Review Evaluation for Hotel Recommendation
Abstract
:1. Introduction
2. Literature Review
2.1. Trustworthiness of Social Networks
2.2. Review Spam Detection
3. Evaluation of Review Trustworthiness
3.1. Construct of Social Network of Reviewers
3.2. Formulating the Trustworthiness Equation
3.2.1. Trustworthiness of Review Features
3.2.2. Trustworthiness of Reviewers’ Behaviors
4. Evaluation and Empirical Studies
4.1. Empirical Studies
4.2. Limitations of the Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Casaló, L.V.; Flavián, C.; Guinalíu, M. New members’ integration: Key factor of success in online travel communities. J. Bus. Res. 2013, 66, 706–710. [Google Scholar] [CrossRef]
- Zhou, Y.; Kim, W.G.; Okumus, B.; Cobanoglu, C. Understanding online travel communities: A literature review and future research directions in hospitality and tourism. J. Travel Tour. Mark. 2021, 38, 194–212. [Google Scholar] [CrossRef]
- Kim, D. Cyberbullying Behaviors in Online Travel Community: Members’ Perceptions and Sustainability in Online Community. Sustainability 2022, 14, 5220. [Google Scholar] [CrossRef]
- Xu, H.; Lovett, J.C.; Law, R. Understanding Destination Value Co-Creation on Social Media: An Application of Travel Blog Analysis. Tour. Hosp. 2022, 3, 573–588. [Google Scholar] [CrossRef]
- Sánchez-Vargas, E.; Campón-Cerro, A.M.; Prado-Recio, E.; Pasaco-González, B.S.; Moreno-Lobato, A. Exploring the Hotel Experience in a Cultural City through a UGC Analysis. Sustainability 2022, 14, 15695. [Google Scholar] [CrossRef]
- Miguéns, J.; Baggio, R.; Costa, C. Social media and tourism destinations: TripAdvisor case study. Adv. Tour. Res. 2008, 26, 1–6. [Google Scholar]
- Zhang, W.T.; Choi, I.Y.; Hyun, Y.J.; Kim, J.K. Hotel Service Analysis by Penalty-Reward Contrast Technique for Online Review Data. Sustainability 2022, 14, 7340. [Google Scholar] [CrossRef]
- Allsop, D.T.; Bassett, B.R.; Hoskins, J.A. Word-of-mouth research: Principles and applications. J. Advert. Res. 2007, 47, 398–411. [Google Scholar] [CrossRef]
- Anastasiei, B.; Dospinescu, N.; Dospinescu, O. Word-of-mouth engagement in online social networks: Influence of network centrality and density. Electronics 2023, 12, 2857. [Google Scholar] [CrossRef]
- Tang, M.; Kim, H.S. An exploratory study of Electronic Word-of-Mouth focused on casino hotels in Las Vegas and Macao. Information 2022, 13, 135. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, J.U.; Park, S.C. The effects of perceived value, website trust and hotel trust on online hotel booking intention. Sustainability 2017, 9, 2262. [Google Scholar] [CrossRef]
- Sparks, B.A.; Browning, V. The impact of online reviews on hotel booking intentions and perception of trust. Tour. Manag. 2011, 32, 1310–1323. [Google Scholar] [CrossRef]
- Straub, J.; Spradling, M.; Fedor, B. Assessment of Factors Impacting the Perception of Online Content Trustworthiness by Age, Education and Gender. Societies 2022, 12, 61. [Google Scholar] [CrossRef]
- Devi, P.S.; Sowjanya, C.H.; Sunitha, K.V.N. A review of supervised learning based classification for text to speech system. Int. J. Appl. Innov. Eng. Manag. 2014, 3, 79–86. [Google Scholar]
- Khan, M.A.; Mittal, M.; Goyal, L.M.; Roy, S. A deep survey on supervised learning based human detection and activity classification methods. Multimed. Tools Appl. 2021, 80, 27867–27923. [Google Scholar] [CrossRef]
- Hirschberg, J.; Manning, C.D. Advances in natural language processing. Science 2015, 349, 261–266. [Google Scholar] [CrossRef]
- Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 604–624. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Ji, P.; Wang, J.Q.; Chen, X.H. A novel decision support model for satisfactory restaurants utilizing social information: A case study of TripAdvisor.com. Tour. Manag. 2017, 59, 281–297. [Google Scholar] [CrossRef]
- Tao, H.; Cao, Q.; Chen, H.; Xian, Y.; Shang, S.; Niu, X. A Novel Software Trustworthiness Evaluation Strategy via Relationships between Criteria. Symmetry 2022, 14, 2458. [Google Scholar] [CrossRef]
- Lai, C.L.; Xu, K.Q.; Lau, R.Y.; Li, Y.; Song, D. High-order concept associations mining and inferential language modeling for online review spam detection. In Proceedings of the 2010 IEEE International Conference on Data Mining Workshops, Sydney, Australia, 13 December 2010; pp. 1120–1127. [Google Scholar]
- Rastogi, A.; Mehrotra, M. Opinion spam detection in online reviews. J. Inf. Knowl. Manag. 2017, 16, 1750036. [Google Scholar] [CrossRef]
- Saumya, S.; Singh, J.P. Spam review detection using LSTM autoencoder: An unsupervised approach. Electron. Commer. Res. 2022, 22, 113–133. [Google Scholar] [CrossRef]
- Van Duijn, M.A.; Vermunt, J.K. What is special about social network analysis? Methodology 2006, 2, 2–6. [Google Scholar] [CrossRef]
- Robins, G. A tutorial on methods for the modeling and analysis of social network data. J. Math. Psychol. 2013, 57, 261–274. [Google Scholar] [CrossRef]
- Sánchez, C.N.; Domínguez-Soberanes, J.; Arreola, A.; Graff, M. Recommendation System for a Delivery Food Application Based on Number of Orders. Appl. Sci. 2023, 13, 2299. [Google Scholar] [CrossRef]
- Stitini, O.; Kaloun, S.; Bencharef, O. Towards the detection of fake news on social networks contributing to the improvement of trust and transparency in recommendation systems: Trends and challenges. Information 2022, 13, 128. [Google Scholar] [CrossRef]
- Luo, J.; Ni, X.; Yong, J. A trust degree based access control in grid environments. Inf. Sci. 2009, 179, 2618–2628. [Google Scholar] [CrossRef]
- Wu, F.; Li, H.H.; Kuo, Y.H. Reputation evaluation for choosing a trustworthy counterparty in C2C e-commerce. Electron. Commer. Res. Appl. 2011, 10, 428–436. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, Z.; Sun, Q.; Fujita, H. A maximum self-esteem degree based feedback mechanism for group consensus reaching with the distributed linguistic trust propagation in social network. Inf. Fusion 2021, 67, 80–93. [Google Scholar] [CrossRef]
- Rousseau, D.M.; Sitkin, S.B.; Burt, R.S.; Camerer, C. Not so different after all: A cross-discipline view of trust. Acad. Manag. Rev. 1998, 23, 393–404. [Google Scholar] [CrossRef]
- Jindal, N.; Liu, B. Opinion spam and analysis. In Proceedings of the 2008 International Conference on Web Search and Data Mining, Palo Alto, CA, USA, 11–12 February 2008; pp. 219–230. [Google Scholar]
- Ren, Y.; Ji, D. Learning to detect deceptive opinion spam: A survey. IEEE Access 2019, 7, 42934–42945. [Google Scholar] [CrossRef]
- Alhassun, A.S.; Rassam, M.A. A combined text-based and metadata-based deep-learning framework for the detection of spam accounts on the social media platform twitter. Processes 2022, 10, 439. [Google Scholar] [CrossRef]
- Wu, F.; Shu, J.; Huang, Y.; Yuan, Z. Co-detecting social spammers and spam messages in microblogging via exploiting social contexts. Neurocomputing 2016, 201, 51–65. [Google Scholar] [CrossRef]
- Dar, M.; Iqbal, F.; Latif, R.; Altaf, A.; Jamail, N.S.M. Policy-Based Spam Detection of Tweets Dataset. Electronics 2023, 12, 2662. [Google Scholar] [CrossRef]
- Lau, R.Y.; Liao, S.Y.; Kwok, R.C.W.; Xu, K.; Xia, Y.; Li, Y. Text mining and probabilistic language modeling for online review spam detection. ACM Trans. Manag. Inf. Syst. 2012, 2, 1–30. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Zhu, S.; Liang, W. Detecting spam and promoting campaigns in Twitter. ACM Trans. Web 2016, 10, 1–28. [Google Scholar] [CrossRef]
- Turney, P.D. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. arXiv 2002, arXiv:0212032. [Google Scholar]
- Jøsang, A.; Ismail, R.; Boyd, C. A survey of trust and reputation systems for online service provision. Decis. Support Syst. 2007, 43, 618–644. [Google Scholar] [CrossRef]
- Wang, G.; Xie, S.; Liu, B.; Yu, P.S. Identify online store review spammers via social review graph. ACM Trans. Intell. Syst. Technol. (TIST) 2012, 3, 1–21. [Google Scholar] [CrossRef]
- Hildebrand, D.K. Statistical Thinking for Behavioral Scientists; Duxbury: Boston, MA, USA, 1986. [Google Scholar]
Value | Weight Type |
---|---|
1/10 | wtso |
1/10 | wnhg |
1/10 | wfcl |
1/10 | wftl |
1/10 | wfod |
1/10 | wfda |
1/10 | wfoso |
1/10 | wfrd |
1/10 | wfpd |
1/10 | wfcd’ |
Reviewer | Our Ranking | The Average of Ranking by Experts | The Difference of Ranking |
---|---|---|---|
Kexxxxxx | 1 | 2.33 | 1.33 |
pexxxx | 2 | 3.00 | 1.00 |
Stxxx | 3 | 8.67 | 5.67 |
Daxxxxxxxxxxxxxxx | 4 | 3.33 | 0.67 |
Trxxxxxxxxx | 5 | 2.33 | 2.67 |
Maxxxxxx | 6 | 6.33 | 0.33 |
ztxxxx | 7 | 5.33 | 1.67 |
puxxxxxxxxxx | 8 | 7.33 | 0.67 |
anxx_xxxxxxxxxx_xx | 9 | 5.33 | 3.67 |
Erxxxxxx | 10 | 10.00 | 0.00 |
Average of difference (μ) | 1.766667 | ||
Variance of difference (σ2) | 3.112346 |
Reviewer | Our Ranking | The Average of Ranking by Experts | The Difference of Ranking |
---|---|---|---|
Bixx-xxxx-xxxxxxx | 1 | 1.67 | 0.67 |
JAxxxxxx | 2 | 5.00 | 3.00 |
paxxxxxx | 3 | 6.00 | 3.00 |
phxxxxxxx | 4 | 3.67 | 0.33 |
cmxxx | 5 | 4.00 | 1.00 |
arxxxxxxxxxxx | 6 | 4.67 | 1.33 |
Frxxx | 7 | 7.33 | 0.33 |
Caxxxx | 8 | 7 | 1.00 |
trxxxxxxx | 9 | 7 | 2.00 |
gixxxxx | 10 | 8.67 | 1.33 |
Average of difference (μ) | 1.40 | ||
Variance of difference (σ2) | 0.958025 |
Reviewer | Our Ranking | The Average of Ranking by Experts | The Difference of Ranking |
---|---|---|---|
Wixxx x | 1 | 2.67 | 1.67 |
raxxxxxxxxxxxxxx | 2 | 2.67 | 0.67 |
Vaxxxxxxxxx | 3 | 5.00 | 2.00 |
SGxxxxxx | 4 | 1.00 | 3.00 |
Ccxx | 5 | 6.33 | 1.33 |
Mjxxxxxx | 6 | 9.33 | 3.33 |
toxxxxxxxxx | 7 | 8.33 | 1.33 |
Chxxxxxxx | 8 | 4.67 | 3.33 |
esxxxxxxx | 9 | 8.33 | 0.67 |
noxxxxxxx | 10 | 6.67 | 3.33 |
Average of difference (μ) | 2.066667 | ||
Variance of difference (σ2) | 1.204938 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, Y.-C.; Lu, L.-C.; Ku, Y.-F. Review Evaluation for Hotel Recommendation. Electronics 2023, 12, 4673. https://doi.org/10.3390/electronics12224673
Hsieh Y-C, Lu L-C, Ku Y-F. Review Evaluation for Hotel Recommendation. Electronics. 2023; 12(22):4673. https://doi.org/10.3390/electronics12224673
Chicago/Turabian StyleHsieh, Ying-Chia, Long-Chuan Lu, and Yi-Fan Ku. 2023. "Review Evaluation for Hotel Recommendation" Electronics 12, no. 22: 4673. https://doi.org/10.3390/electronics12224673
APA StyleHsieh, Y. -C., Lu, L. -C., & Ku, Y. -F. (2023). Review Evaluation for Hotel Recommendation. Electronics, 12(22), 4673. https://doi.org/10.3390/electronics12224673