger than that of B. Then, if
the accuracies of vulnerability estimations in A and B are 50% and 10%, respectively, the
overall accuracy of A and B should be calculated as 0.5×99+0.1×1

99+1 = 49.6%, not 0.5+0.1
2 = 30%.

Thus, the overall accuracy of the gemV-tool should be calculated considering the size of

each component:
∑

All Components
Component=k Sizek×Accuracyk

Total Size . Table 2 lists the results of the fault injection
experiments for each microarchitectural component. The results show that the estimated
vulnerability of each component using the gemV-tool is approximately 97% accurate.
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Vulnerability estimation of the gemV-tool seems highly accurate for all the microarchi-
tectural components in the processor. The main reason for the inaccuracies was software-
level masking. Because the gemV-tool works at the architectural level, masking behaviors
at the software level are invisible to gemV-tool. Even though benchmarks with minimal
software-level masking effects were used in the experiments, 3% of the gemV-tool results
disagree with those of the fault injection. One source of software masking is dynamically
dead instructions. If the result of an instruction is no longer used, the instruction is con-
sidered dynamically dead [15], and naturally, the instruction does not affect the program
output. It is possible that the gemV-tool concludes that specific bits are vulnerable because
they are used by an instruction, but in fact, the instruction is dynamically dead and the bits
are not vulnerable.

Another reason for the discrepancy is the masking effects of logical instructions [15,35].
Assume that the result of a logical AND of two input registers is stored in the destination
register. If the value of one input register is zero, then the result of the AND operation is zero
regardless of the other input. In this case, the gemV-tool would consider the bits in the other
input vulnerable, whereas the injection experiment would report non-failure. Similarly, OR
operations can also mask the injected faults to input if the other operand is 1.

Incorrect program flow can also result in a mismatched case because it is considered
vulnerable in the gemV-tool, whereas it still produces the correct output in the fault
injection trial. For example, soft errors on the PC address or branch target address can
induce incorrect program flow, but in some cases still produce the correct output [36]. Our
analyses reveal that most mismatched cases fit into one of the stated categories. In all three
cases, the gemV-tool is considered a bit vulnerable, when in fact, it is not vulnerable. Even
with mismatched cases, the gemV-tool overestimates the vulnerability of a system and
avoids the worst case of classifying a vulnerable bit as non-vulnerable. We believe that the
accuracy of the gemV-tool can be improved by considering software-level masking effects.

5. gemV-tool for Fast and Early Design Space Exploration

The gemV-tool is able to calculate the vulnerabilities of the microarchitectural compo-
nents for several benchmarks, as shown in Figure 5. Because the metric of vulnerability
is bit × cycle, the vulnerability tends to be higher for time-consuming benchmarks. To
compare the vulnerabilities fairly, we also calculated the architectural vulnerability factor
(AVF) of each benchmark using Equation (1). The AVFs of the tested benchmarks varied
from 7% (benchmark patricia) to 16% (benchmark qsort). For instance, 10% of soft errors
may cause system failures in stringsearch according to the AVF estimation.

AVF =
Vulnerability (bit × cycles)

Total Size (bits) × Execution Time (cycles)
(1)

The gemV-tool allows for fast design space exploration at the early design stage. Other
techniques, such as neutron beam testing, require developers to build an entire working
prototype before evaluating its reliability. Even register–transfer level fault injection re-
quires developers to bring down the design to a synthesizable form before reliability can
be quantified. In contrast to these methods, the gemV-tool allows hardware architects,
software engineers, and system designers to evaluate the reliability at a very early high-
level design stage before implementing a physical prototype. For instance, we performed
our gemV-tool on an Intel Xeon processor. For the microarchitecture design experiment in
Section 5.1, we have run more than 13 k different runs with different hardware configura-
tions, and it takes less than 1 h when we use 40 cores.
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Figure 5. Architectural vulnerability factors of several benchmarks.

5.1. gemV-tool for Microarchitecture Design

The gemV-tool can be utilized to address difficult performance-vulnerability trade-
off questions. For example, how does the issue width of a processor affect runtime and
vulnerability? On one hand, a broader issue width could reduce the runtime and, therefore,
the vulnerability. On the other hand, a broader issue width requires more sequential
components in the processor, which could increase the vulnerability. With gemV, we
can easily simulate the effect of such parameter changes and quantitatively answer these
difficult questions. For the benchmark stringsearch, we observe that vulnerability decreases
when increasing the issue width from 1 to 3, as shown in Figure 6. The vulnerability and
runtime (Note that our gemV-tool does not depend on any specific CPU cycle. For example,
we have used a 500 MHz CPU as a base clock in the case of our experiment, but a gemV-tool
user can configure it if needed.) were normalized to those of the underlying configuration
(issue width = 8).

Interestingly, the vulnerability and the runtime both decrease as the issue width
increases. Moreover, the issue width affects the vulnerability more than the runtime. For
example, if the issue width is decreased from 8 to 1, the vulnerability increases to 240%,
whereas the runtime only increases to 125%.

Another interesting question is how does the size of a component affect the overall
runtime and vulnerability of the architecture? We answer this question with the gemV-
tool by changing the size of the LSQ in the stringsearch benchmark. Figure 7 shows the
results, where the vulnerability and runtime were normalized to the initial configuration
(LSQ size = 64). When the size of the LSQ is increased from 4 to 256, the runtime decreases
monotonically. On the other hand, the vulnerability decreases at first but starts to increase
after the LSQ size reaches 16. Designers can utilize this fact to find the configuration that
best fits their needs. It is also worth noting that in this case, the performance is more
sensitive to the change in LSQ size than the vulnerability, in contrast to the results of
the experiments with varying issue widths. Thus, designers should be aware of these
sensitivities when selecting the optimal configuration for microarchitectural components.

These questions can be extended to explore larger design spaces. Given an existing
processor configuration and performance leeway, how can we change configurations to
minimize vulnerability? We answer this question for the benchmark stringsearch with the
gemV-tool by plotting design points for runtime against the vulnerability. We assume
that the number of physical registers in the register file is fixed at 256. We also assume
that the number of entries in the rename map, history buffer, and the IEW queue are also
fixed to 114, 86, and 8, respectively. We then considered the entry size for each component:
64, 128, 192, 156, 320, and 384 as the possible number of entries of ROB; 4, 8, 16, 32, 64,
128, and 256 as that for LSQ and IQ; and 1 through 8 for pipeline queues such as fetch,
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decode, rename, and I2E. We ran the experiments with randomly selected entry sizes for
ROB, LSQ, IQ, and pipeline queues from the given ranges and plotted the results in a
two-dimensional plane. The resulting points were divided into four quadrants: the first
quadrant contained points with positive values for both runtime and vulnerability, the
second had negative runtime and positive vulnerability, the third had negative runtime and
vulnerability, and the fourth had positive runtime and negative vulnerability. A positive
value represents an increase compared to the original configuration, whereas a negative
value represents a decrease. For example, point (10, −5) represents a 10% increase in
runtime and a 5% decrease in vulnerability as compared to the original configuration.
Figure 8 shows the vulnerability and runtime for the configurations normalized to those of
the initial configuration (192 entries for ROB, 64 entries for LSQ and IQ, and 8 entries for
all the pipeline queues).
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A hardware designer can use these plots to choose the required hardware configuration
dictated by the runtime and vulnerability bounds. For instance, given a particular runtime
target, the hardware designer can choose from the points in the grey band in Figure 8
to find the configuration with maximum vulnerability reduction. It is interesting to note
that vulnerability can change significantly by simply changing the configurations without
applying any protection. With a 1% runtime variation, the vulnerability can be reduced by
up to 81%, as shown by the two black points in Figure 8.

We ran the same experiment for the matrix multiplication benchmark, running more
than 1.2 million trials to explore all possible hardware configurations. The results are
shown in Figure 9. In this experiment, we found two design points that differed by less
than 1% in the runtime, but by 37% in vulnerability. This is surprising, considering that the
vulnerability ranges from 91% to 148%. Thus, given any runtime or vulnerability overhead,
it is now possible to find alternate design points with lower vulnerability or runtime. This
feature of the gemV-tool can be very useful for designers to explore the design space at the
early design stage.

Another interesting observation is that each hardware component differs in the extent
of vulnerability reduction. We explore this observation by changing the size of each
component independently, and present the following results. Changes in the number of
ROB entries did not have significant impacts on vulnerability (14% maximum). Entry
size changes for LSQ and IQ, however, can influence the vulnerability by up to 44% and
55%, respectively. In particular, the LSQ also affects the performance by up to 85%. In the
pipeline queues, the variance in the entry size can cause up to a 50% increase in vulnerability
and a 20% increase in runtime. This analysis can guide hardware designers in selecting
the best configuration with a limited total number of sequential elements in the system.
Figure 10 shows the maximal vulnerability reduction when the total number of entries is
fixed. The x-axis represents the sum of the number of entries in each component, and the
y-axis shows the maximal vulnerability reduction percentage. When the total number of
entries is limited to less than 300, there exists a configuration with 42.7% less vulnerability
compared to the configuration with the maximum vulnerability under the same conditions.
The graph shows that the variation in vulnerability becomes more substantial as the total
number of sequential elements increases. Therefore, determining the optimal configuration
is critical in terms of vulnerability for more complex systems.
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Figure 9. Vulnerability and runtime with different hardware configurations (matrix multiplication).

Figure 10. Vulnerability variation by fixing the number of sequential elements.

5.2. gemV-Tool for Software Design

The gemV-tool can also be used by software engineers to find alternate design points
with lower vulnerability or runtime. Alternative design points can be realized with software
changes in either the algorithm, compiler used, or optimization level. For example, given
the choice of two sorting algorithms—quick sort and insertion sort—which would be the
optimal choice in terms of runtime and vulnerability? To explore such changes, we first
establish a baseline runtime and vulnerability for an insertion sort algorithm compiled with
gcc at the highest (O3) level of optimization. Figure 11 presents the normalized runtime
and vulnerability for various configurations of algorithms, compilers, and optimization
levels. We consider an array sorting application with five sorting algorithms (bubble,
quick, insertion, selection, and heap sort), two compilers (GCC and LLVM [37]), and four
optimization levels (no optimization, O1, O2, and O3). Interestingly, just by changing the
software configurations, the vulnerability can be reduced by up to 91% without additional
runtime overhead. Specifically, switching from a selection sort algorithm at the O1 level
of optimization to quick sort at the O3 level of optimization reduces runtime by 53% and
vulnerability by 91%. A software engineer can use these experiments to explore the design
space and choose optimal design points according to their demands.
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Table 3 summarizes the effects of different software configurations on vulnerability
and runtime. In general, vulnerability is much more sensitive to software configuration
than runtime. The essential software option is the sorting algorithm. The vulnerability can
be increased to up to 10 × depending on the selected algorithm—from the selection sort
compiled by GCC with the O1 option to quick sort compiled with the same options. The
choice of the algorithm also leads to a maximum difference of up to approximately 114%
in runtime. The factor that least affects vulnerability is the compiler, but it can still result
in up to 314% variation in vulnerability and 52% in runtime. Depending on the compiler
optimization level, the vulnerability can change by up to 739% and the runtime by up to
101%. Similar vulnerability-aware design space exploration in software can allow software
designers to meet specific requirements in runtime, vulnerability, or both.

Table 3. Effects of software configuration (algorithm, optimization level, and compiler) on runtime
and vulnerability (sorting).

Max (In %) Min (In %) Reduction

Algorithm Runtime 113.95 11.23 10×
Vulnerability 1005.44 23.44 43×

Optimization Runtime 101.19 9.69 10×
Vulnerability 739.46 6.06 123×

Compiler Runtime 52.33 0.35 173×
Vulnerability 314.08 5.16 62×

5.3. gemV-Tool for System Design

A system designer can use the gemV-tool to make design choices. Consider the
following questions: (i) Given a selection of processors running on different ISAs, which
one offers the best trade-off in runtime and vulnerability? We explore this problem by
changing the ISA within the gemV-tool while keeping the hardware size constant. Figure 12
shows the vulnerability and runtime under different ISAs (ARM, SPARC, x86, and ALPHA)
for the stringsearch benchmark, with no change in hardware and software configurations.
Baseline vulnerability and runtime were established on the ARM ISA. In this experiment,
ALPHA was the least vulnerable, being 38% less vulnerable than SPARC, which was
the most vulnerable. With this result, the system designer may choose ARM ISA for the
minimum runtime or ALPHA for minimum vulnerability.
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(ii) Given an ISA to work on, which components are the most vulnerable? The
system designer may also need to break down the vulnerability of individual hardware
components. Each column in Figure 12 shows the detailed breakdown of each component
in the processor, consisting of HB (history buffer), RM (rename map), LSQ, IQ, PQs (pipeline
queues), RF (register file), and ROB. The figure shows that protecting just two components
can lead to a significant reduction in vulnerability. For example, the history buffer and IQ
account for 50% of the vulnerability in the ARM processor, and the rename map and register
file account for 75% of SPARC. This information can be used to design protection techniques
that target specific components. In the case of SPARC, a simple protection mechanism such
as ECC applied to the register file would be extremely efficient and effective. However, the
same protection would not be as useful on the ARM processor as the RF contributes only
21% to the system vulnerability.

6. Conclusions

Because reliability has become an important design concern in modern embedded
systems, various protection techniques against soft errors have been presented. This also
necessitated reliability quantification schemes to quantitatively study the effectiveness of
such protection techniques. However, accurate reliability quantification schemes such as
exhaustive fault injection campaigns and neutron beam testing are undesirable because they
are too expensive and challenging to perform. Other techniques, including vulnerability
estimation tools, are incomprehensive, inaccurate, and inflexible. In this paper, we present
the gemV-tool—a comprehensive and accurate vulnerability estimation based on the cycle-
accurate simulator gem5. We also performed several experiments to demonstrate how the
gemV-tool can help engineers in design space exploration in the early design phase. We
show the effects of microarchitectural changes on runtime and vulnerability, which are rele-
vant to hardware designers. For software designers, we show the effects of the algorithm,
compiler, and optimization level on runtime and vulnerability. We also demonstrated
the usefulness of the gemV-tool to a system designer in designing component-specific or
ISA-dependent soft error protection techniques.

The gemV-tool is useful for early and fast design space exploration of reliability against
soft errors. It answers fundamental questions at several design space abstraction levels.

(i) At the microarchitecture design level, how does the issue width (single-issue or
dual-issue) of a processor affects its vulnerability and performance? How can a
microarchitect determine the optimal issue width for the processor?
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(ii) t the system software design level, how can software system designers improve the
reliability against soft errors? How does the algorithm or compiler’s optimization
level affect the runtime and vulnerability of an application?

(iii) At the architectural design level, architecture designers can choose a different ISA
for better performance or power, but how can they ensure that protection against soft
errors? How does the soft error vulnerability of an application depend on the ISA?

Such trade-off questions between runtime and vulnerability at all levels can now be
answered quickly and accurately, using the gemV-tool. To demonstrate the capabilities of
the gemV-tool, we performed a broad range of design space explorations and made the
following observations:

• Vulnerability decreases when the issue width increases from 1 to 3. Beyond this,
any increase in the issue width does not have a noticeable effect on vulnerability.
We also find that vulnerability is also correlated with other architectural parameters,
such as the number of entries in the reorder buffer (ROB), instruction queue (IQ),
load/store queue (LSQ), or pipeline queues. Among the many configurations, there
is an interesting design configuration with 82% less vulnerability while incurring a
performance penalty of < 1%.

• The vulnerability varies significantly depending on the algorithm implemented. For
instance, our experimental results show that changing from a selection sort to a quick
sort algorithm can affect the system vulnerability by 91%. This can help software
engineers find the least vulnerable and fastest algorithm for an application.

• The distribution of system vulnerabilities among microarchitectural components is
quite sensitive to ISA. For example, protecting only the register rename map and
register file in SPARC architecture can lead to more than 75% vulnerability reduction,
while it only lead to a 21% reduction in the ARM architecture. In the latter case, it is
better to protect the history buffer and instruction queue (more than 50% vulnerability
reduction).

Unlike the other vulnerability estimation tools, we verified the accuracy of the gemV-
tool by comparing it against fault injection experiments on all the microarchitectural
components. The validation, however, assumed that each microarchitectural component’s
soft error rate is proportional to its size. As this assumption cannot be verified in simulated
environments, we plan to validate the accuracy of the gemV-tool through neutron beam
testing in the future. In addition, the gemV-tool will also model and characterize software-
level masking effects in the future. Since the incorrect microarchitectural state does not
always result in system failures, Papadimitriou et al. [38] have exploited fault injection
campaigns on the cycle-accurate simulator to track the software-level masking effects for
silent data corruption analysis. After analyzing the software-level masking, we will no
longer classify dynamically dead instructions or non-influential program flow changes as
vulnerable, thereby improving the accuracy of the gemV-tool.
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