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Abstract: The imbalance between normal and attack samples in the industrial control systems (ICSs)
network environment leads to the low recognition rate of the intrusion detection model for a few
abnormal samples when classifying. Since traditional machine learning methods can no longer
meet the needs of increasingly complex networks, many researchers use deep learning to replace
traditional machine learning methods. However, when a large amount of unbalanced data is used for
training, the detection performance of deep learning decreases significantly. This paper proposes an
intrusion detection method for industrial control systems based on a 1D CWGAN. The 1D CWGAN
is a network attack sample generation method that combines 1D CNN and WGAN. Firstly, the
problem of low ICS intrusion detection accuracy caused by a few types of attack samples is analyzed.
This method balances the number of various attack samples in the data set from the aspect of data
enhancement to improve detection accuracy. According to the temporal characteristics of network
traffic, the algorithm uses 1D convolution and 1D transposed convolution to construct the modeling
framework of network traffic data of two competing networks and uses gradient penalty instead
of weight cutting in the Wasserstein Generative Adversarial Network (WGAN) to generate virtual
samples similar to real samples. After a large number of data sets are used for verification, the
experimental results show that the method improves the classification performance of the CNN and
BiSRU. For the CNN, after data balancing, the accuracy rate is increased by 0.75%, and the accuracy,
recall rate and F1 are improved. Compared with the BiSRU without data processing, the accuracy of
the s1D CWGAN-BiSRU is increased by 1.34%, and the accuracy, recall and F1 are increased by 7.2%,
3.46% and 5.29%.

Keywords: intrusion detection; industrial control systems; Wasserstein generative adversarial
network

1. Introduction

The traditional industrial control system (ICS) is in a physical environment com-
pletely isolated from the external network, and its operating system requires a dedicated
communication protocol [1]. Most existing ICSs, such as building energy management
systems (EMSs), had only physical threats in the past. With the continuous integration
of information technology (IT) and ICSs, the integration process of industrialization and
informatization is accelerating, and potential ICS network security problems are gradually
exposed. ICSs are now usually connected to a communication network, so they can be
accessed remotely. The inherent connectivity in these services makes such systems face
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network security risks. And this expands the attack surface, including the possibility of
complex cyber attacks, which may adversely affect ICS operations, resulting in service
outages, equipment damage, security issues and related financial impacts.

Intrusion detection can take the initiative to monitor network traffic and host equip-
ment and find and prevent network attacks. In the ICS network environment, the imbalance
between normal samples and attack samples leads to a low recognition rate of intrusion
detection models for a small number of abnormal samples in the classification. The indus-
trial control intrusion detection model pays special attention to the detection success rate
of abnormal samples. With the development of artificial intelligence technology, machine
learning is more and more widely used in ICS intrusion detection. Although the traditional
machine learning method is simple and the training time is short, the detection accuracy
is relatively low. In addition, complex data preprocessing and artificial feature extraction
are required before processing these industrial control data, which requires rich experience
and a lot of practice. The deep learning method can avoid complex data preprocessing and
identify attack-type data with high precision [2–5].

Researchers [6] have demonstrated that deep learning algorithms are more accurate
than traditional machine learning algorithms. However, when a large amount of unbal-
anced data is used for training, the detection performance of deep learning decreases
significantly. The imbalance of traffic data of ICSs is the main factor, and generative ad-
versarial networks (GANs) have become a research hotspot for enhancing a few types
of data. However, GANs have the problems of unstable training, disappearing gradient
and mode collapse. In view of the shortcomings of GANs, WGANs make the training
of the model more stable and reduce the occurrence of mode collapse by introducing the
Wasserstein distance. At the same time, WGANs can generate more samples by optimizing
the Wasserstein distance. In general, WGANs are improved on the basis of GANs, which
improve the stability of training and the diversity of generated samples and alleviate the
problem of gradient disappearance.

Aiming at the imbalance of ICS traffic data, this paper proposes a network attack
sample generation method, 1D CWGAN, which integrates 1D CNN and WGAN. The
algorithm uses 1D convolution and 1D transposed convolution to construct two competitive
network traffic data modeling frameworks and uses gradient penalty instead of weight
pruning in the WGAN to improve the stability of model training. Finally, a convolutional
neural network (CNN) and bidirectional simple recurrent unit (BiSRU) are used to verify
the 1D CWGAN model on the enhanced data set.

2. Related Work

In this section, we introduce related work, including intrusion detection methods
based on machine learning and deep learning ICSs.

2.1. Intrusion Detection Method Based on Machine Learning

There are many classical machine learning methods, including support vector machine
(SVM) [7], decision tree [8] and naive Bayes [9]. Anton et al. [10] used SVM to detect
seven different classes of attacks in the gas pipeline of the standard industrial data set.
Although a high accuracy rate was achieved, the precision rate was low. Al-Asiri et al. [11]
used the gas pipeline of the standard industrial data set to verify the effectiveness of the
decision tree classifier for various features in the SCADA system using an IDS with a single
network metric and physical metric. Khan et al. [12] used the original features from the gas
pipeline data set to formulate a new set of features for attack detection using naive Bayes
in supervised learning mode. Tian et al. [13] proposed a method that combines machine
learning optimized by a swarm intelligence algorithm and deep learning. They used a
stack autoencoder to reduce the dimension of data feature and then combined SVM and
an artificial bee colony algorithm to perform an intrusion detection experiment. Although
machine-learning-based methods have achieved good results in recent years, they can
only perform shallow learning and cannot accurately identify network attacks in ICSs [14].
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For example, SVM instead leads to a decrease in accuracy when the number of samples
increases, naive Bayes methods do not handle data with correlated attributes well and
decision tree has poor generalization capabilities [15,16].

2.2. Intrusion Detection Method Based on Deep Learning

With the increasing computing power of computers, deep learning methods are rapidly
emerging in various fields, especially in image detection and speech recognition [17]. At
the same time, this has led many scholars in the direction of industrial Internet security
to apply deep learning to intrusion detection of ICSs. Yang et al. [18] proposed a CNN
for intrusion detection systems (IDSs). Liu et al. [19] proposed a hybrid method of deep
learning and population intelligence optimization algorithms. They used a CNN for feature
extraction and anomaly recognition; then, the features extracted by the CNN model were
invoked as input to the algorithm to construct a normal state process transfer model. RNNs
are widely used as temporal deep learning models for intrusion detection of ICSs. The IDSs
provide an effective method of abnormal traffic detection. Yin Let al. [20] proposed an IDS
based on the RNN-IDS algorithm. The method was validated using the NSL_KDD data set,
and the results showed that it outperformed traditional machine learning methods. LSTM
is a variant of SimpleRNN, and it alleviates the problem of gradient vanishing and gradient
explosion of SimpleRNN to a certain extent. Roy et al. [21] proposed an Internet of Things
(IoT) intrusion detection method based on a bidirectional long short-term memory recurrent
neural network (BLSTM RNN) to improve the problem of insufficient SimpleRNN temporal
storage capacity. Sokolov et al. [22] used GRU for experiments on intrusion detection in the
gas pipeline data set and investigated the applicability of the method in various aspects
of intrusion detection of ICSs. In 2018, Lei et al. proposed an SRU model [23]. The model
used a simpler structure to solve the sequence dependence problem in previous LSTM
and GRU models, further alleviating the problem of RNN gradient vanishing and gradient
explosion and enabling parallel computation. SRU has been successfully applied in the
field of classification and conversational systems.

Researchers have proved that deep learning algorithms are more accurate than tra-
ditional machine learning algorithms. However, when training with a large amount of
imbalanced data, the detection performance of deep learning decreases significantly. The
imbalance of ICS traffic data is the main factor, and GANs have become a research hotspot
for enhancing several types of data. However, GANs have problems such as unstable
training, gradient disappearance and model collapse. This paper proposes an ICS traf-
fic data detection model based on a CNN and BiSRU. The CNN can effectively extract
the spatial features of traffic data, and the BiSRU can effectively learn the forward and
backward time series features of ICSs. At the same time, one-dimensional convolution
and one-dimensional transposed convolution are used to establish discriminator D and
generator G, which is conducive to the establishment of the network model and the better
simulation of data distribution of the ICS network traffic. The WGAN with gradient penalty
(GP) can effectively solve the problem of model collapse during training. This study has
conducted sufficient experiments on multiple data sets to verify our proposed method.

3. ICS Intrusion Detection Method Based on 1D CWGAN

In this paper, 1D convolution and 1D transposed convolution are used to build dis-
criminator D and generator G, which is conducive to the network model to better simulate
the data distribution of the ICS network traffic. The WGAN with gradient penalty (GP) can
effectively solve the problem of model collapse during training. The detection models of
the ICS traffic data based on a CNN and BiSRU are proposed, respectively.

3.1. Overview of GAN

A GAN is a powerful neural network for unsupervised learning, first developed
and introduced in 2014. A GAN is a system composed of two competing neural network
models that compete with each other and can analyze, capture and replicate changes
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in the data set [24]. In a GAN, there is a generator and a discriminator. The generator
generates false data samples and tries to deceive the discriminator. On the other hand, the
discriminator attempts to distinguish between true and false samples. Both the generator
and the discriminator are neural networks. The generator network needs to continuously
optimize the data generated by itself so that the discriminator network cannot judge. The
discriminator network also needs to optimize itself to make its judgment more accurate.
The relationship between the two forms a confrontation, so it is called a confrontation
network. They compete with each other in the training phase and repeat these steps. In
this process, the generator and discriminator become better and better in their respective
work after each game.

3.1.1. Generator

The generator G is responsible for learning the real distribution of the sample. The
function of the generator is similar to that of the autoencoder. The random vector z
is sampled from the prior distribution, and the generated sample G (z) is obtained by
generating the network parameterized distribution. From the input and output level, the
function of the generator is to convert the hidden vector z into the sample vector x through
the neural network.

3.1.2. Discriminator

The discriminator is similar to the ordinary binary classification network. It accepts
the data set of the input sample x, including the samples sampled from the real data
distribution, and also includes the false samples sampled from the generated network,
which together form the discriminator training data set [25]. The discriminator output is
the probability P belonging to the real sample, the labels of all real samples are labeled as
true, and the samples generated by all generators are labeled as false.

3.1.3. Network Training

The training process is a process of the generator and discriminator game. The genera-
tor generates false data and then inputs both the generated false data and the true data into
the discriminator, which determines what is true and what is false. The discriminator must
have a large error for the first time, and then the discriminator is optimized according to the
error. As the discriminator level increases, it is difficult to deceive the discriminator again
with the data generated by the generator, so the optimization of the generator continues.
As the generator level increases, in turn, it continues to train the discriminator, so that the
cycle is repeated until Nash equilibrium is reached.

The training of the GAN first trains D and then trains G in the first round. It is not
necessary to wait for all of the D training to start training G, because the training of D also
requires the output value of G in the previous round as the input. In the first stage, only
discriminant model D is involved. The sample in the training set is used as the input of
D, and a certain value between 0 and 1 is output. The larger the value, the greater the
possibility that the sample is real data. In this process, we hope that D can make the output
value close to 1 as much as possible. In the second stage, both the discriminant model D
and the generation model G are involved. First, the noise z is input into G, G learns the
probability distribution from the real data set and generates false samples, and then inputs
the false samples into the discriminant model D. This time, D will enter the value 0 as much
as possible. Therefore, in this process, the discriminant model D is equivalent to a binary
classifier, and the data are either classified as 1 or 0. The result of the last two model games
is that G can generate false data G (z). However, it is difficult for D to determine whether
the data generated by G are true, that is, D (G (z)) = 0.5.

3.2. Data Enhancement Method Based on 1D CWGAN

In order to solve the problem of unbalanced data set samples caused by the small
number of attack samples, this chapter proposes a 1D CWGAN algorithm to generate
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virtual samples to balance the number of samples in various data sets. Aiming at the
temporal characteristics of network traffic, the algorithm uses 1D convolution and 1D
transposed convolution to construct two network traffic data modeling frameworks of
competitive networks and uses the gradient penalty in the WGAN instead of weight
clipping to improve the stability of model training. Finally, a CNN and BiSRU are used to
verify the 1D CWGAN model of the enhanced data set. The ICS intrusion detection data
enhancement model based on 1D CWGAN is shown in Figure 1.
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3.3. Description of Intrusion Detection Algorithm Based on 1D CWGAN

Using the generative adversarial network to learn the data distribution of the ICS
network traffic data, a virtual sample similar to the real sample is generated. The con-
frontation process needs to train the generator G and the discriminator D at the same time.
For serial data like the network traffic of ICSs, this paper uses 1D convolution and 1D
transposed convolution to construct a modeling framework for network traffic data for
two competing networks. The generator model generates synthetic data examples with
similar distribution to the real sample data by random Gaussian noise; the discriminator
model is used to distinguish whether the generated synthetic data are real or not. In the
process of the game between the two models, the generator model generates samples to
deceive the discriminator model as much as possible, and the discriminator model avoids
this deception as much as possible. Finally, generator G and discriminator D will be in
Nash equilibrium. The objective function is written in the form of a minimum–maximum
game:

min
D

max
G

V(D, G)= Ex∼pr
[logD(x)] + Ez∼pg

[log(1−D(G(z)))] (1)

where x is the real data, pr is the probability distribution of the real data, z is the input noise
of the generator, pg is the distribution of the generated data G(z) and D(x) is the output
of the discriminator network. The objective function in (1) is essentially to minimize the
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Jensen–Shannon (JS) dispersion between the real data distribution and the virtual data
distribution under the premise that the discriminator D is optimal.

Arjovsky et al. [26] theoretically analyzed that the JS dispersion is not suitable for
measuring the distance between disjoint parts of the distribution and used the Wasserstein
distance to measure the distance between the generated distribution and the real data
distribution, providing meaningful gradient information to solve the problem of instability
of GAN training data and model collapse. Although the training stability of the WGAN is
further enhanced than that of the original GAN, the WGAN uses Lipschitz weight pruning
to limit the parameters of the discriminator model to a certain range during training, which
makes the network parameters tend to be unreasonable extreme values and weakens the
fitting ability of the neural network. When the pruning range approaches the limit, it also
re-causes the phenomenon of gradient explosion. Therefore, this paper introduces the
gradient penalty (GP) term, which improves the Lipschitz continuity constraint and uses
the gradient penalty instead of weight clipping in the WGAN to improve the stability of
model training. The loss function of the 1D CGAN with the introduction of the GP term is
shown in Equation (2):

L= EG(z)∼pg
[D(G(z))]− Ex∼pr

[D(x)] +ϕEx̂∼px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
(2)

where ϕ is the gradient penalty coefficient and px̂ is the random sample between the real
data x and the random noise z. ∇x̂D(x̂) represents the gradient of discriminator D. The
first two terms of the loss function are the original discriminator D loss, and the latter is the
introduced GP.

The specific steps of the algorithm are as follows:
Step 1: Separate different types of attack data and generate corresponding virtual

samples through the following steps.
Step 2: Generate the random sample set. The random noise z is used as the input layer

of the generation network, denoted as {z1, z2, · · · , zn}, where zn is a random number.
The generator network generates close to real dummy samples by capturing the probability
distribution of the network traffic data of ICSs during the training process. The simulation
of the generated attack samples is very low at this time.

Step 3: Train discriminator D. Fix the generator G, network traffic data of the ICSs and
the set of fake attack samples generated from the G as the input of the D.−EG(z)∼Pg D(G(z))
and Equation (2) are used to establish the loss functions of the G and D, respectively, as the
reference standard for the adversarial training of the G and D. The objective function value
of the D is denoted as L.

Step 4: Train generator G. The further training of generator G is to be trained through
the G–D concatenation. After step 2, the D has a certain discriminative ability. The purpose
of training G is to generate a false sample that D cannot discriminate between true and
false. The set of false attack samples generated after step 1 with a similar distribution of
network traffic data of ICSs is used as the input layer of D.

Step 5: Alternate training. If the objective function value or the specified number of
cycles does not reach the threshold, step 2 and step 3 are cycled to alternate training for D
and G. The gradient update using an Adam optimizer optimizes the D loss value L.

Step 6: Generate data. The final output generates data for the generator G model,
solves the data set imbalance problem and reconstructs the data set.

A CNN and BiSRU were used to validate the 1D CWGAN model against the data set
after enhancement. Our CNN network stacks two convolutional layers before the pooling
layer. By stacking the convolutional layers, the activation function relu is sandwiched
between the convolutional layers. The stacking of nonlinear functions increases the non-
linear expressiveness of the activation function, which enables it to learn well the spatial
feature information of the ICSs’ complex high-dimensional network traffic data. Due to the
efficiency of the SRU, it is used to replace LSTM and GRU, but it can only extract sequence
features in a single direction and does not fully consider the influence before and after



Electronics 2023, 12, 4653 7 of 17

features of network traffic of ICSs. In this paper, we use the BiSRU for feature extraction
of long-distance dependence information of network traffic in both positive and negative
directions, and finally, through the intrusion detection, the results are finally output by
softmax.

4. Experiment
4.1. Data Set

In this paper, a large number of data sets are used to verify the proposed data aug-
mentation method. They are the gas pipeline industrial data set proposed by Mississippi
State University in 2014 and the TON_IoT (UNSW-IoT20) data set collected from a real
large-scale network of the University of New South Wales and the Australian Defence
College in 2020. It includes network data sets, Linux data sets and Windows data sets.

In 2014, Mississippi State University provided the gas pipeline standard industrial
data set. In recent years, it has been widely used in simulation experiments of ICS intrusion
detection. The system was collected from a set of natural gas pipeline systems based on
Modbus tcp, and its structure is similar to the data acquisition and monitoring control
system in the real production environment. The gas pipeline data set contains normal data
and seven types of attack data. See Table 1 for details.

Table 1. Description of data sets.

Attack Type Describe Number

Normal Normal (0) 61,156
Naïve malicious response injection NMRI (1) 2763

Complex malicious response injection CMRI (2) 15,466
Malicious state command injection MSCI (3) 782

Malicious parameter command injection MPCI (4) 7637
Malicious function code injection MFCI (5) 573

Denial of service DOS (6) 1837
Reconnaissance Recon (7) 6805

TON_IoT includes Linux operating system data, Windows operating system logs and
IoT network traffic. TON_IoT is represented in CSV format.

TON_IoT network data set: The network TON_IoT data set contains 44 attributes, and
each data point has a label classified as normal or attack. Table 2 shows the statistical data
of network data samples in the TON_IoT data set.

Table 2. Statistical records of TON_IoT network data sets.

Attack Type Normal DoS Ransomware Password Scanning

Number 300,000 20,000 20,000 20,000 20,000

Attack type Injection DDoS backdoor XSS mitm

Number 20,000 20,000 20,000 20,000 1043

TON_IoT Linux data set: The Linux data set is divided into three categories: disk,
memory and process. The first CSV file contains the properties of normal behavior and
attack disk usage. The second CSV file is related to memory activity and contains 11 at-
tributes, a tag column marked as normal or attacked and an attack type column containing
attack types. The last file belongs to the process in the Linux operating system. Table 3
shows the statistics recorded on the TON_IoT Linux process data set.
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Table 3. Statistical records of TON_IoT Linux process data sets.

Attack Type Normal DoS Password Scanning

Number 100,000 10,000 10,000 10,000

Attack type Injection DDoS XSS mitm

Number 10,000 10,000 10,000 112

4.2. Data Preprocessing

The data preprocessing stage mainly includes low variance filtering, normalization and
single-hot coding. In the preprocessing stage, the above method is used to remove irrelevant
data, which provides more effective data for the detection of subsequent algorithms.

4.2.1. Gas Pipeline Industrial Data Set

The data set is complex and variable, with many eigenvalues, but not every eigenvalue
is well distinguished, that is, it has a very low variance. Such eigenvalues have no analytical
value, so we chose to remove them directly. For example, if a feature in a column accounts
for 95% of the instance value of all input samples, it can be considered not very useful.
If 100% is 1, then this feature is meaningless. Nine feature columns with the smallest
variance were selected, and finally a data set with 17-dimensional effective eigenvalues
was obtained.

The classifier cannot directly process the unordered discrete features of the gas pipeline
data set. Using one-hot coding, a mapping table was established for discrete feature data
to make it ordered and continuous. The data set has eight classification results, as shown
in Equation (3), including Normal (0), NMRI (1), CMRI (2), MSCI (3), MPCI (4), MFCI (5),
DOS (6) and Recon (7). They can be encoded as (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0,
0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (01, 0, 0, 0, 0, 0,
1, 0) and (0, 0, 0, 0, 0, 0, 0, 1).

One− hot encoding =



(1, 0, 0, 0, 0, 0, 0, 0), i f the result is Normal(0).
(0, 1, 0, 0, 0, 0, 0, 0), i f the result is NMRI(1).
(0, 0, 1, 0, 0, 0, 0, 0), i f the result is CMRI(2).
(0, 0, 0, 1, 0, 0, 0, 0), i f the result is MSCI(3).
(0, 0, 0, 0, 1, 0, 0, 0), i f the result is MPCI(4).
(0, 0, 0, 0, 0, 1, 0, 0), i f the result is MFCI(5).
(0, 0, 0, 0, 0, 0, 1, 0), i f the result is DOS(6).
(0, 0, 0, 0, 0, 0, 0, 1), i f the result is Recon(7).

(3)

4.2.2. TON_IoT (UNSW-IoT20) Data Set

In the ToN_IoT data set, missing values must be filled and attributes that lead to
overfitting must be deleted.

1. Missing value filling. Missing values are common in ToN_IoT, and these missing
values must be handled appropriately. In the proposed model, the imputation of
missing values is replaced by the most frequent value in each feature containing
missing data.

2. Delete the attributes that cause overfitting. Multiple attributes such as timestamp,
IP address, source port and target port in the data set are deleted because they may
cause overfitting.

4.3. Evaluation Indicators of Intrusion Detection

Intrusion detection has different indicators to evaluate the results obtained. Among
these metrics, the most commonly used are accuracy, precision, recall and F1. A common
way to present these concepts is the cross-list between the class predicted by the model
and the actual class. This table is called the confusion matrix. The confusion matrix is
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a 2D matrix used to visualize the prediction of the classification model of the test label
data set. Table 4 shows the confusion matrix. True negative (TN) indicates the number of
benign samples correctly classified as benign, true positive (TP) indicates the number of
malicious samples misclassified as malicious, false negative (FN) indicates the number of
benign samples misclassified as malicious and false positive (FP) indicates the number of
malicious samples misclassified as benign.

Accuracy =
TN + TP

TP + FP + TN + TP
(4)

Table 4. Confusion matrix.

Predictive Value = 1 Predictive Value = 0

True value = 1 TP FN
True value = 0 FP TN

The precision, also known as the precision rate, aims to predict how many of the
positive results are correct, that is, how many are true positive, as shown in Formula (5).

Precision =
TP

TP + FP
(5)

Recall, also known as the recall rate, aims to find out how many of the samples that
are actually positive are predicted to be positive, that is, how many predictions are correct
for all the actual categories that are positive, as shown in Formula (6).

Recall =
TP

FN + TP
(6)

Precision and the recall index sometimes appear to be contradictory, so they need to
be evaluated. The most common method for this is F1. F1 is an evaluation index that can
reflect both the accuracy and recall rate, as shown in Formula (7). F1 combines the results
of precision and recall rate. When F1 is higher, it can show that the test method is more
effective.

F1 =
2TP

2TP + FP + FN
(7)

4.4. Analysis of Experimental Results

In this paper, all experiments were implemented in Python 3.6 and Keras 2.10.0. The
experiments were performed on a machine with Intel Core i7-9700H CPU, NVIDIA GeForce
GTX745 GPU.

4.4.1. Verify the Gas Pipeline Data Set

This section first verifies the gas pipeline data set released by Mississippi State Univer-
sity in 2014, and the detailed information of the gas pipeline data set is described in the
previous section. Firstly, the virtual samples of two minority classes MSCI and MFCI in the
gas pipeline data set are generated, so that the amount of data of different classes in the
training set is balanced. The specific number of generated samples is shown in Table 5. In
order to evaluate the performance of the 1D CWGAN, experiments were carried out using
10,000 samples from the gas pipeline data set sample, of which 1250 samples were of all
types. The ratio of training set to test set is 8:2.
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Table 5. The number of samples generated by the training set.

Attack Types Normal NMRI CMRI MSCI MPCI MFCI DOS Recon

Number of original samples 61,156 2763 15,466 782 7637 573 1837 6805

Number of samples generated 0 0 0 468 0 677 0 0

Total 61,156 2763 15,466 1250 7637 1250 1837 6805

In order to verify the superiority of the data enhancement method based on the 1D
CWGAN in the gas pipeline data set, a CNN and BiSRU were selected as the experimental
baseline methods. Previous studies used the traditional data replicator GAN method to deal
with unbalanced data, and this study used the 1D CWGAN method to generate minority
samples. In order to further illustrate the superiority of the performance of the model
in this paper, the original training set, the GAN enhanced data set and the 1D CWGAN
enhanced data set were sent to the CNN classifier and the BiSRU classifier for testing.

It can be seen from the analysis of the data in Table 6 that although the CNN and
BiSRU have achieved high accuracy on the gas pipeline data set, the F1 score is low, and
the F1 score is improved after using the GAN algorithm to generate a small number of
samples. It shows that the CNN and BiSRU methods cannot handle class-imbalanced
data well alone. The 1D CWGAN unbalanced sample generation method proposed in this
study significantly improves the classification performance of the CNN and BiSRU. For
the CNN, after data balancing, the accuracy rate is increased by 0.75%, and the accuracy,
recall rate and F1 are improved. Compared with the BiSRU without data processing, the
accuracy of the 1D CWGAN-BiSRU is increased by 1.34%, and the accuracy, recall and F1
are increased by 7.2%, 3.46% and 5.29%, respectively. In contrast, the data augmentation
method proposed in this paper obtains the highest F1 score on each classifier, showing
better performance than the GAN.

Table 6. Performance of different algorithms.

Method Accuracy (%) Precision (%) Recall (%) F1(%)

CNN [27] 97.58 90.42 89.97 90.30
BiSRU [14] 97.66 90.78 90.44 90.61
GAN-CNN 97.85 91.14 92.67 91.90

GAN-BiSRU 98.01 93.34 93.08 93.21
1D CWGAN-CNN 98.33 93.34 93.08 93.19

1D CWGAN-BiSRU 99.00 97.90 93.90 95.90

The experiment compares the classification performance of the model directly us-
ing CNN classification without data enhancement with the GAN-CNN model based on
GAN data enhancement and the 1D CWGAN-CNN model based on 1D CWGAN data
enhancement. It can be seen that the 1D CWGAN-CNN model has better performance
than the single CNN model and the GAN-CNN model after data enhancement. As shown
in Figure 2, accuracy is the ratio of well-classified data to total data, so the accuracy of all
categories is significantly improved. In particular, after the data augmentation of MSCI
and MFCI minority classes, the performance of a few attack classes is the same as that of
normal classes. As shown in Figure 3, the same verification with the BiSRU model also
shows that the data augmentation method proposed in this study understands more about
the characteristics of a few attacks.
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4.4.2. Verify the TON_IoT Network Data Set

This section next verifies the TON_IoT (UNSW-IoT20) network data set jointly pub-
lished by the University of New South Wales and the Australian Defence College. The
details of the network data set are described in the previous section. First, a small number
of mitm samples in the network data set are generated to balance the amount of data in
different categories in the training set. The specific number of generated samples is shown
in Table 7. In order to evaluate the performance of the 1D CWGAN, the experiment used
20,000 samples in the TON_IoT data set, of which 2000 samples were of all types. The ratio
of training set to test set is 8:2.
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Table 7. The number of samples generated by the training set.

Attack Types Normal Scanning Injection DDoS Mitm

Number of original samples 300,000 20,000 20,000 20,000 1043

Number of samples generated 0 0 0 0 957

Total 300,000 20,000 20,000 20,000 20,000

Attack Types Ransomware DOS XSS Password Backdoor

Number of original samples 20,000 20,000 20,000 20,000 20,000

Number of samples generated 0 0 677 0 0

Total 20,000 20,000 20,000 20,000 20,000

In order to verify the superiority of the data enhancement method based on the 1D
CWGAN in the TON_IoT (UNSW-IoT20) network data set, a CNN and BiSRU were selected
as the experimental baseline methods. Previous studies used the traditional data replicator
GAN method to generate minority samples, and this study used the 1D CWGAN method to
generate minority samples. In order to further illustrate the superiority of the performance
of the model in this paper, the original training set, the GAN enhanced data set and the
1D CWGAN enhanced data set were sent to the CNN classifier and the BiSRU classifier
for testing.

The analysis of the data in Table 8 shows that although the CNN and BiSRU have
achieved high accuracy on the TON_IoT network data set, the F1 score is low, and the F1
score is improved after using the GAN algorithm to generate a small number of samples.
It shows that the CNN and BiSRU methods cannot handle class-imbalanced data well
alone. The 1D CWGAN unbalanced sample generation method proposed in this study
significantly improves the classification performance of the CNN and BiSRU. For the CNN,
after data balancing, the accuracy rate is increased by 4.63%, and the accuracy, recall rate
and F1 are improved. Compared with the BiSRU without data processing, the accuracy of
the 1D CWGAN-BiSRU is increased by 5.28%. In contrast, the data augmentation method
proposed in this paper obtains the highest F1 score on each classifier, showing better
performance than the GAN.

Table 8. Performance of different algorithms.

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

CNN [27] 92.76 84.42 84.66 84.54
BiSRU [14] 92.84 84.78 84.54 84.66
GAN-CNN 94.89 87.14 87.74 87.44

GAN-BiSRU 95.76 88.34 88.21 88.27
1D CWGAN-CNN 97.39 90.34 90.45 90.39

1D CWGAN-BiSRU 98.12 92.90 91.54 92.21

The experiment also compares the classification performance of the model that directly
uses CNN classification without data enhancement with the GAN-CNN model based on
GAN data enhancement and the 1D CWGAN-CNN model based on 1D CWGAN data
enhancement. It can be seen that the performance of the 1D CWGAN-CNN model is better
than that of the single CNN model and the GAN-CNN model after data enhancement. As
shown in Figure 4, accuracy is the ratio of well-classified data to total data, so the accuracy
of all categories is significantly improved. In particular, after data augmentation of the
mitm minority class, the performance of the minority attack class is the same as that of the
normal class. As shown in Figure 5, the same verification with the BiSRU model also shows
that the data augmentation method proposed in this study understands more about the
characteristics of a few attacks.
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4.4.3. Verify the TON_IoT Linux Process Data Set

This section next verifies the TON_IoT (UNSW-IoT20) Linux process data set jointly
released by the University of New South Wales and the Australian National Defense College.
Firstly, a small number of mitm samples in the Linux process data set are generated, so
that the amount of data in different categories in the training set is balanced. The specific
number of generated samples is shown in Table 9. In order to evaluate the performance
of 1D CWGAN, experiments were performed using 10,000 samples from the TON_IoT
(UNSW-IoT20) Linux process data set sample, of which all kinds of samples were 1250. The
ratio of training set to test set is 8:2.

Table 9. The number of samples generated by the training set.

Attack Types Normal Scanning Injection DDoS

Number of original samples 60,112 10,000 10,000 10,000

Attack Types Mitm DOS XSS Password

Number of original samples 112 10,000 10,000 10,000
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In order to verify the superiority of the data enhancement method based on 1D
CWGAN in the TON_IoT (UNSW-IoT20) Linux process data set. CNN and BiSRU were
also selected as the experimental baseline methods. Previous studies used the traditional
data replicator GAN method to generate minority samples, and this study used the 1D
CWGAN method to generate minority samples. In order to further illustrate the superiority
of the performance of the model in this paper, the original training set, the GAN enhanced
data set and the 1D CWGAN enhanced data set are sent to the CNN classifier and the
BiSRU classifier for testing.

It can be seen from the analysis of the data in Table 10 that although CNN and BiSRU
have achieved high accuracy on the Linux process data set, the F1 score is low, and the
F1 score is improved after using the GAN algorithm to generate a few samples. It shows
that the CNN and BiSRU methods cannot handle class-imbalanced data well alone. The
1D CWGAN unbalanced sample generation method proposed in this study significantly
improves the classification performance of CNN and BiSRU. For CNN, after data balancing,
the accuracy rate is increased by 4.66%, and the accuracy, recall rate and F1 are improved.
Compared with BiSRU without data processing, the accuracy of 1D CWGAN-BiSRU is
improved by 4.33%. In contrast, the data augmentation method proposed in this paper
obtains the highest F1 score on each classifier, showing better performance than GAN.

Table 10. Performance of different algorithms.

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

CNN [27] 92.54 84.22 83.14 83.68
BiSRU [14] 92.87 84.54 84.18 84.98
GAN-CNN 94.65 87.87 87.54 87.70

GAN-BiSRU 95.54 88.01 88.21 88.11
1D CWGAN-CNN 97.78 90.54 90.41 90.47

1D CWGAN-BiSRU 97.20 92.45 91.76 92.10

The experiment also compares the classification performance of the model that directly
uses CNN classification without data enhancement with the GAN-CNN model based on
GAN data enhancement and the 1D CWGAN-CNN model based on 1D CWGAN data
enhancement. It can be seen that the 1D CWGAN-CNN model has better performance
than the single CNN model and the GAN-CNN model after data enhancement. As shown
in Figure 6, accuracy is the ratio of well-classified data to total data, so the accuracy of all
categories is significantly improved. In particular, after data augmentation of the mitm
minority class, the performance of the minority attack class is the same as that of the
normal class. As shown in Figure 7, the same verification with the BiSRU model also shows
that the data augmentation method proposed in this study understands more about the
characteristics of a few attacks.
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5. Conclusions

Aiming at the existing problems in the research topic of industrial control network
intrusion detection, this paper proposes a network traffic data enhancement model based
on a 1D CWGAN, which solves the problem of unbalanced traffic data categories in the
field of ICS network intrusion detection. A generator and discriminator based on the 1D
CWGAN model are constructed by using a 1D CNN and a 1D transposed CNN, and a
WGAN neural network with a GP term is used to expand network traffic data samples.
The verification experiment was carried out on a large number of industrial data sets.
The experimental results show that the ICS intrusion detection model based on the 1D
CWGAN has achieved good results. Although this method has potential applications
in industrial control system intrusion detection, it also has some shortcomings. First,
like any other generation model, this method can introduce noise into the data set, so
additional processing will be needed to mitigate the effects of noise in future work. In
addition, in order to find the best hyperparameter configuration, it is often necessary to
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conduct multiple trials and adjustments, which also increases the training time. In future
research, we will carry out more in-depth theoretical research to optimize the algorithm and
hardware, speed up its training and convergence process, and improve the computational
efficiency of the model to meet the real-time requirements of industrial control systems.
In addition, interpretive artificial intelligence techniques, such as interpretable machine
learning models or visualization tools, can be introduced to improve the interpretability
of methods.

Author Contributions: Conceptualization, Z.C. and H.D.; methodology, Z.C. and H.D.; validation,
H.W. and J.Z.; data curation, Y.S. and P.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No.
62072416), the Key Research and Development Special Project of Henan Province (221111210500), and
the Key Technologies R&D Program of Henan Province (232102211053, 222102210170, 222102210322).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Altunay, H.C.; Albayrak, Z.; Özalp, A.N.; Çakmak, M. Analysis of Anomaly Detection Approaches Performed Through Deep

Learning Methods in SCADA Systems. In Proceedings of the 2021 3rd International Congress on Human-Computer Interaction,
Optimization and Robotic Applications (HORA), Ankara, Turkey, 11–13 June 2021; pp. 1–6.

2. Balla, A.; Habaebi, M.H.; Elsheikh, E.A.; Islam, M.R.; Suliman, F.M. The Effect of Dataset Imbalance on the Performance of
SCADA Intrusion Detection Systems. Sensors 2023, 23, 758. [CrossRef] [PubMed]

3. Dusan, N.; Zivana, J. CNN based Method for the Development of Cyber-Attacks Detection Algorithms in Industrial Control
Systems. Comput. Secur. 2022, 114, 102585.

4. Qian, J.; Du, X.; Chen, B.; Qu, B.; Zeng, K.; Liu, J. Cyber-Physical Integrated Intrusion Detection Scheme in SCADA System of
Process Manufacturing Industry. IEEE Access 2020, 8, 147471–147481. [CrossRef]

5. Shen, C.; Liu, C.; Tan, H.; Wang, Z.; Xu, D.; Su, X. Hybrid-Augmented Device Fingerprinting for Intrusion Detection in Industrial
Control System Networks. IEEE Wirel. Commun. 2018, 25, 26–31. [CrossRef]

6. Jamoos, M.; Mora, A.M.; AlKhanafseh, M.; Surakhi, O. A New Data-Balancing Approach Based on Generative Adversarial
Network for Network Intrusion Detection System. Electronics 2023, 12, 2851. [CrossRef]

7. Reddy, R.R.; Ramadevi, Y.; Sunitha, K.V.N. Effective discriminant function for intrusion detection using SVM. In Proceedings
of the International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India, 21–24
September 2016; pp. 1148–1153.

8. Moon, D.; Im, H.; Kim, I.; Park, J.H. DTB-IDS: An intrusion detection system based on decision tree using behavior analysis for
preventing APT attacks. J. Supercomput. 2017, 73, 2881–2895. [CrossRef]

9. Mughal, M.O.; Kim, S. Signal classification and jamming detection in wide-band radios using Nave Bayes classifier. IEEE Commun.
Lett. 2018, 22, 1398–1401. [CrossRef]

10. Anton, S.D.D.; Sinha, S.; Schotten, H.D. Anomaly-based intrusion detection in industrial data with SVM and Random Forests. In
Proceedings of the 27th International Conference on Software, Telecommunications and Computer Networks (SOFTCOM), Split,
Croatia, 19–21 September 2019; pp. 465–470.

11. Al-Asiri, M.; El-Alfy, E.-S.M. On Using Physical Based Intrusion Detection in SCADA Systems. Procedia Comput. Sci. 2020, 170,
34–42. [CrossRef]

12. Khan, A.A.Z.; Serpen, G. Misuse intrusion detection using machine learning for Gas Pipeline SCADA networks. In Proceedings
of the International Conference on Security and Management (SAM), Las Vegas, NV, USA, 29 July–1 August 2019; pp. 84–90.

13. Tian, Q.; Li, J.; Liu, H. A Method for Guaranteeing Wireless Communication Based on a Combination of Deep and Shallow
Learning. IEEE Access 2019, 7, 38688–38695. [CrossRef]

14. Ding, P.; Li, J.; Wen, M.; Wang, L.; Li, H. Efficient BiSRU Combined with Feature Dimensionality Reduction for Abnormal Traffic
Detection. IEEE Access 2020, 8, 164414–164427. [CrossRef]

15. Mubarak, S.; Habaebi, M.H.; Islam, M.R.; Balla, A.; Tahir, M.; Elsheikh, A.; Suliman, F.M. Industrial Datasets with ICS Testbed
and Attack Detection Using Machine Learning Techniques. Intell. Autom. Soft Comput. 2022, 31, 1345–1360. [CrossRef]

16. Mubarak, S.; Habaebi, M.H.; Islam, M.R.; Rahman FD, A.; Tahir, M. Anomaly Detection in ICS Datasets with Machine Learning
Algorithms. Comput. Syst. Sci. Eng. 2021, 37, 014384. [CrossRef]

17. Liao, X.; Li, K.; Zhu, X.; Liu, K.J.R. Robust Detection of Image Operator Chain with Two-Stream Convolutional Neural Network.
IEEE J. Sel. Top. Signal Process. 2020, 14, 955–968. [CrossRef]

18. Yang, H.; Cheng, L.; Chuah, M. Deep-learning-based network intrusion detection for SCADA Systems. In Proceedings of the
IEEE Conference on Communications and Network Security (CNS), Washington, DC, USA, 10–12 June 2019; pp. 1–7.

https://doi.org/10.3390/s23020758
https://www.ncbi.nlm.nih.gov/pubmed/36679553
https://doi.org/10.1109/ACCESS.2020.3015900
https://doi.org/10.1109/MWC.2017.1800132
https://doi.org/10.3390/electronics12132851
https://doi.org/10.1007/s11227-015-1604-8
https://doi.org/10.1109/LCOMM.2018.2830769
https://doi.org/10.1016/j.procs.2020.03.007
https://doi.org/10.1109/ACCESS.2019.2905754
https://doi.org/10.1109/ACCESS.2020.3022355
https://doi.org/10.32604/iasc.2022.020801
https://doi.org/10.32604/csse.2021.014384
https://doi.org/10.1109/JSTSP.2020.3002391


Electronics 2023, 12, 4653 17 of 17

19. Liu, J.; Yin, L.; Hu, Y.; Lv, S.; Sun, L. A novel intrusion detection algorithm for industrial control systems based on CNN and
process state transition. In Proceedings of the 37th International Performance Computing and Communications Conference
(IPCCC), Orlando, FL, USA, 17–19 November 2018; pp. 1–8.

20. Yin, C.; Zhu, Y.; Fei, J.; He, X. A deep learning approach for intrusion detection using recurrent neural network. IEEE Access 2017,
5, 21954–21961. [CrossRef]

21. Roy, B.; Cheung, H. A deep learning approach for intrusion detection in internet of things using bi-directional long short-term
memory recurrent neural network. In Proceedings of the 28th International Telecommunication Networks and Applications
Conference (ITNAC), Sydney, NSW, Australia, 21–23 November 2018; pp. 57–62.

22. Sokolov, A.N.; Alabugin, S.K.; Pyatnitsky, I.A. Traffic modeling by recurrent neural networks for intrusion detection in industrial
control systems. In Proceedings of the International Conference on Industrial Engineering, Applications and Manufacturing
(ICIEAM), Sochi, Russia, 25–29 March 2019; pp. 1–5.

23. Lei, T.; Zhang, Y.; Wang, S.I.; Dai, H.; Artzi, Y. Simple recurrent units for highly parallelizable recurrence. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP), Brussels, Belgium, 31 October–4 November 2018;
pp. 4470–4481.

24. Alotaibi, A.; Rassam, M.A. Enhancing the Sustainability of Deep-Learning-Based Network Intrusion Detection Classifiers against
Adversarial Attacks. Sustainability 2023, 15, 9801. [CrossRef]

25. Mari, A.G.; Zinca, D.; Dobrota, V. Development of a Machine-Learning Intrusion Detection System and Testing of Its Performance
Using a Generative Adversarial Network. Sensors 2023, 23, 1315. [CrossRef] [PubMed]

26. Du, P.H.; Nguyen, H.N. APELID: Enhancing real-time intrusion detection with augmented WGAN and parallel ensemble
learning. Comput. Secur. 2024, 136, 103567.

27. Ling, J.; Zhu, Z.H.; Luo, Y.; Wang, H. An intrusion detection method for industrial control systems based on bidirectional simple
recurrent unit. Comput. Electr. Eng. 2021, 91, 107049. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.3390/su15129801
https://doi.org/10.3390/s23031315
https://www.ncbi.nlm.nih.gov/pubmed/36772355
https://doi.org/10.1016/j.compeleceng.2021.107049

	Introduction 
	Related Work 
	Intrusion Detection Method Based on Machine Learning 
	Intrusion Detection Method Based on Deep Learning 

	ICS Intrusion Detection Method Based on 1D CWGAN 
	Overview of GAN 
	Generator 
	Discriminator 
	Network Training 

	Data Enhancement Method Based on 1D CWGAN 
	Description of Intrusion Detection Algorithm Based on 1D CWGAN 

	Experiment 
	Data Set 
	Data Preprocessing 
	Gas Pipeline Industrial Data Set 
	TON_IoT (UNSW-IoT20) Data Set 

	Evaluation Indicators of Intrusion Detection 
	Analysis of Experimental Results 
	Verify the Gas Pipeline Data Set 
	Verify the TON_IoT Network Data Set 
	Verify the TON_IoT Linux Process Data Set 


	Conclusions 
	References

