
Citation: Xu, X.; Zhang, F.; Zhao, Y.

Unmanned Aerial Vehicle

Path-Planning Method Based on

Improved P-RRT* Algorithm.

Electronics 2023, 12, 4576.

https://doi.org/10.3390/

electronics12224576

Academic Editor: Sergio

Garcia-Nieto

Received: 19 September 2023

Revised: 5 November 2023

Accepted: 6 November 2023

Published: 9 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Unmanned Aerial Vehicle Path-Planning Method Based on
Improved P-RRT* Algorithm
Xing Xu 1, Feifan Zhang 2 and Yun Zhao 1,*

1 School of Information and Electronic Engineering, Zhejiang University of Science and Technology,
Hangzhou 310023, China; xuxing@zust.edu.cn

2 School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology,
Hangzhou 310023, China; 222101855079@zust.edu.cn

* Correspondence: yunzhao@zust.edu.cn

Abstract: This paper proposed an improved potential rapidly exploring random tree star (P-RRT*)
algorithm for unmanned aerial vehicles (UAV). The algorithm has faster expansion and convergence
speeds and better path quality. Path planning is an important part of the UAV control system. Rapidly
exploring random tree (RRT) is a path-planning algorithm that is widely used, including in UAV,
and its altered body, P-RRT*, is an asymptotic optimal algorithm with bias sampling. The algorithm
converges slowly and has a large random sampling area. To overcome the above drawbacks, we
made the following improvements. First, the algorithm used the direction of the artificial potential
field (APF) to determine whether to perform greedy expansion, increasing the search efficiency.
Second, as the random tree obtained the initial path and updated the path cost, the algorithm rejected
high-cost nodes and sampling points based on the heuristic cost and current path cost to speed up
the convergence rate. Then, the random tree was pruned to remove the redundant nodes in the path.
The simulation results demonstrated that the proposed algorithm could significantly decrease the
path cost and inflection points, speed up initial path obtaining and convergence, and is suitable for
the path planning of UAVs.

Keywords: path planning; RRT*; artificial potential field; greedy strategy; high-cost rejection

1. Introduction

Unmanned aerial vehicles (UAVs) are ideal for carrying out tasks with relatively
high human costs in indoor or outdoor environments because of their mobility, flexibility,
rapid deployment, and wide applicability [1,2]. In recent years, with the development of
technology and growth in demand, UAVs have played a significant role in agriculture [3],
logistics and transportation [4,5], security monitoring [6], network communication [7], and
rescue and emergency response [8]. Today, people recognize the importance of UAVs to
human life and to production. UAVs must obtain more control and planning capacity due
to changing environments. The path-planning problem is a significant issue that UAVs
must resolve in practical applications and is one of the current research hotspots [9]. The
problem refers to the requirement for UAVs to obtain a path from the starting point to the
target point without coming into contact with any obstacles [10].

Research in path planning generally focuses on “path optimality” and “probabilistic
completeness”. Path optimality is the ability of an algorithm to find the path with the
lowest cost, and probabilistic completeness is the ability of an algorithm to find a path
that is feasible. It is difficult for path-planning algorithms to satisfy both fast planning
and optimal planning. Early path-planning methods typically transformed the original
map into a grid map and then searched for the target location. The most representative
methods were the Dijkstra algorithm [11,12] and the A* algorithm [13,14]. Both could find
the optimal path but would occupy a lot of memory and time. The artificial potential
field method (APF) assumed the existence of an attractive potential of the target point

Electronics 2023, 12, 4576. https://doi.org/10.3390/electronics12224576 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12224576
https://doi.org/10.3390/electronics12224576
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12224576
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12224576?type=check_update&version=1

Electronics 2023, 12, 4576 2 of 20

and the repulsive potential of the obstacle in the map. The path could be determined by
the change in the gradient of the potential field [15]. However, there might be regions in
the map where the potential field is in equilibrium, causing the UAVs to fall into local
minima [16]. The ant colony algorithm (ACO) mimics the natural phenomenon in which
ants leave pheromones on the path to find the shortest path, but the algorithm converges
slowly when dealing with complex problems, and it also falls into local minima [17,18].
Genetic algorithms (GA) encode each path and, finally, form feasible paths after crossover,
mutation, and selection [19]. However, the complex adaptation functions and coding make
the algorithm memory- and time-intensive [20].

In recent years, sampling-based algorithms have gradually attracted the attention of
researchers, and the most influential ones include the Probabilistic RoadMap (PRM) [21]
and rapidly exploring random tree (RRT) [22]. The main idea of the PRM algorithm is
to sample randomly in space and obtain a collision-free set of nodes. Then, the PRM is
connected to the start and target points to obtain the paths. Furthermore, with a sufficiently
large number of samples, the PRM is complete [23]. The RRT algorithm is a single-query
planner in which the random tree connects nodes and grows from the starting point after
randomly sampling the nodes obtained. The random tree gradually grows around the
target point and, finally, finds a path connecting the starting point and the target point.
Like the PRM, the RRT is complete for a sufficiently large number of samples [24]. The
biggest advantage of the sampling-based algorithm is that it can find the path quickly and
can meet the requirements of UAVs for fast maneuvers.

Despite the probabilistic completeness of both algorithms, the quality of the initial
paths is usually not excellent, and the optimal path cannot be obtained. To address this issue,
Karaman and Frazzoli proposed PRM* and RRT* [25] and demonstrated their asymptotic
optimality. The new node tries to update the parent node continuously to obtain a smaller
path cost [26]. RRT*-Smart [27] uses a bias sampling strategy for fast optimization of the
obtained initial solution but the possibility of obtaining the globally optimal path is lost [28].
Bidirectional-RRT* (Bi-RRT*) [29] proposed a new algorithm for joint pathfinding by two
random trees, i.e., each explores from the starting point and the target point towards the
other to improve efficiency [30,31]. Informed-RRT* [32] sped up convergence by restricting
sampling points to less costly elliptical regions. Quick-RRT* (Q-RRT*) [33] expanded the
range of reselected parent nodes and used pruning means to reduce the path cost. The
algorithm can be effectively integrated with other improved algorithms [34].

Potential-RRT* (P-RRT*) [35] successfully combines APF and RRT* to accelerate the
exploration efficiency of RRT*. It also uses the random sampling property of RRT* to avoid
falling into local minima, which is common in APF algorithms. The P-RRT* algorithm
assumes that the sampling is affected by the target point, and the new nodes expanding
from the random tree are then gradually biased towards the target point. Compared with
the RRT* algorithm, the P-RRT* is more suitable for the path planning of UAVs. P-RRT*
can also be combined with other algorithms such as potentially guided bidirectionalized
RRT* (PB-RRT*) [30] and PF-RRT* [36]. The former makes two random trees attract each
other through potential guidance. The latter combines with F-RRT* [37] to reduce the path
cost by inserting the parent nodes. However, this algorithm still has the inherent drawback
of the RRT* algorithm, i.e., a large amount of sampling and expansion occurs in high-cost
regions, which is not useful for obtaining optimal paths.

UAVs need a responsive, high-quality, and smooth path-planning algorithm. This
paper presents an improved UAV path-planning algorithm based on P-RRT* that can be
applied to various environments. First, considering the need for rapid planning for UAVs,
the algorithm contains a greedy strategy. The algorithm guides the greedy expansion with
the direction of the artificial potential field on the node as the optimal direction, which can
explore the depth of the map faster. Second, by calculating the heuristic costs of nodes
and sampling points, comparing them to the existing path costs, and rejecting nodes and
sampling points in the high-cost region, the algorithm increases the search efficiency of
each iteration. Then, the random tree is pruned, and the parents of the nodes are reselected

Electronics 2023, 12, 4576 3 of 20

to reduce unnecessary redundant nodes on the path. Finally, compared with the simulation
results of the traditional RRT* algorithm and P-RRT* algorithm, the algorithm proposed in
this paper has significant superiority in sparse, complex, as well as in realistic application
scenarios.

The rest of this paper is presented as follows. Section 2 explains the necessary defini-
tions, equations, etc., and introduces related algorithms. Section 3 describes in detail the
principles and algorithmic contents of the proposed algorithms. Section 4 simulates each
algorithm in different environments and compares and analyzes the simulation results,
and Sections 5 and 6 present the discussion and conclusion of this work. The relevant
algorithms’ code has been released at: https://github.com/ZFF20231101/RRT-algorithms
(accessed on 1 November 2023).

2. Background

This section defines path-planning problems and the notation used to represent them.
It also describes the pseudocode and content of the RRT* and P-RRT* algorithms for the
purpose of understanding the improvements proposed in Section 3.

2.1. Problem Definition

Let χ be the configuration space in n dimensions; χobs ⊂ χ denotes the space occupied
by obstacles and χ f ree = χ/χobs denotes the free space reachable by the UAVs in the space.
In the space, xinit ∈ χ f ree is the initial state of path planning and Xgoal ⊂ χ f ree is the target
region. In this paper, the target region is set as a target point xgoal . If the connections of
two nodes x1, x2 ∈ χ are collision-free, they can be a path σ and calculate the Euclidean
distance as the path cost c.

Problem 1. Feasible Path Planning: For a given configuration space (χ, χobs, χ f ree), find a collision-
free feasible path σ : [0, 1]εχ f ree with σ(0) = xinit and σ(1) = xgoal .

Problem 2. Optimal Path Planning: For a given configuration space (χ, χobs, χ f ree), find an

optimal path σ∗ among all feasible paths and its path cost is c(σ∗) = min
{

c(σ) : σ ∈ χ f ree

}
.

2.2. RRT*

This section focuses on RRT* [25], which is a sampling-based path-planning algorithm.
Form a vertex setV from each node, plus an edge setE to form a random treeT. After
the initialization of the algorithm, a random sampling point xrand ∈ χ f ree in the space is
provided. The node xnearest closest to xrand is taken as the parent node and extends a fixed
extension length towards xrand to obtain a new node, xnew. The CollisionFree procedure
verifies that the edge formed by joining xnew and xnearest has not passed through χobs, then
xnew can be added to T = (V, E) as part of the random tree. The above steps are also the
whole process of the RRT algorithm. The verified xnew can obtain a set of nearby nodes
Xnear, which is included in a circular region, where Xnear satisfies the following relation

Xnear = {x ∈ T : d(x, xnew) ≤ r := α

√
logn

n
} lim

x→∞
(1)

where α is an independent coefficient. In the ChooseParent procedure, xnew tries to connect
to xnear ∈ Xnear and change the parent node to obtain a smaller path cost. Similar to
ChooseParent, every xnear ∈ Xnear can try to treat xnew as the parent node and minimize
the cost in the Rewire procedure. The procedure lowers the cost of nearby nodes. The
pseudocode of the algorithm is given in Algorithm 1. The ChooseParent and Rewire proce-
dures enable the random tree to gradually approach the optimal solution; the asymptotic
optimality of the algorithm was proven in the paper [25].

https://github.com/ZFF20231101/RRT-algorithms

Electronics 2023, 12, 4576 4 of 20

Algorithm 1: RRT* (xinit)

1: V ← {xinit} ; E← ∅ ;
2: T ← (V, E) ;
3: for i = 0 to maxIter do
4: xrand ← Sample(rate) ;
5: xnearest ← Nearest(T, xrand) ;
6: xnew ← Steer(xrand, xnearest) ;
7: if CollisionFree(xnew, xnearest) then
8: Xnear ← NearNodes(T, xnew) ;
9: xnewparent ← ChooseParent(Xnear, xnew) ;
10: xnaerparent ← Rewire(Xnear, xnew) ;
11: T ←

(
xnew, xnewparent, xnaerparent

)
;

12: end if
13: end for
14: return T;

2.3. P-RRT*

The artificial potential field method (APF) is a gradient descent planning method. For
a UAV denoted as x ∈ χ, it is assumed to be subjected to the joint action of the virtual
attraction potential Uatt of the target point xgoal and the repulsion potential Urep of each
obstacle. There is a gradient change in the entire configuration space χ, such that x moves
toward the target point in the direction of the fastest decreasing gradient. The entire process

can be seen as x being subjected to the combined force of the attractive force
→
F att and

the repulsive force
→
F rep. The formulas for the attractive and repulsive forces are given in

Equations (2)–(5).

Uatt =

 1
2 Ka

∣∣∣∣∣∣x− xgoal

∣∣∣∣∣∣2 ∣∣∣∣∣∣x− xgoal

∣∣∣∣∣∣> dg

1
2 Ka(dg

∣∣∣∣∣∣x− xgoal

∣∣∣∣∣∣−d2
g)

∣∣∣∣∣∣x− xgoal

∣∣∣∣∣∣≤ dg
(2)

→
F att =

−Ka

∣∣∣∣∣∣x− xgoal

∣∣∣∣∣∣ ∣∣∣∣∣∣x− xgoal

∣∣∣∣∣∣> dg

−Kadg
||x−xgoal ||
d(x,xgoal)

∣∣∣∣∣∣x− xgoal

∣∣∣∣∣∣≤ dg
(3)

Urep =

{
1
2 Kr(

1
dmin
− 1

dobs
)

2
dmin ≤ dobs

0 dmin > dobs
(4)

→
F rep =

{
Kr(

1
dobs
− 1

dmin
) 1

d2
min

∂dmin
∂x dmin ≤ dobs

0 dmin > dobs
(5)

where Ka and Kr are coefficients that can be adjusted depending on the specific situation to

control the strength of
→
F att and

→
F rep, respectively. The dg and dobs indicate that different

calculations of
→
F att and

→
F rep are applied at different action distances. If the distance from

x to the target point xgoal is greater than dg,
→
F att increases quadratically with distance.

The UAV is subject to greater attraction at longer distances and thus rapidly approaches
the target point. The attractive potential gradient becomes flatter when the two are too

close together.
→
F rep is calculated as the opposite of

→
F att. For an obstacle xobs ∈ χobs, the

minimum distance between x and xobs is dmin, and the repulsive force is 0 for dmin > dobs,
indicating that the obstacle at a long distance did not produce a repulsive force. When

two objects are very close to one another,
→
F rep increases quickly with decreasing distance,

allowing x to move away from the area.
The P-RRT* algorithm [35] adds the RGD procedure to the original RRT* algorithm, as

shown in Algorithm 2. The random tree is influenced by the attractive force of the target

Electronics 2023, 12, 4576 5 of 20

point in the configuration space, causing the tree as a whole to be more inclined to the target
point. The process is explained in detail in Algorithm 3. For the newly generated sampling
point xrand, it slowly approaches xgoal due to the attraction potential field until it is too close

to the obstacle. P-RRT* calculates
→
F att using only the first case in Equation (3), because

in APF, it is necessary to avoid x crossing xgoal at smaller distances, while in RRT*, the
connection between the random tree and xgoal at close distances can be determined directly.
The random tree is then expanded towards xprand. RGD introduces three parameters, k,
dobs, and λ. The k is the maximum times of deflections of xrand toward xgoal , λ is the length
of each deflection of xrand, and dobs is the closest allowable distance between xrand and
the obstacle.

Algorithm 2: P-RRT* (xinit)

1: V ← {xinit} ; E← ∅ ;
2: T ← (V, E) ;
3: for i = 0 to maxIter do
4: xrand ← Sample(rate) ;
5: xprand ← RGD(xrand)

6: xnearest ← Nearest
(

T, xprand

)
;

7: xnew ← Steer
(

xprand, xnearest

)
;

8: if CollisionFree(xnew, xnearest) then
9: Xnear ← NearNodes(T, xnew) ;
10: xnewparent ← ChooseParent(Xnear, xnew) ;
11: xnaerparent ← Rewire(Xnear, xnew) ;
12: T ←

(
xnew, xnewparent, xnaerparent

)
;

13: end if
14: end for
15: return T;

Algorithm 3: RGD(xrand)

1: xprand ← xrand ;
2: for i← 0 to k do

3:
→
F att ← APG

(
xGoal , xprand

)
;

4: dmin ← NearestObs
(

Xobs, xprand

)
;

5: if dmin ≤ dobs then
6: return xprand;
7: else

8: xprand ← xprand + λ

(→
F att/|

→
F att|

)
;

9: end for
10: return xprand;

3. Improved P-RRT*

The increased target point attraction of the P-RRT* algorithm aids in speeding up the
convergence, but due to the property of the algorithm, the random tree expands with low
exploration efficiency, with only one new node per iteration. In addition, the configuration
space contains a significant number of high-cost regions, such as edges of the map and
regions far from the target points. The random sampling property of the algorithm makes it
possible for the random tree to explore high-cost regions, but nodes located in such regions
cannot be part of the optimal path. The algorithm should reduce the path nodes to smooth
the flight path of UAVs. To address these problems, the following improvements were
made in this paper.

Electronics 2023, 12, 4576 6 of 20

• Greedy strategy: to address the problem of the slow exploration of random trees, a
greedy strategy is incorporated to speed up the expansion. The greedy expansion is
carried out if the APF direction of the node is within a certain deflection angle from
the actual expansion direction;

• High-cost rejection: the heuristic cost of sampling points and nodes is calculated; if it
exceeds the current optimal path cost cmin, the points and nodes are in the high-cost
region. The algorithm rejects high-cost sampling points and nodes, resamples, and
expands only on low-cost nodes;

• Path optimization: the random tree is pruned in order to remove redundant nodes
from the path. This not only lowers the cost of the path but also enables the UAVs to
pass through fewer path turning points.

The proposed algorithm based on the above ideas is shown in Algorithm 4, and each
improvement point is described in detail in the Sections 3.1–3.3.

Algorithm 4: Improved P-RRT* (xinit)

1: V ← {xinit} ; E← ∅ ;
2: T ← (V, E) ; cmin ← ∞ ;
3: for i = 0 to maxIter do
4: xrand ← NewSample(cmin, rate) ;
5: xnearest ← NewNearestPossible(T, xrand, cmin) ;
6: while CheckAngle(xrand, xnearest, xnew ← ∅) do
7: xnew ← Steer(xrand, xnearest) ;
8: xnew ← NewRGD(xnew) ;
9: if CollisionFree(xnew, xnearest) then
10: Xnear ← NearNodes(T, xnew) ;
11: xnewparent ← NewChooseParent(Xnear, xnew) ;
12: Xnaerparent ← NewRewire(Xnear, xnew) ;
13: T ←

(
xnew, xnewparent, Xnaerparent

)
;

14: end if
15: end while
16: end for
17: return T;

3.1. Greedy Strategy

The greedy expansion method can be applied to the RRT* algorithm to expedite the
exploration. The random tree keeps expanding in the xrand direction using this method
until it runs into an obstacle, producing multiple xnew in the process. This method has
an obvious drawback in that the greedy expansion direction is frequently undesirable
and sometimes even far from the target point. The target greedy expansion method [38]
was improved by only allowing greedy expansion to occur when xrand = xgoal, thereby
minimizing greedy expansion in the wrong direction. The disadvantage of this method
is that after obtaining the initial solution, it is not possible to perform greedy expansion.
Because the nearest node xnearest of xgoal must be the last node of the initial path, the random
tree cannot be expanded. In addition, greedy expansion toward the target point may trap
the path in an area surrounded by numerous obstacles.

To solve the above problem, it was necessary to make the random tree expand greedily
in the optimal direction and normally in the other directions. In this paper, we proposed
a greedy expansion algorithm based on APF guidance. The proposed algorithm subjects
the nodes to both attractive and repulsive potentials, and the expansion also takes into

account the xrand as an attractive source. The node is subjected to
→
F rep and

→
F att1, as shown

in Figure 1, and the APF force
→
F p (red line) is produced under the combined action of

both. The node is simultaneously affected by the attraction
→
F att2 of the sampled point

xrand, which results in the combined force
→
F total (green line) as the direction of expansion,

Electronics 2023, 12, 4576 7 of 20

ultimately. Note that there are generally multiple obstacles in the configuration space, and
that the repulsive force generated by each obstacle in the range of dobs should be calculated

to form the combined force ∑
→
F rep. The expression of the combined force on the node is

shown in Equation (6). The improved NewRGD procedure is shown in Algorithm 5.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 20

improved by only allowing greedy expansion to occur when 𝑥𝑟𝑎𝑛𝑑=𝑥𝑔𝑜𝑎𝑙, thereby mini-

mizing greedy expansion in the wrong direction. The disadvantage of this method is that

after obtaining the initial solution, it is not possible to perform greedy expansion. Because

the nearest node 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 of 𝑥𝑔𝑜𝑎𝑙 must be the last node of the initial path, the random

tree cannot be expanded. In addition, greedy expansion toward the target point may trap

the path in an area surrounded by numerous obstacles.

To solve the above problem, it was necessary to make the random tree expand greed-

ily in the optimal direction and normally in the other directions. In this paper, we pro-

posed a greedy expansion algorithm based on APF guidance. The proposed algorithm

subjects the nodes to both attractive and repulsive potentials, and the expansion also takes

into account the 𝑥𝑟𝑎𝑛𝑑 as an attractive source. The node is subjected to �⃗�𝑟𝑒𝑝 and �⃗�𝑎𝑡𝑡1, as

shown in Figure 1, and the APF force �⃗�𝑝 (red line) is produced under the combined action

of both. The node is simultaneously affected by the attraction �⃗�𝑎𝑡𝑡2 of the sampled point

𝑥𝑟𝑎𝑛𝑑 , which results in the combined force �⃗�𝑡𝑜𝑡𝑎𝑙 (green line) as the direction of expansion,

ultimately. Note that there are generally multiple obstacles in the configuration space, and

that the repulsive force generated by each obstacle in the range of 𝑑𝑜𝑏𝑠 should be calcu-

lated to form the combined force ∑ �⃗�𝑟𝑒𝑝. The expression of the combined force on the node

is shown in Equation (6). The improved 𝑁𝑒𝑤𝑅𝐺𝐷 procedure is shown in Algorithm 5.

Figure 1. Change in expansion direction of the node.

total att repF F F= + (6)

Algorithm 5: 𝑁𝑒𝑤𝑅𝐺𝐷(𝑥𝑛𝑒𝑤)

1: �⃗�𝑎𝑡𝑡1 ← 𝐴𝑃𝐺(𝑥𝐺𝑜𝑎𝑙 , 𝑥𝑛𝑒𝑤);

2: for each 𝑥𝑜𝑏𝑠 ∈ 𝜒𝑜𝑏𝑠 do

3: 𝑑𝑚𝑖𝑛 ← 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥𝑜𝑏𝑠, 𝑥𝑛𝑒𝑤);

4: if 𝑑𝑚𝑖𝑛 ≤ 𝑑𝑜𝑏𝑠 then

5: �⃗�𝑟𝑒𝑝𝑖 ← 𝑅𝑃𝐺(𝑑𝑚𝑖𝑛);

6: ∑ �⃗�𝑟𝑒𝑝 ← ∑ �⃗�𝑟𝑒𝑝 + �⃗�𝑟𝑒𝑝𝑖;

7: end if

8: �⃗� ← �⃗�𝑎𝑡𝑡1 +∑ �⃗�𝑟𝑒𝑝;

9: end for

10: return �⃗�;

Figure 1. Change in expansion direction of the node.

→
F total = ∑

→
F att + ∑

→
F rep (6)

Algorithm 5: NewRGD(xnew)

1:
→
F att1 ← APG(xGoal , xnew) ;

2: for each xobs ∈ χobs do
3: dmin ← Distance(xobs, xnew) ;
4: if dmin ≤ dobs then

5:
→
F repi ← RPG(dmin) ;

6: ∑
→
F rep ← ∑

→
F rep +

→
F repi ;

7: end if

8:
→
F ←

→
F att1 + ∑

→
F rep ;

9: end for

10: return
→
F ;

The direction of the potential field force
→
F p obtained by the APF algorithm repre-

sents the optimal direction of the expansion in the local region. The proposed algorithm,
combined with the greedy strategy, adds the CheckAngle procedure, which can determine

whether the angle θ between the
→
F p and the expansion direction satisfies the greedy expan-

sion condition. As shown in Figure 2, the starting point is expanded to obtain xnew1. At this

time the node is only subjected to the attraction
→
F att1 of xgoal , and the angle θ1 is below the

algorithmic threshold, which means that this expansion is toward the optimal direction
and greedy expansion can be carried out. The newly generated xnew2, xnew3 and xnew4 all
satisfy the condition, and the random tree is expanded to xnew5. The obstacle repulsive

force
→
F rep has a significant effect on xnew5, and the greedy expansion stops when the pinch

angle θ5 is out of range. As shown in the figure, the random tree is greedily expanded to
reach the favorable position quickly along the optimal direction, which greatly reduces the
time required for exploration. It is worth noting that the APF direction only represents the
optimal direction for a certain local region. Sometimes, random trees are extended to local
minima regions, while the random expansion of the RRT algorithm can help the random
tree leave these regions.

Electronics 2023, 12, 4576 8 of 20

Electronics 2023, 12, x FOR PEER REVIEW 8 of 20

The direction of the potential field force �⃗�𝑝 obtained by the APF algorithm represents

the optimal direction of the expansion in the local region. The proposed algorithm, com-

bined with the greedy strategy, adds the 𝐶ℎ𝑒𝑐𝑘𝐴𝑛𝑔𝑙𝑒 procedure, which can determine

whether the angle 𝜃 between the �⃗�𝑝 and the expansion direction satisfies the greedy ex-

pansion condition. As shown in Figure 2, the starting point is expanded to obtain 𝑥𝑛𝑒𝑤1.

At this time the node is only subjected to the attraction �⃗�𝑎𝑡𝑡1 of 𝑥𝑔𝑜𝑎𝑙 , and the angle 𝜃1 is

below the algorithmic threshold, which means that this expansion is toward the optimal

direction and greedy expansion can be carried out. The newly generated 𝑥𝑛𝑒𝑤2 , 𝑥𝑛𝑒𝑤3

and 𝑥𝑛𝑒𝑤4 all satisfy the condition, and the random tree is expanded to 𝑥𝑛𝑒𝑤5. The obsta-

cle repulsive force �⃗�𝑟𝑒𝑝 has a significant effect on 𝑥𝑛𝑒𝑤5, and the greedy expansion stops

when the pinch angle 𝜃5 is out of range. As shown in the figure, the random tree is greed-

ily expanded to reach the favorable position quickly along the optimal direction, which

greatly reduces the time required for exploration. It is worth noting that the APF direction

only represents the optimal direction for a certain local region. Sometimes, random trees

are extended to local minima regions, while the random expansion of the RRT algorithm

can help the random tree leave these regions.

Figure 2. Fast expansion with greedy strategy.

3.2. High-Cost Rejection

As the algorithm obtained the initial solution, we divided the configuration space

into high-cost and low-cost regions. The division was based on the current shortest path

cost 𝑐𝑚𝑖𝑛 and the heuristic cost f-value of the region. The cost g-value of the path length

between 𝑥 and 𝑥𝑖𝑛𝑖𝑡 and the cost h-value of the linear distance between 𝑥 and 𝑥𝑔𝑜𝑎𝑙

were calculated based on the method in [13]. From this, the heuristic function f-value was

calculated as follows:

() () ()f x g x h x= + (7)

where 𝑓(𝑥) was the theoretical minimum cost of the path through the point. If the 𝑓(𝑥) of a

node or sampling point was greater than 𝑐𝑚𝑖𝑛 , it was considered to be in the high-cost region.

According to the original RRT* and the P-RRT* algorithm, the randomness of sam-

pling ensures that, regardless of the cost of the current optimal path, the sampling region

is located throughout the configuration space. However, sampling points falling in high-

cost regions make it difficult to accelerate convergence. The improved algorithm proposed

in this paper generates 𝑥𝑟𝑎𝑛𝑑 randomly in 𝜒𝑓𝑟𝑒𝑒 , but valid sampling must satisfy

𝑓(𝑥𝑟𝑎𝑛𝑑) < 𝑐𝑚𝑖𝑛 , where 𝑓(𝑥𝑟𝑎𝑛𝑑) = 𝑔(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡) + 𝑑(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑟𝑎𝑛𝑑) + ℎ(𝑥𝑟𝑎𝑛𝑑) . As shown

in Figure 3a, after obtaining the initial path 𝜎 and the path cost 𝑐𝑚𝑖𝑛 , the algorithm rejects

the newly generated sampling points 𝑥𝑟𝑎𝑛𝑑1 and 𝑥𝑟𝑎𝑛𝑑2 successively, because

Figure 2. Fast expansion with greedy strategy.

3.2. High-Cost Rejection

As the algorithm obtained the initial solution, we divided the configuration space
into high-cost and low-cost regions. The division was based on the current shortest path
cost cmin and the heuristic cost f-value of the region. The cost g-value of the path length
between x and xinit and the cost h-value of the linear distance between x and xgoal were
calculated based on the method in [13]. From this, the heuristic function f-value was
calculated as follows:

f (x) = g(x) + h(x) (7)

where f (x) was the theoretical minimum cost of the path through the point. If the
f (x) of a node or sampling point was greater than cmin, it was considered to be in the
high-cost region.

According to the original RRT* and the P-RRT* algorithm, the randomness of sampling
ensures that, regardless of the cost of the current optimal path, the sampling region is located
throughout the configuration space. However, sampling points falling in high-cost regions
make it difficult to accelerate convergence. The improved algorithm proposed in this paper
generates xrand randomly in χ f ree, but valid sampling must satisfy f (xrand) < cmin, where
f (xrand) = g(xnearest) + d(xnearest, xrand) + h(xrand). As shown in Figure 3a, after obtaining
the initial path σ and the path cost cmin, the algorithm rejects the newly generated sampling
points xrand1 and xrand2 successively, because f (xrand) > cmin. By resampling to obtain
xrand3, as opposed to the original sampling point, it is more likely to obtain a better path.
The algorithm for the sampling part is shown in Algorithm 6.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 20

𝑓(𝑥𝑟𝑎𝑛𝑑) > 𝑐𝑚𝑖𝑛 . By resampling to obtain 𝑥𝑟𝑎𝑛𝑑3 , as opposed to the original sampling

point, it is more likely to obtain a better path. The algorithm for the sampling part is shown

in Algorithm 6.

(a) (b)

Figure 3. Reject high-cost sampling points and nodes: (a) reject sampling point; and (b) reject

node.

Algorithm 6: 𝑁𝑒𝑤𝑆𝑎𝑚𝑝𝑙𝑒(𝑐𝑚𝑖𝑛 , 𝑟𝑎𝑡𝑒)

1: if 𝑔𝑜𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑎𝑡𝑒(𝑟𝑎𝑡𝑒) then

2: 𝑥𝑟𝑎𝑛𝑑 ← 𝑥𝑔𝑜𝑎𝑙 ;

3: else

4: while True

5: 𝑥𝑟𝑎𝑛𝑑 ← 𝑅𝑎𝑛𝑑𝑜𝑚(𝜒𝑓𝑟𝑒𝑒);

6: 𝑓(𝑥𝑟𝑎𝑛𝑑) ← 𝑥𝑛𝑒𝑎𝑟𝑐𝑜𝑠𝑡 + 𝑑(𝑥𝑟𝑎𝑛𝑑 , 𝑥𝑛𝑒𝑎𝑟) + 𝑑(𝑥𝑟𝑎𝑛𝑑 , 𝑥𝑔𝑜𝑎𝑙);

7: if 𝑓(𝑥𝑟𝑎𝑛𝑑) < 𝑐𝑚𝑖𝑛 then

8: break;

9: end if

10: end while

11: end if

12: return 𝑥𝑟𝑎𝑛𝑑;

As the number of iterations of the RRT* algorithm increases and 𝑐𝑚𝑖𝑛 became

smaller and smaller, there were some nodes on the random tree with 𝑓(𝑥𝑛𝑜𝑑𝑒) > 𝑐𝑚𝑖𝑛 . It

was impossible for these high-cost nodes to be part of the optimal path in subsequent

iterations. Nodes were classified as possible nodes and impossible nodes based on

𝑓(𝑥𝑛𝑜𝑑𝑒) and 𝑐𝑚𝑖𝑛:

min{ : () }possX x f x c= (8)

As shown in Figure 3b, the traditional algorithm took the nearest node 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 as

the parent node to extend the random tree to 𝑥𝑟𝑎𝑛𝑑, but the path cost was too high for this

to be the optimal path. The proposed algorithm rejects 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 and used 𝑥𝑝𝑛𝑒𝑎𝑟𝑒𝑠𝑡 as the

parent node extension to avoid the path passing through the high-cost region. The pseu-

docode of the improved algorithm is shown in Algorithm 7. The process of traversing the

nodes on the random tree by the algorithm sets the possibilities of the nodes, which do

not make the algorithm more complex.

Algorithm 7: 𝑁𝑒𝑤𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒(𝑇, 𝑥𝑟𝑎𝑛𝑑 , 𝑐𝑚𝑖𝑛)

1: 𝑋𝑙𝑖𝑠𝑡 ← 𝑇;

2: for each 𝑥𝑛𝑜𝑑𝑒 ∈ 𝑋𝑙𝑖𝑠𝑡 do

3: 𝐷𝑙𝑖𝑠𝑡 ← 𝑑(𝑥𝑛𝑜𝑑𝑒 , 𝑥𝑟𝑎𝑛𝑑);

4: 𝑓(𝑥𝑛𝑜𝑑𝑒) ← 𝑥𝑐𝑜𝑠𝑡 + 𝑑(𝑥𝑛𝑜𝑑𝑒 , 𝑥𝑔𝑜𝑎𝑙);

Figure 3. Reject high-cost sampling points and nodes: (a) reject sampling point; and (b) reject node.

Electronics 2023, 12, 4576 9 of 20

Algorithm 6: NewSample (cmin, rate)

1: if goalSampleRate(rate) then
2: xrand ← xgoal ;
3: else
4: while True
5: xrand ← Random

(
χ f ree

)
;

6: f (xrand)← xnearcost + d(xrand, xnear) + d
(

xrand, xgoal

)
;

7: if f (xrand) < cmin then
8: break;
9: end if
10: end while
11: end if
12: return xrand;

As the number of iterations of the RRT* algorithm increases and cmin became smaller
and smaller, there were some nodes on the random tree with f (xnode) > cmin. It was
impossible for these high-cost nodes to be part of the optimal path in subsequent iterations.
Nodes were classified as possible nodes and impossible nodes based on f (xnode) and cmin:

Xposs = {x : f (x) < cmin} (8)

As shown in Figure 3b, the traditional algorithm took the nearest node xnearest as the
parent node to extend the random tree to xrand, but the path cost was too high for this to be
the optimal path. The proposed algorithm rejects xnearest and used xpnearest as the parent
node extension to avoid the path passing through the high-cost region. The pseudocode of
the improved algorithm is shown in Algorithm 7. The process of traversing the nodes on
the random tree by the algorithm sets the possibilities of the nodes, which do not make the
algorithm more complex.

Algorithm 7: NewNearestPossible (T, xrand, cmin)

1: Xlist ← T ;
2: for each xnode ∈ Xlist do
3: Dlist ← d(xnode, xrand);

4: f (xnode)← xcost + d
(

xnode, xgoal

)
;

5: SetPossibility(f (xnode), cmin);
6: end for
7: for i = 0 to N do
8: xnearest ← min(Dlist) ;
9: if CheckPossibility(xnearest) then
10: break;
11: else Dlist(xnearest)← ∞ ;
12: end for
13: return xnearest;

3.3. Path Optimization

The path generated by RRT* contained many redundant nodes, so the random tree
can be pruned to turn the path from zigzag to straight, which reduces the path cost and
smooths the UAVs’ flight path. The RRT* algorithm only considers xnear ∈ Xnear as a
potential parent node, while the proposed algorithm also considers other nodes along the
path. The principle of the improved algorithm is shown in Figure 4. When the new node
xnew is added to the random tree, the algorithm connects xnew with the most suitable node
xnear ∈ Xnear. Then, xnew can try to connect the parent node xancestor1 of the parent node
xparent = xnear and determine whether it will collide with the obstacle. If the condition
is met, xnew chooses xancestor1 as the parent node; the red dashed line reflects this process.

Electronics 2023, 12, 4576 10 of 20

According to the triangle inequality, the path cost of xnew at this time must be smaller
than in the previous case. The algorithm repeats this process until the condition is not
satisfied when it is connected to xancestor3. Finally, the algorithm obtains a path with fewer
nodes suitable for UAV flight. The pseudocode for this part is shown in Algorithm 8.
Rewire is similar to the above process. The node xnear ∈ Xnear tries to connect with xnew and
determine whether the path cost is smaller. If the condition is satisfied, xnew is set as xnear’s
parent node. The above process can be repeated until the node cannot satisfy the condition.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 20

5: 𝑆𝑒𝑡𝑃𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑓(𝑥𝑛𝑜𝑑𝑒), 𝑐𝑚𝑖𝑛);

6: end for

7: for 𝑖 = 0 to N do

8: 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← min(𝐷𝑙𝑖𝑠𝑡);

9: if 𝐶ℎ𝑒𝑐𝑘𝑃𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡) then

10: break;

11: else 𝐷𝑙𝑖𝑠𝑡(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡) ← ∞;

12: end for

13: return 𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ;

3.3. Path Optimization

The path generated by RRT* contained many redundant nodes, so the random tree

can be pruned to turn the path from zigzag to straight, which reduces the path cost and

smooths the UAVs’ flight path. The RRT* algorithm only considers 𝑥𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟 as a po-

tential parent node, while the proposed algorithm also considers other nodes along the

path. The principle of the improved algorithm is shown in Figure 4. When the new node

𝑥𝑛𝑒𝑤 is added to the random tree, the algorithm connects 𝑥𝑛𝑒𝑤 with the most suitable

node 𝑥𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟 . Then, 𝑥𝑛𝑒𝑤 can try to connect the parent node 𝑥𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟1 of the par-

ent node 𝑥𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑥𝑛𝑒𝑎𝑟 and determine whether it will collide with the obstacle. If the

condition is met, 𝑥𝑛𝑒𝑤 chooses 𝑥𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟1 as the parent node; the red dashed line reflects

this process. According to the triangle inequality, the path cost of 𝑥𝑛𝑒𝑤 at this time must

be smaller than in the previous case. The algorithm repeats this process until the condition

is not satisfied when it is connected to 𝑥𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟3. Finally, the algorithm obtains a path

with fewer nodes suitable for UAV flight. The pseudocode for this part is shown in Algo-

rithm 8. 𝑅𝑒𝑤𝑖𝑟𝑒 is similar to the above process. The node 𝑥𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟 tries to connect

with 𝑥𝑛𝑒𝑤 and determine whether the path cost is smaller. If the condition is satisfied,

𝑥𝑛𝑒𝑤 is set as 𝑥𝑛𝑒𝑎𝑟’s parent node. The above process can be repeated until the node can-

not satisfy the condition.

Figure 4. Reselect the parent node.

Algorithm 8: 𝑁𝑒𝑤𝐶ℎ𝑜𝑜𝑠𝑒𝑃𝑎𝑟𝑒𝑛𝑡(𝑋𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤)

1: for each 𝑥𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟 do

2: if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟) then

3: 𝑐𝑛𝑒𝑎𝑟 ← 𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑎𝑟) + 𝑑(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤);

4: if 𝑐𝑛𝑒𝑎𝑟 < 𝑐𝑚𝑖𝑛 then

5: 𝑥𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑥𝑛𝑒𝑎𝑟 ;

6: 𝑐𝑚𝑖𝑛 ← 𝑐𝑛𝑒𝑎𝑟 ;

7: end if

Figure 4. Reselect the parent node.

Algorithm 8: NewChooseParent(Xnear, xnew)

1: for each xnear ∈ Xnear do
2: if CollisionFree(xnew, xnear) then
3: cnear ← Cost(xnear) + d(xnear, xnew) ;
4: if cnear < cmin then
5: xparent ← xnear ;
6: cmin ← cnear ;
7: end if
8: end if
9: end for
10: while xancestor 6= xinit do
11: if CollisionFree(xancestor, xnew) then
12: xparent ← xancestor ;
13: else
14: break
15: end while
16: return xparent;

3.4. Algorithm Flow

The proposed algorithm is represented in Algorithm 4. First, the algorithm is initialized
based on the information in the space to construct a random tree starting with xinit, and
then the first sampling is performed in a loop. The initial sampling range is unrestricted.
Once the initial path is obtained for the random tree, the algorithm rejects the high-cost
region sampling points based on cmin. Then, all nodes are classified according to the f-value,
and only nodes with f (xnode) ≤ cmin are set as possible nodes and connected to xnew. Due
to the APF, each node expands xnew in the Steer procedure in the direction of the total

combined force
→
F total . After expansion in a certain direction, the proposed algorithm

determines whether to start the greedy expansion based on the force acting on the node
and the direction of the expansion. If the edge generated by joining xnew and xparent passes
the collision-free detection, xnew is added to the random tree. Next, xnew finds the parent

Electronics 2023, 12, 4576 11 of 20

node with the lowest cost among the set of nearby nodes Xnear and the ancestor nodes on
the path, which removes a large number of redundant nodes. If the Euclidean distance
between xnew and xgoal is less than the set value, the nodes can be connected, and the path
is output in the algorithm. Otherwise, the next iteration is carried out. The loop ends after
reaching the set number of iterations.

3.5. Algorithm Analysis

The probabilistic completeness and asymptotic optimality of RRT* and P-RRT* have
been proven in their respective papers [25,35]. The proposed algorithm is identical to
the sampling method of P-RRT* until the initial solution is obtained. The greedy strat-
egy does not change the way new nodes are expanded by sampling. In addition, path
optimization only changes the connection distribution of the random tree, and the nodes
remain connected to the starting point. Hence the proposed algorithm is probabilistically
complete, i.e., a feasible solution is obtained when the number of iterations tends to infinity.
Asymptotic optimality requires that the algorithm obtains a solution with a minimum cost
as the number of iterations tends to infinity. The nodes of the more optimal solution after
the algorithm obtains the initial solution are necessarily distributed in the low-cost regions.
The proposed algorithm restricts the sampling to the low-cost regions after obtaining the
initial solution and does not miss the optimal solution. Moreover, the greedy strategy and
path optimization do not affect the way the nodes are generated. Therefore, the proposed
algorithm is also asymptotically optimal.

The computational complexity of the algorithms has been analyzed in the original
papers proposing RRT* and P-RRT*. Time and space complexity is used to measure the
time and space required by the algorithm. For two functions, f (n) and g(n), f (n) is said to
belong to O(g(n)) if

lim
n→∞

E
[

f (n)
g(n)

]
< ∞ (9)

Let TPRO
n be the amount of memory space occupied by the proposed algorithm after

n iterations, it is obvious that
∣∣TPRO

n
∣∣ = ∣∣VPRO

n
∣∣+ ∣∣EPRO

n
∣∣, where VPRO

n and EPRO
n are the

number of nodes and edges.

Theorem 1.
∣∣TPRO

n
∣∣ ∈ O(n).

Proof of Theorem 1. The greedy strategy increases the number of nodes and edges produced
in each iteration. However, the boundary of the map limits the number of nodes added
by the greedy strategy,

∣∣VPRO
n

∣∣ = n + a, where a is the total number of nodes added in n
iterations. The number of edges is the same as the number of nodes, so that

∣∣EPRO
n

∣∣ = n + a
and

∣∣TPRO
n

∣∣ = 2n + 2a. Hence Theorem 1 can be proved from Equation (9). �

The time complexity needs to be calculated for the program that the algorithm executes
the most frequently in the loop, which in this paper’s algorithm is the CollisionFree program.
Let MPRO

n be the total time for the algorithm to call CollisionFree under n iterations, and
CPRO

n and RPRO
n be the time for NewChooseParent and NewRewire to call CollisionFree,

respectively, then MPRO
n = CPRO

n + RPRO
n .

Theorem 2. MPRO
n ∈ O(nlogn).

Proof of Theorem 2. Let a total of k nodes xnear ∈ Xnear participate in the NewChooseParent
process; it has been shown in [25] that obstacle collision detection needs to run in k(log n) time.
The proposed algorithm adds a nodes and an optimization path step. In the worst case, xnew
selects a parent node with a total of n + a− k ancestor nodes, and all of them participate in the
path optimization. Hence,CPRO

n ≤ (1 + a)(k + n + a− k)log n,CPRO
n ∈ O(nlogn). The k xnear

in NewRewire needs to perform the optimization path step for the n + a− k ancestor nodes

Electronics 2023, 12, 4576 12 of 20

of xnew in the worst case, so RPRO
n ≤ (1 + a)[k·(n + a− k)]log n and RPRO

n ∈ O(nlog n).
Thus Theorem 2 can be proved. �

4. Simulation Results

In this section, the proposed algorithm with RRT* and P-RRT* was compared to verify
the superiority. The simulation experiments were run on a computer with a 2.50 GHz
processor and 16 GB RAM. To fully analyze the effectiveness of the proposed algorithm,
four 2D maps and two 3D maps were used to simulate the various UAV scenes. Due to the
randomness of the RRT algorithm, 100 simulations for each map were run to analyze the
performances of different algorithms. The black graph on the map represents the obstacle.
The starting point xinit and the target point xgoal are represented by the red x. Each black
dot represents a node in the random tree. The path between two nodes is represented by a
green line, and the red line is the optimal path at the current iteration.

The UAVs needed to find the initial solution quickly to complete the path planning
and obtain a small cost path. Based on the above requirements, three evaluation indicators
were used: cmin was the path cost obtained by the algorithm within the specified number
of iterations, the smaller the number of iterations, the better the path quality; tinit was
the time cost of the algorithm obtaining the initial path, the lower the cost the better for
fast planning; tcost was the time cost the of the algorithm finding an excellent path with
a cost of 1.05c(σ∗), which measured the convergence speed of the algorithm, where c(σ∗)
was the cost of the optimal path. Failure meant that the algorithm could not find an
excellent path within 10,000 iterations. In addition to the three evaluation indicators, the
simulation data included the nodes and runtimes generated by the algorithms executing
500 or 1000 iterations in each environment.

4.1. 2D Environment

In this section, the 2D environments used for simulation testing included a sparse
environment Map A (Figure 5), a cluttered environment Map B (Figure 6), a simple maze
environment Map C (Figure 7), and a complex maze environment Map D (Figure 8). The
size of each map is 100 × 100. Table 1 shows the average data of 100 simulations for each
algorithm in the four maps, and the data visualization is shown in Figure 9.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 20

In this section, the 2D environments used for simulation testing included a sparse

environment Map A (Figure 5), a cluttered environment Map B (Figure 6), a simple maze

environment Map C (Figure 7), and a complex maze environment Map D (Figure 8). The

size of each map is 100 × 100. Table 1 shows the average data of 100 simulations for each

algorithm in the four maps, and the data visualization is shown in Figure 9.

(a) (b) (c)

Figure 5. Simulation results in Map A: (a) RRT*; (b) P-RRT*; and(c) improved P-RRT*.

(a) (b) (c)

Figure 6. Simulation results in Map B. (a) RRT*; (b) P-RRT*; (c) Improved P-RRT*.

(a) (b) (c)

Figure 7. Simulation results in Map C: (a) RRT*; (b) P-RRT*; and (c) improved P-RRT*.

Figure 5. Simulation results in Map A: (a) RRT*; (b) P-RRT*; and (c) improved P-RRT*.

Electronics 2023, 12, 4576 13 of 20

Electronics 2023, 12, x FOR PEER REVIEW 13 of 20

In this section, the 2D environments used for simulation testing included a sparse

environment Map A (Figure 5), a cluttered environment Map B (Figure 6), a simple maze

environment Map C (Figure 7), and a complex maze environment Map D (Figure 8). The

size of each map is 100 × 100. Table 1 shows the average data of 100 simulations for each

algorithm in the four maps, and the data visualization is shown in Figure 9.

(a) (b) (c)

Figure 5. Simulation results in Map A: (a) RRT*; (b) P-RRT*; and(c) improved P-RRT*.

(a) (b) (c)

Figure 6. Simulation results in Map B. (a) RRT*; (b) P-RRT*; (c) Improved P-RRT*.

(a) (b) (c)

Figure 7. Simulation results in Map C: (a) RRT*; (b) P-RRT*; and (c) improved P-RRT*.

Figure 6. Simulation results in Map B. (a) RRT*; (b) P-RRT*; (c) Improved P-RRT*.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 20

In this section, the 2D environments used for simulation testing included a sparse

environment Map A (Figure 5), a cluttered environment Map B (Figure 6), a simple maze

environment Map C (Figure 7), and a complex maze environment Map D (Figure 8). The

size of each map is 100 × 100. Table 1 shows the average data of 100 simulations for each

algorithm in the four maps, and the data visualization is shown in Figure 9.

(a) (b) (c)

Figure 5. Simulation results in Map A: (a) RRT*; (b) P-RRT*; and(c) improved P-RRT*.

(a) (b) (c)

Figure 6. Simulation results in Map B. (a) RRT*; (b) P-RRT*; (c) Improved P-RRT*.

(a) (b) (c)

Figure 7. Simulation results in Map C: (a) RRT*; (b) P-RRT*; and (c) improved P-RRT*. Figure 7. Simulation results in Map C: (a) RRT*; (b) P-RRT*; and (c) improved P-RRT*.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 20

(a) (b) (c)

Figure 8. Simulation results in Map D: (a) RRT*; (b) P-RRT*; and (c) improved P-RRT*.

Table 1. Simulation data in 2D environment.

Environment Algorithm 𝒄𝒎𝒊𝒏(m) 𝒕𝒊𝒏𝒊𝒕(s) 𝒕𝒄𝒐𝒔𝒕(s) Fail Nodes Runtime

Map A

RRT* 107.86 0.288 13.00 31 415 0.308

P-RRT* 105.32 0.338 11.10 11 397 0.477

Improved P-RRT* 96.69 0.181 1.73 0 684 1.873

Map B

RRT* 87.34 0.552 25.47 5 394 1.179

P-RRT* 83.53 0.642 19.96 6 375 2.105

Improved P-RRT* 78.67 0.389 1.91 0 671 13.750

Map C

RRT* 145.84 0.550 14.27 18 631 0.880

P-RRT* 141.12 1.011 14.72 3 610 1.592

Improved P-RRT* 134.15 0.406 3.13 0 1199 5.149

Map D

RRT* 132.75 1.069 15.30 2 731 1.588

P-RRT* 128.29 1.271 7.07 1 679 2.750

Improved P-RRT* 122.66 0.791 2.24 0 1637 14.117

(a)

(b)

Figure 8. Simulation results in Map D: (a) RRT*; (b) P-RRT*; and (c) improved P-RRT*.

Electronics 2023, 12, 4576 14 of 20

Table 1. Simulation data in 2D environment.

Environment Algorithm cmin(m) tinit(s) tcost(s) Fail Nodes Runtime

Map A
RRT* 107.86 0.288 13.00 31 415 0.308
P-RRT* 105.32 0.338 11.10 11 397 0.477
Improved P-RRT* 96.69 0.181 1.73 0 684 1.873

Map B
RRT* 87.34 0.552 25.47 5 394 1.179
P-RRT* 83.53 0.642 19.96 6 375 2.105
Improved P-RRT* 78.67 0.389 1.91 0 671 13.750

Map C
RRT* 145.84 0.550 14.27 18 631 0.880
P-RRT* 141.12 1.011 14.72 3 610 1.592
Improved P-RRT* 134.15 0.406 3.13 0 1199 5.149

Map D
RRT* 132.75 1.069 15.30 2 731 1.588
P-RRT* 128.29 1.271 7.07 1 679 2.750
Improved P-RRT* 122.66 0.791 2.24 0 1637 14.117

The cases plotted in the four maps highlights the characteristics of each algorithm.
The random tree of RRT* was distributed over the whole area of the map, which slowed
down the convergence of the algorithm. While the random tree of P-RRT* grew toward
the target point as a whole, a large number of nodes were distributed at the edge of the
map. The proposed algorithm has a large number of continuous nodes generated by the
greedy strategy and the random tree is distributed in the center of the map. The proposed
algorithm has a large number of continuous nodes generated by the greedy strategy and
the random tree is distributed in the center of the map. Benefiting from pruning to remove
redundant nodes, the proposed algorithm has the least number of path inflection points. As
shown in Figure 5, RRT* has eight inflection points and P-RRT* has nine inflection points,
while the proposed algorithm has only five inflection points, which is more suitable for
planning the flight paths of UAVs.

The data in Table 1 and the data distribution reflect the advantages of the proposed
algorithm. The proposed algorithm has the strongest search ability, and hence cmin is
minimized. Taking Map A as an example, the cmin of the algorithm was reduced by 10.36%
and 8.19% compared to RRT* and P-RRT*, respectively, which was mainly due to the high-
cost rejection and pruning methods implemented by the algorithm. Among all four maps,
P-RRT* had the largest time tinit searching for the initial path, RRT* had the second largest,
and the proposed algorithm had the smallest. Since P-RRT* added the step of sampling-
point deflection in the sampling procedure, this increased the time of each iteration. The
proposed algorithm expanded the random tree according to the direction of the artificial
potential field and incorporated a greedy strategy that allowed for fast expansion toward
the target point at the early stage of the algorithm operation. In an empty environment,
such as Map A, the proposed algorithm had the greatest advantage: tinit was reduced
by 37.15% compared to RRT*. The tcost data show that P-RRT* had a faster convergence
speed compared to RRT* in complex environments. However, the boxplots in Figure 9a
and c are very close to each other, which indicates that P-RRT* has no advantage in empty
environments, such as those of Map A and Map C. The proposed algorithm sped up the
convergence by rejecting high-cost nodes and sampling points, and the data show that the
method is effective. In Map B, the proposed algorithm searched for excellent paths in only
1.91 s, compared with 25.47 s and 19.96 s for RRT* and P-RRT*, respectively, and they failed
five and six times, respectively. The runtime data show that the proposed algorithm took
more time. However, in practice, the proposed algorithm requires fewer iterations to obtain
better quality paths, hence the time cost is lower.

Electronics 2023, 12, 4576 15 of 20

Electronics 2023, 12, x FOR PEER REVIEW 14 of 20

(a) (b) (c)

Figure 8. Simulation results in Map D: (a) RRT*; (b) P-RRT*; and (c) improved P-RRT*.

Table 1. Simulation data in 2D environment.

Environment Algorithm 𝒄𝒎𝒊𝒏(m) 𝒕𝒊𝒏𝒊𝒕(s) 𝒕𝒄𝒐𝒔𝒕(s) Fail Nodes Runtime

Map A

RRT* 107.86 0.288 13.00 31 415 0.308

P-RRT* 105.32 0.338 11.10 11 397 0.477

Improved P-RRT* 96.69 0.181 1.73 0 684 1.873

Map B

RRT* 87.34 0.552 25.47 5 394 1.179

P-RRT* 83.53 0.642 19.96 6 375 2.105

Improved P-RRT* 78.67 0.389 1.91 0 671 13.750

Map C

RRT* 145.84 0.550 14.27 18 631 0.880

P-RRT* 141.12 1.011 14.72 3 610 1.592

Improved P-RRT* 134.15 0.406 3.13 0 1199 5.149

Map D

RRT* 132.75 1.069 15.30 2 731 1.588

P-RRT* 128.29 1.271 7.07 1 679 2.750

Improved P-RRT* 122.66 0.791 2.24 0 1637 14.117

(a)

(b)

Electronics 2023, 12, x FOR PEER REVIEW 15 of 20

(c)

(d)

Figure 9. Simulation data distribution in 2D environment: (a) boxplots in Map A; (b) boxplots in

Map B; (c) boxplots in Map C; and (d) boxplots in Map D. The + sign is the outliers, the green triangle

is the mean, and the red line is the median.

The cases plotted in the four maps highlights the characteristics of each algorithm.

The random tree of RRT* was distributed over the whole area of the map, which slowed

down the convergence of the algorithm. While the random tree of P-RRT* grew toward

the target point as a whole, a large number of nodes were distributed at the edge of the

map. The proposed algorithm has a large number of continuous nodes generated by the

greedy strategy and the random tree is distributed in the center of the map. The proposed

algorithm has a large number of continuous nodes generated by the greedy strategy and

the random tree is distributed in the center of the map. Benefiting from pruning to remove

redundant nodes, the proposed algorithm has the least number of path inflection points.

As shown in Figure 5, RRT* has eight inflection points and P-RRT* has nine inflection

points, while the proposed algorithm has only five inflection points, which is more suita-

ble for planning the flight paths of UAVs.

The data in Table 1 and the data distribution reflect the advantages of the proposed

algorithm. The proposed algorithm has the strongest search ability, and hence 𝑐𝑚𝑖𝑛 is

minimized. Taking Map A as an example, the 𝑐𝑚𝑖𝑛 of the algorithm was reduced by

10.36% and 8.19% compared to RRT* and P-RRT*, respectively, which was mainly due to

the high-cost rejection and pruning methods implemented by the algorithm. Among all

four maps, P-RRT* had the largest time 𝑡𝑖𝑛𝑖𝑡 searching for the initial path, RRT* had the

second largest, and the proposed algorithm had the smallest. Since P-RRT* added the step

of sampling-point deflection in the sampling procedure, this increased the time of each

iteration. The proposed algorithm expanded the random tree according to the direction of

the artificial potential field and incorporated a greedy strategy that allowed for fast ex-

pansion toward the target point at the early stage of the algorithm operation. In an empty

environment, such as Map A, the proposed algorithm had the greatest advantage: 𝑡𝑖𝑛𝑖𝑡

was reduced by 37.15% compared to RRT*. The 𝑡𝑐𝑜𝑠𝑡 data show that P-RRT* had a faster

convergence speed compared to RRT* in complex environments. However, the boxplots

in Figure 9a and c are very close to each other, which indicates that P-RRT* has no ad-

vantage in empty environments, such as those of Map A and Map C. The proposed algo-

rithm sped up the convergence by rejecting high-cost nodes and sampling points, and the

Figure 9. Simulation data distribution in 2D environment: (a) boxplots in Map A; (b) boxplots in
Map B; (c) boxplots in Map C; and (d) boxplots in Map D. The + sign is the outliers, the green triangle
is the mean, and the red line is the median.

4.2. 3D Environment

In reality, UAVs need to consider six directions of movement, so we constructed two
3D maps to simulate the realistic scenarios that UAVs may encounter. Map E, shown
in Figure 10, simulated the environment of dense woods, where UAVs need to fly for
operations such as plant data collection or pesticide spraying. To simplify the problem,
only the main trunks of trees were kept as obstacles in this paper, and the map size is
50 × 50 × 20. Map F, shown in Figure 11, simulated a real plant factory environment, with

Electronics 2023, 12, 4576 16 of 20

tall plant cultivation racks used to grow crops with the greatest possible space utilization.
The UAVs needed to quickly reach the target point according to the operator’s command
and perform pest and disease detection on crops that are at different heights on the plant
cultivation racks. The size of Map F is 50 × 50 × 10. Table 2 shows the average data of
100 simulations of each algorithm in two maps, and the data visualization is depicted in
Figure 12.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 20

data show that the method is effective. In Map B, the proposed algorithm searched for

excellent paths in only 1.91 s, compared with 25.47 s and 19.96 s for RRT* and P-RRT*,

respectively, and they failed five and six times, respectively. The runtime data show that

the proposed algorithm took more time. However, in practice, the proposed algorithm

requires fewer iterations to obtain better quality paths, hence the time cost is lower.

4.2. 3D Environment

In reality, UAVs need to consider six directions of movement, so we constructed two

3D maps to simulate the realistic scenarios that UAVs may encounter. Map E, shown in

Figure 10, simulated the environment of dense woods, where UAVs need to fly for opera-

tions such as plant data collection or pesticide spraying. To simplify the problem, only the

main trunks of trees were kept as obstacles in this paper, and the map size is 50 × 50 × 20.

Map F, shown in Figure 11, simulated a real plant factory environment, with tall plant

cultivation racks used to grow crops with the greatest possible space utilization. The UAVs

needed to quickly reach the target point according to the operator’s command and per-

form pest and disease detection on crops that are at different heights on the plant cultiva-

tion racks. The size of Map F is 50 × 50 × 10. Table 2 shows the average data of 100 simula-

tions of each algorithm in two maps, and the data visualization is depicted in Figure 12.

(a) (b) (c)

Figure 10. Simulation results in Map E: (a) RRT*; (b) P-RRT*; and (c) improved P-RRT*.

(a) (b) (c)

Figure 11. Simulation results in Map F: (a) RRT*; (b) P-RRT*; and (c) improved P-RRT*.

Figure 10. Simulation results in Map E: (a) RRT*; (b) P-RRT*; and (c) improved P-RRT*.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 20

data show that the method is effective. In Map B, the proposed algorithm searched for

excellent paths in only 1.91 s, compared with 25.47 s and 19.96 s for RRT* and P-RRT*,

respectively, and they failed five and six times, respectively. The runtime data show that

the proposed algorithm took more time. However, in practice, the proposed algorithm

requires fewer iterations to obtain better quality paths, hence the time cost is lower.

4.2. 3D Environment

In reality, UAVs need to consider six directions of movement, so we constructed two

3D maps to simulate the realistic scenarios that UAVs may encounter. Map E, shown in

Figure 10, simulated the environment of dense woods, where UAVs need to fly for opera-

tions such as plant data collection or pesticide spraying. To simplify the problem, only the

main trunks of trees were kept as obstacles in this paper, and the map size is 50 × 50 × 20.

Map F, shown in Figure 11, simulated a real plant factory environment, with tall plant

cultivation racks used to grow crops with the greatest possible space utilization. The UAVs

needed to quickly reach the target point according to the operator’s command and per-

form pest and disease detection on crops that are at different heights on the plant cultiva-

tion racks. The size of Map F is 50 × 50 × 10. Table 2 shows the average data of 100 simula-

tions of each algorithm in two maps, and the data visualization is depicted in Figure 12.

(a) (b) (c)

Figure 10. Simulation results in Map E: (a) RRT*; (b) P-RRT*; and (c) improved P-RRT*.

(a) (b) (c)

Figure 11. Simulation results in Map F: (a) RRT*; (b) P-RRT*; and (c) improved P-RRT*.

Figure 11. Simulation results in Map F: (a) RRT*; (b) P-RRT*; and (c) improved P-RRT*.

Table 2. Simulation data in 3D environment.

Environment Algorithm cmin(m) tinit(s) tcost(s) Fail Nodes Runtime

Map E
RRT* 70.12 0.328 16.99 29 414 0.548
P-RRT* 67.33 0.400 10.22 2 384 1.185
Improved P-RRT* 65.62 0.233 1.81 0 476 15.388

Map F
RRT* 59.54 0.274 9.38 0 335 0.527
P-RRT* 57.96 0.352 6.71 0 287 0.998
Improved P-RRT* 56.08 0.205 1.65 0 313 7.282

Electronics 2023, 12, 4576 17 of 20

Electronics 2023, 12, x FOR PEER REVIEW 17 of 20

Table 2. Simulation data in 3D environment.

Environment Algorithm 𝒄𝒎𝒊𝒏(m) 𝒕𝒊𝒏𝒊𝒕(s) 𝒕𝒄𝒐𝒔𝒕(s) Fail Nodes Runtime

Map E

RRT* 70.12 0.328 16.99 29 414 0.548

P-RRT* 67.33 0.400 10.22 2 384 1.185

Improved P-RRT* 65.62 0.233 1.81 0 476 15.388

Map F

RRT* 59.54 0.274 9.38 0 335 0.527

P-RRT* 57.96 0.352 6.71 0 287 0.998

Improved P-RRT* 56.08 0.205 1.65 0 313 7.282

(a)

(b)

Figure 12. Simulation data distribution in 3D environment: (a) boxplots in Map E; and (b) boxplots

in Map F. The + sign is the outliers, the green triangle is the mean, and the red line is the median.

Similar to the cases in the 2D environment, the random trees generated by RRT* were

still distributed throughout the configuration space, while P-RRT* tried to make the ran-

dom trees grow toward the target point under the gravitational force of the target point,

but with limited effect. The proposed algorithm not only obtained paths with smaller costs

but also with fewer inflection points. The 𝑐𝑚𝑖𝑛 of the proposed algorithms in Map E and

F was reduced by 2.54% and 3.24%, respectively, compared to that of P-RRT*, although

the value of 𝑐𝑚𝑖𝑛 was already very close to the optimal value. In the 3D environment, the

proposed algorithm reduced the time by at least 25.18% more compared to that of RRT*.

Contrary to the cases in the 2D environment, RRT* had difficulty in searching for excellent

paths in the complex 3D environment and therefore had the largest 𝑡𝑐𝑜𝑠𝑡 and it had as

many as 29 failures in Map E. The distribution of the 𝑡𝑐𝑜𝑠𝑡 data in Figure 12a shows that

P-RRT* had a smaller median compared to that of the proposed algorithm, but due to the

large number of outliers in the former, both the box and the mean were higher than those

of the latter. The proposed algorithm limited the expansion of the random tree in the high-

cost region and significantly improved the convergence speed. The data in Table 2 and the

data distribution show that the proposed algorithm is more suitable for UAVs to deploy

and fly rapidly to accomplish realistic application tasks.

Figure 12. Simulation data distribution in 3D environment: (a) boxplots in Map E; and (b) boxplots
in Map F. The + sign is the outliers, the green triangle is the mean, and the red line is the median.

Similar to the cases in the 2D environment, the random trees generated by RRT* were
still distributed throughout the configuration space, while P-RRT* tried to make the random
trees grow toward the target point under the gravitational force of the target point, but
with limited effect. The proposed algorithm not only obtained paths with smaller costs
but also with fewer inflection points. The cmin of the proposed algorithms in Map E and
F was reduced by 2.54% and 3.24%, respectively, compared to that of P-RRT*, although
the value of cmin was already very close to the optimal value. In the 3D environment, the
proposed algorithm reduced the time by at least 25.18% more compared to that of RRT*.
Contrary to the cases in the 2D environment, RRT* had difficulty in searching for excellent
paths in the complex 3D environment and therefore had the largest tcost and it had as many
as 29 failures in Map E. The distribution of the tcost data in Figure 12a shows that P-RRT*
had a smaller median compared to that of the proposed algorithm, but due to the large
number of outliers in the former, both the box and the mean were higher than those of the
latter. The proposed algorithm limited the expansion of the random tree in the high-cost
region and significantly improved the convergence speed. The data in Table 2 and the data
distribution show that the proposed algorithm is more suitable for UAVs to deploy and fly
rapidly to accomplish realistic application tasks.

5. Discussion

In this paper we improved the P-RRT* algorithm by using the artificial potential field
to guide the greedy expansion and limit the exploration of high-cost regions. During the
simulation experiments, we discovered that some algorithmic parameters can greatly affect
the results. Theoretically, a smaller extension length can help the algorithm generate better
paths, but this consumes more exploration time when the algorithm runs on maps with

larger areas. The proportional setting of each component of
→
F total can also have an impact

on the effectiveness of the algorithm. When the ratio of potential field forces exceeded
0.5, the random tree, as a whole, was obviously biased toward the target point, producing
either superior or inferior effects in different maps. The proposed algorithm improved from
P-RRT* required the calculation of attractive and repulsive forces, so that the algorithm can

Electronics 2023, 12, 4576 18 of 20

set different Ka, Kr and dobs at each map. Theoretically, larger dobs can keep P-RRT* and
improved P-RRT* away from obstacles, but we found that smaller dobs produced better
results in environments with cluttered obstacles. We understood that the goal-biased
strategy was adopted in some improved RRT algorithms, but after simulation we did not
find an obvious improvement in the algorithm when incorporating this strategy.

6. Conclusions

In this paper, we proposed an improved algorithm based on P-RRT* applied to UAVs,
with the main goal of combining greedy strategy, rejecting high-cost nodes and sampling
points, and optimizing paths. The greedy strategy can help with the expansion of the
random tree to the optimal direction quickly and greatly reduce the time to obtain the
initial solution. The algorithm rejected nodes and sampling points located in the high-
cost region using the current path cost as the criterion, which improved the algorithm’s
iteration efficiency and sped up convergence. Finally, the random tree was pruned to reduce
redundant nodes and complete the optimized path. Compared to P-RRT*, the improved
P-RRT* not only had less cost and fewer path inflection points, but also obtained the initial
solution and converged to the optimal solution with faster efficiency. Simulations in six
environments showed that the proposed algorithm has significant advantages. Comparing
the cmin, tinit, and tcost indicators of the three algorithms, the results demonstrated that the
proposed algorithm reduced the path cost by at least 2.54% and shortened the search time
by at least 68.32% compared to P-RRT* in each environment. Moreover, the paths of the
proposed algorithm had fewer inflection points. In conclusion, the proposed algorithm
performed better under the same conditions, enabled the UAVs to complete planning more
quickly, and generated a better path with fewer turning points.

The improved algorithm proposed in this paper was applied to the global path plan-
ning of UAVs, which was suitable for the environment where the information was known
and there were no moving obstacles, The algorithm can be deployed on the ROS system
under the Ubuntu system and replace the global planner in the move_base feature pack,
which enables the UAVs to perform global path planning according to the customized
algorithm. However, in real applications, UAVs will run into many unknown obstacles
and need to use a local path-planning algorithm for dynamic obstacle avoidance. Future
research will focus on combining global path planning and local path planning to adapt
UAVs to real-world application environments.

Author Contributions: Conceptualization, X.X. and F.Z.; methodology, X.X. and F.Z.; software, X.X.
and F.Z.; validation, X.X. and Y.Z.; investigation, X.X.; resources, X.X. and Y.Z.; data curation, X.X.
and F.Z.; writing—original draft preparation, X.X. and F.Z.; writing—review and editing, F.Z. and
Y.Z.; visualization, F.Z.; supervision, Y.Z.; project administration, X.X.; funding acquisition, X.X. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key Research and Development Program of China
(2019YFE0126100); Science and Technology project of Zhejiang Province (2019C54005); National
Natural Science Foundation of China (61605173) and (61403346).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.-H.; Debbah, M. A Tutorial on UAVs for Wireless Networks: Applications, Challenges,

and Open Problems. IEEE Commun. Surv. Tutor. 2019, 21, 2334–2360. [CrossRef]
2. Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani,

M. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7,
48572–48634. [CrossRef]

3. Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using
multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [CrossRef]

https://doi.org/10.1109/COMST.2019.2902862
https://doi.org/10.1109/ACCESS.2019.2909530
https://doi.org/10.1016/j.rse.2019.111599

Electronics 2023, 12, 4576 19 of 20

4. Lee, H.-W. Research on multi-functional logistics intelligent Unmanned Aerial Vehicle. Eng. Appl. Artif. Intell. 2022, 116, 105341.
[CrossRef]

5. Rao, J.; Xiang, C.; Xi, J.; Chen, J.; Lei, J.; Giernacki, W.; Liu, M. Path planning for dual UAVs cooperative suspension transport
based on artificial potential field-A* algorithm. Knowl.-Based Syst. 2023, 277, 110797. [CrossRef]

6. Sun, W.; Dai, L.; Zhang, X.; Chang, P.; He, X. RSOD: Real-time small object detection algorithm in UAV-based traffic monitoring.
Appl. Intell. 2022, 52, 8448–8463. [CrossRef]

7. Hu, Z.; Zhang, Y.; Huang, H.; Wen, X.; Agbodike, O.; Chen, J. Reinforcement learning for energy efficiency improvement in
UAV-BS access networks: A knowledge transfer scheme. Eng. Appl. Artif. Intell. 2023, 120, 105930. [CrossRef]

8. Silvagni, M.; Tonoli, A.; Zenerino, E.; Chiaberge, M. Multipurpose UAV for search and rescue operations in mountain avalanche
events. Geomat. Nat. Hazards Risk 2017, 8, 18–33. [CrossRef]

9. Li, K.; Ge, F.; Han, Y.; Xu, W. Path planning of multiple UAVs with online changing tasks by an ORPFOA algorithm. Eng. Appl.
Artif. Intell. 2020, 94, 103807. [CrossRef]

10. Yang, Y.; Leeghim, H.; Kim, D. Dubins Path-Oriented Rapidly Exploring Random Tree* for Three-Dimensional Path Planning of
Unmanned Aerial Vehicles. Electronics 2022, 11, 2338. [CrossRef]

11. Bell, M.G. Hyperstar: A multi-path Astar algorithm for risk averse vehicle navigation. Transp. Res. Part B Methodol. 2009, 43,
97–107. [CrossRef]

12. Dijkstra, E. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
13. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
14. Hawa, M. Light-assisted A* path planning. Eng. Appl. Artif. Intell. 2013, 26, 888–898. [CrossRef]
15. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 1986, 5, 90–98. [CrossRef]
16. Sang, H.; You, Y.; Sun, X.; Zhou, Y.; Liu, F. The hybrid path planning algorithm based on improved A* and artificial potential field

for unmanned surface vehicle formations. Ocean Eng. 2021, 223, 108709. [CrossRef]
17. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern.

Part B (Cybern.) 1996, 26, 29–41. [CrossRef]
18. Miao, C.; Chen, G.; Yan, C.; Wu, Y. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm.

Comput. Ind. Eng. 2021, 156, 107230. [CrossRef]
19. Gerke, M. Genetic path planning for mobile robots. In Proceedings of the 1999 American Control Conference (Cat. No.

99CH36251), San Diego, CA, USA, 2–4 June 1999; IEEE: Piscataway, NJ, USA, 1999; pp. 2424–2429.
20. Niu, H.; Ji, Z.; Savvaris, A.; Tsourdos, A. Energy efficient path planning for Unmanned Surface Vehicle in spatially-temporally

variant environment. Ocean Eng. 2020, 196, 106766. [CrossRef]
21. Kavraki, L.E.; Svestka, P.; Latombe, J.-C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]
22. LaValle, S.M. Rapidly-Exploring random trees: A new tool for path planning. Annu. Res. Rep. 1998. Available online:

http://lavalle.pl/papers/Lav98c.pdf (accessed on 1 November 2023).
23. Kavraki, L.E.; Kolountzakis, M.N.; Latombe, J.-C. Analysis of probabilistic roadmaps for path planning. IEEE Trans. Robot. Autom.

1998, 14, 166–171. [CrossRef]
24. LaValle, S.M.; Kuffner, J.J., Jr. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400. [CrossRef]
25. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
26. Lonklang, A.; Botzheim, J. Improved rapidly exploring random tree with bacterial mutation and node deletion for offline path

planning of mobile robot. Electronics 2022, 11, 1459. [CrossRef]
27. Islam, F.; Nasir, J.; Malik, U.; Ayaz, Y.; Hasan, O. Rrt*-Smart: Rapid convergence implementation of RRT* towards optimal

solution. In Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, 5–8
August 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1651–1656.

28. Tak, H.-T.; Park, C.-G.; Lee, S.-C. Improvement of RRT*-smart algorithm for optimal path planning and application of the
algorithm in 2 & 3-dimension environment. J. Korean Soc. Aviat. Aeronaut. 2019, 27, 1–8.

29. Jordan, M.; Perez, A. Optimal Bidirectional Rapidly-Exploring Random Trees. Res. Rep. 2013. Available online: https://dspace.
mit.edu/bitstream/handle/1721.1/79884/MIT-CSAIL-TR-2013-021.pdf (accessed on 1 November 2023).

30. Tahir, Z.; Qureshi, A.H.; Ayaz, Y.; Nawaz, R. Potentially guided bidirectionalized RRT* for fast optimal path planning in cluttered
environments. Robot. Auton. Syst. 2018, 108, 13–27. [CrossRef]

31. Wang, J.; Li, B.; Meng, M.Q.-H. Kinematic Constrained Bi-directional RRT with Efficient Branch Pruning for robot path planning.
Expert Syst. Appl. 2021, 170, 114541. [CrossRef]

32. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: Optimal sampling-based path planning focused via direct sampling
of an admissible ellipsoidal heuristic. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Chicago, IL, USA, 14–18 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 2997–3004.

33. Jeong, I.-B.; Lee, S.-J.; Kim, J.-H. Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution
and convergence rate. Expert Syst. Appl. 2019, 123, 82–90. [CrossRef]

34. Li, Y.; Wei, W.; Gao, Y.; Wang, D.; Fan, Z. PQ-RRT*: An improved path planning algorithm for mobile robots. Expert Syst. Appl.
2020, 152, 113425. [CrossRef]

https://doi.org/10.1016/j.engappai.2022.105341
https://doi.org/10.1016/j.knosys.2023.110797
https://doi.org/10.1007/s10489-021-02893-3
https://doi.org/10.1016/j.engappai.2023.105930
https://doi.org/10.1080/19475705.2016.1238852
https://doi.org/10.1016/j.engappai.2020.103807
https://doi.org/10.3390/electronics11152338
https://doi.org/10.1016/j.trb.2008.05.010
https://doi.org/10.1007/BF01386390
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1016/j.engappai.2012.08.010
https://doi.org/10.1177/027836498600500106
https://doi.org/10.1016/j.oceaneng.2021.108709
https://doi.org/10.1109/3477.484436
https://doi.org/10.1016/j.cie.2021.107230
https://doi.org/10.1016/j.oceaneng.2019.106766
https://doi.org/10.1109/70.508439
http://lavalle.pl/papers/Lav98c.pdf
https://doi.org/10.1109/70.660866
https://doi.org/10.1177/02783640122067453
https://doi.org/10.1177/0278364911406761
https://doi.org/10.3390/electronics11091459
https://dspace.mit.edu/bitstream/handle/1721.1/79884/MIT-CSAIL-TR-2013-021.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/79884/MIT-CSAIL-TR-2013-021.pdf
https://doi.org/10.1016/j.robot.2018.06.013
https://doi.org/10.1016/j.eswa.2020.114541
https://doi.org/10.1016/j.eswa.2019.01.032
https://doi.org/10.1016/j.eswa.2020.113425

Electronics 2023, 12, 4576 20 of 20

35. Qureshi, A.H.; Ayaz, Y. Potential functions based sampling heuristic for optimal path planning. Auton. Robot. 2016, 40, 1079–1093.
[CrossRef]

36. Fan, J.; Chen, X.; Wang, Y.; Chen, X. UAV trajectory planning in cluttered environments based on PF-RRT* algorithm with
goal-biased strategy. Eng. Appl. Artif. Intell. 2022, 114, 105182. [CrossRef]

37. Liao, B.; Wan, F.; Hua, Y.; Ma, R.; Zhu, S.; Qing, X. F-RRT*: An improved path planning algorithm with improved initial solution
and convergence rate. Expert Syst. Appl. 2021, 184, 115457. [CrossRef]

38. Yang, K. Anytime synchronized-biased-greedy rapidly-exploring random tree path planning in two dimensional complex
environments. Int. J. Control Autom. Syst. 2011, 9, 750–758. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10514-015-9518-0
https://doi.org/10.1016/j.engappai.2022.105182
https://doi.org/10.1016/j.eswa.2021.115457
https://doi.org/10.1007/s12555-011-0417-7

	Introduction
	Background
	Problem Definition
	RRT*
	P-RRT*

	Improved P-RRT*
	Greedy Strategy
	High-Cost Rejection
	Path Optimization
	Algorithm Flow
	Algorithm Analysis

	Simulation Results
	2D Environment
	3D Environment

	Discussion
	Conclusions
	References

