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Abstract: Development of a general-purpose PLC based on a typical dual-core processor as a hard-
ware platform is presented. The cores run two cooperating projects involving data exchange through
shared memory. Such a solution is equivalent to a single-core PLC running two tasks by means of a
real-time operating system. Upgrading to a typical programming tool involves defining which of
the global variables are shared, and whether a variable in a particular core is read-from or written-to
the shared memory. Extensions to core runtimes consist of read-from at the beginning of the scan
cycle and write-to at the end, and of an algorithm for protecting the shared memory against access
conflicts. As an example, the proposed solution is implemented in an engineering tool with runtime
based on a virtual machine concept. The PLC prototype is based on a heterogeneous ARM dual-core
STM32 microcontroller running different projects. The innovation in the research lies in showing how
to run two projects in a dual-core PLC without using an operating system. Extension to multiple
projects for a multi-core processor is can be accomplished in a similar manner.

Keywords: dual-core; PLC; IEC 61131-3 environment; virtual machine

1. Introduction

The increasing complexity of industrial plants imposes growing requirements on the
corresponding automation systems in terms of processing power, real-time performance,
and safety. At the same time, the limitations of chip technology indicate the inability
to increase processing power simply by increasing the processor frequency without an
equivalent increase in energy consumption. The requirement of increased processing power
can only be met by multi-core CPUs where limitations are considerably milder. Hence,
the evolution of embedded systems is going in that direction, and some manufacturers
of PLCs already provide multi-core solutions. PLCnext from Phoenix Contact, Telford,
UK [1] involving a dual-core ARM Cortex-A9 processor and the Embedded PC series
from Beckhoff [2], also with a dual-core ARM Cortex-A53, are examples in the medium
performance range. Programing languages and runtime execution environments comply
with the IEC 61131-3 standard [3].

Currently, 70% of embedded systems use processors built around the ARM architecture
(Advanced RISC Machine) [4], which is appreciated for its high performance, low energy
consumption, and low price. The mass implementation of this architecture is the result
of the ARM holdings policy, which licenses its designs to chip manufacturers rather than
establishing its own fabrication facility. The Cortex family represents the current ARM
range in which the profiles A (application), M (microcontroller), and R (real-time and safety)
profiles are distinguished. The Neoverse server is the latest. Contrary to A and R, the M
profile does not involve an MMU (memory management unit), which is needed to run
operating systems (OSs) such as Linux.

Multi-core designs can be homogeneous if all cores are of the same architecture or
heterogeneous if the architectures are different. Moreover, multi-core processing can be
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symmetric (SMP) if the cores are homogeneous and all run a single OS or asymmetric
(AMP) if the cores are heterogeneous or homogeneous and run different OSs. Asymmetric
processing is particularly interesting, since the AMP cores can be treated independently,
providing isolation and safety.

Management of the AMP cores, messaging, and virtual I/Os can be provided by the
OpenAMP framework [5]. It supports most OSs used in embedded applications, namely
Linux, FreeRTOS, VxWorks, and others, as well as standalone (bare-metal) software for
low-level control. In particular, OpenAMP enables cooperation between general-purpose
cores running an OS, typically Linux, and real-time (RT) cores running another OS, such as
FreeRTOS or standalone software. FreeRTOS is a lightweight RT kernel designed for small
embedded systems. The dual-core PLCnext mentioned above [1] runs embedded Linux
with RT expansions in its core. The powerful Embedded PC series [2] combines TwinCAT
runtime with FreeBSD, a Unix-compatible OS.

Most research solutions in recent years have used ARM-based Zynq-series boards from
Xilinx as platforms for development. For example, the Zynq UltraScale board [6] involves
four Cortex-A53 cores for general applications, two Cortex-R5 cores for RT processing, and
an FPGA for increased requirements of embedded applications, for instance, fast I/Os or
safety.

In the dual-core solutions reviewed in the next section, one core is responsible for
real-time control, while another handles the human–machine interface (HMI) and possibly
some external tasks. In the field of low-cost automation, the RT control is executed by PLCs,
so such a solution may be referred to as PLC + HMI. External tasks that can be executed
by the medium performance range controller [1] include fieldbus management, OPC UA
server, cloud connection, and others, and therefore can be considered as a kind of PLC +
EXT TASK arrangement.

The IEC 61131-3 standard [3], a widely used standard in the automation industry,
defines programming languages and the runtime execution environment for PLCs. Current
PLCs execute IEC 61131-3 programs with a scan cycle defined during programming. The
common default value of the cycle, intended primarily for logic control, is 10 ms. However,
some industrial plants, heating systems, municipal facilities, food processing, etc., require
also continuous control, most often PID regulation executed with a much longer cycle, for
instance, 100 ms or more. At present, three automation solutions can provide both logic
control and PID regulation with different cycles, namely:

1. Two separate PLCs.
2. PLC and a PID control instruments.
3. Distributed control systems (DCSs) with a controller running a real-time OS.

The first two solutions may create some problems with inter-device communication,
whereas the third one is expensive.

Note, however, that the problem of running two control projects with different cycles
can be solved by a low-cost PLC with a dual-core processor. One core may be dedicated to
logic, the other to regulation. This idea is pursued in this paper, as demonstrated by the
implementation of two runtimes for the respective cores. Common global variables are kept
in the shared memory. Such a dual-core solution may be referred to as PLC + PID or, in the
general case, PLC + PLC, where the cores run programs with different cycles. Looking back
into earlier similar low-cost automation solutions, the multifunction instrument described
in [7] executed logic control every 20 ms and regulation or process calculations every
0.2 . . . 0.3 s.

The current IEC 61131-3-compliant engineering environments have been designed
for the development of single-core applications. Therefore, the purpose of this research
is to show what extensions need to be taken in the compiler and runtime of a typical
environment to upgrade it into a solution enabling dual-core development, with the cores
running two different but cooperating projects. An engineering environment used in
industrial applications and a hardware prototype demonstrate the approach.
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The paper is organized as follows. After reviewing the related work, Section 3 presents
the concept of what steps are needed to upgrade a typical single-core environment to a
dual-core environment running two IEC 61131-3 projects. As an example, an upgrade to a
virtual machine-based environment is described in Section 4. Motivations for selecting a
dual-core microcontroller as a low-cost platform and a practical implementation are given
in Section 5. The execution of two exemplary projects is demonstrated in Section 6 together
with some results from performance tests. The last section summarizes the approach.

2. Related Work

One may begin from architectural patterns of multi-core devices with asymmetric
processing for embedded systems. Considering low power, performance, and real-time
requirements, three patterns are distinguished in [8], namely “mini me” for battery power,
“optimized execution” if the cores use different instruction sets, and “dedicated processor”
for general purpose and RT cores.

The papers dealing with systems programmed according to the IEC 61131-3 standard
usually assume that applications may be represented by function block diagrams (FBDs).
In particular, [9] presents a platform architecture and an algorithm for the allocation of
separate FBD networks to a many-core (16) processor. Due to the number of cores, shared
memory becomes a critical part. Papers [10,11] focus on faster execution of FBD programs.
The two-step approach proposed in [10] first compiles the source code info C/C++ by using
open-source tools. The resulting C/C++ code is then partitioned following the original
FB structure and allocated to tasks mapped to different cores. Outsourcing the parallel
processing of FBD programs to dedicated libraries available in C++ or Fortan is explored
in [11]. Custom program organization units from IEC 61131-3 provide an interface to the
parallel libraries. Compilation to C is also the first step in the approach.

Other issues related to industrial controllers include handling exceptions, such as
power on/off, reset, entering the idle state, etc. The types of software components ap-
propriate for the exception levels provided by the ARM v8 architecture are given in [12].
In addition to functional correctness of normal operation, some controllers must satisfy
safety and time-critical requirements. Such a “mixed criticality” solution described in [13]
involves a dual-core ARM and an FPGA running the critical part of the system. The FPGA
CPU presented in [14] processes 32-bit Boolean variables from logic programs written in
the instruction list (IL) language. Timers, counters, and other (fixed-point) standard blocks
are connected by the AMBA bus (ARM architecture).

IEC 61499 is another standard for industrial control and automation, yet its adoption
in industry proceeds rather slowly. While IEC 61131-3 applies to PLCs, 61499 refers to DCS
systems, with a focus on latency, reliability, and availability [15]. The execution of programs
composed of FBs is event-triggered, which may imply allocation to separate cores. The use
of FPGA devices along with partial reconfiguration for dynamic core activation is proposed
in [16].

Robot control is another field where multi-core solutions are forthcoming. A dual-core
controller designed in [17] applies Linux for human–computer interaction, path planning
and other tasks, and FreeRTOS for motion control and emergency operations. The results
of the Rhealstone real-time benchmark tests are provided. The actual implementation
of a dual-core ARM plus FPGA (Zynq) controller for six degrees-of-freedom industrial
robot is described in [18]. The main core processes kinematics and plans trajectory, while
another provides communication and handles teaching pendant with G-code programming.
Motion control belongs to FPGA. Note that standalone (bare-metal) software is sufficient
for such a solution. A moving robot needs a number of different sensors, such as ultrasonic,
LIDAR, GPS, encoders, etc. To make communication reliable, a FreeRTOS task is assigned
to each sensor [19]. Another task controls the movement of the robot.

The OpenAMP framework [5] that enables cooperation between operating systems
of asymmetric cores inevitably introduces some latency that may count for hard real-time
systems. The latencies of the timer interrupts are measured in [20] for four scenarios,
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namely standalone, FreeRTOS, Linux + standalone, and Linux+FreeRTOS. Linux thread
latencies are evaluated in [21] for smart grid end-point applications where 3 ms is the
limit. Eight scenarios are considered, with two of them applying the open-source Xen
hypervisor (hypervisor is an additional software layer that enables having different OSs in
a homogeneous platform). Xen and four other general-purpose hypervisors are evaluated
in [22] with respect to latency and jitter in RT systems, since maximizing throughput and
capacity, not RT, are the main objectives of the hypervisor. Whereas the general-purpose
hypervisors meet typical requirements, stricter requirements of hard RT systems and stress
may create problems.

Among other practically oriented works, asymmetric multiprocessing [23] proposes a
distributed architecture oriented to reliability for a UAV drone in the vicinity of people. Five
safety-critical subsystems isolated at the hardware level communicate through an on-chip
protection environment. The implementation of a distributed battery-powered wirelessly
connected multiprocessing architecture for monitoring a rail freight wagon is described
in [24]. The main processor of the system enables power supplies for the other two units.
LoRaWAN radio technology is applied for communication with the master device in the
locomotive. As demonstrated in [25], a dual-core processor can also be applied for teaching
and prototyping, with one core responsible for plant simulation and the other for control.
Models of a buck converter circuit and tank system are given as examples of fast and slow
dynamics.

3. The Concept of a Dual-Core PLC

IEC 61131-3-compliant engineering environments consist of IDE (integrated devel-
opment environment) with language editors, compiler of source programs into binary
code, and runtime for execution of the code. In a dual-core PLC proposed here, the cores
run different projects cooperating by shared memory. Global variables declared in both
projects provide cooperation. Some improvement in memory organization may simplify
cooperation. The runtime of each core involves reading the input variables from the shared
memory at the beginning of the cycle and writing the output ones at the end.

3.1. Notes on the IEC 61131-3 Standard

There is a common view among practicing engineers and university staff that runtime
engineering environments based on the IEC 61131-3 standard [3] will remain a state of indus-
trial practice at least until the end of this decade. The standard defines five programming
languages, namely textual IL, ST, graphic LD, FBD, and mixed SFC, with time-triggered
scan cycle or event-driven execution. IL, LD, and SFC are preferred in manufacturing based
on PLCs, whereas ST, FBD, and also SFC dominate in general automation.

The IEC 61131-3 introduces the concept of program organization units (POUs), such
as programs, function blocks, and functions. Variables are local in a POU where they are
declared, or global if the scope applies to the whole project. Global variables are used for
communication.

Software environments implementing the standard, for instance CODESYS [26],
STEP7 [27], automation builder [28], LogicLab [29], or others, consist of three essential
components, namely IDE, compiler, and runtime. IDE provides editors of the IEC 61131-3
languages, and then compiler translates the source program into executable binary code
transferred to the runtime in the controller processor. The runtime executes the code in
real-time with a given cycle or when an event occurs. The addresses of global variables are
also provided by the compiler.

3.2. General Architecture of a Dual-Core PLC

The dual-core PLC being developed may be viewed as equivalent to two separate
PLCs with some communication link. Here, the link is provided by the shared memory.
Figure 1 shows the general architecture, where Projects 1, 2 represent software of the PLC
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cores. It is assumed that each of them can also operate independently using its own local
memory.
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The runtimes of the cores are copies of a single-core runtime with some minor exten-
sions (see Section 4). Cooperation of the cores through the shared memory is provided by
means of global variables.

3.3. Shared Global Variables

Define the following sets of global variables:
GV1—variables updated in Project 1 and used in Project 2.
GV2—variables updated in Project 2 and used in Project 1.
GV = GV1 ∪ GV2—variables shared between Projects 1, 2.
The sets are depicted in Figure 2. The areas outside the GV1 ∪ GV2 circles indicate

other global variables declared in the projects but not shared.
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To make cooperation of the projects feasible, the original single-core designs must
obey the following rule:

• Declaration of global variables in each of the two projects must contain all shared
variables, i.e., the GV set.

Note that application of the rule requires also an extension to GV variable declaration
in IDE, so as to indicate whether the variable is updated in the particular project or not. It
may be implemented as an additional attribute of the variable, for instance, with WRITE
meaning updating in the shared memory the value and READ meaning reading only.
Naturally, a GV variable cannot be declared updated in both projects.

3.4. Improvement of Memory Organization

It seems quite probable in industrial practice that the variables from the sets GV1,
GV2 will not be declared one after another, but will be scattered among other global
variables. Transfer of such scattered variables to/from the shared memory would have
to be performed individually, one by one. To make the transfer more time-efficient, the
scattered GV1, GV2 variables may be collected into compact memory sectors transferred by
fast memory copying. An extension of the single-core compiler for the dual-core application
is needed to make such an ordered arrangement. The recommended memory organization
after the arrangement is shown in Figure 3.
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After such an arrangement, the relevant sectors of Core 1 memory may be denoted as:

• CM11—sector for GV1 (updated WRITE, another words output);
• CM12—sector for GV2 (received READ—input).

Likewise, we have CM21 (input), CM22 (output) for Core 2, and SH1, SH2 for the
shared memory.

3.5. Operation of a Dual-Core PLC

During execution of the binary code, the runtime programs of typical PLCs apply
read-execute-write semantics for the scan cycle. This means that all input values are read
into internal local copies once a program starts its execution at the beginning of the cycle.
During the remainder of the execution, only those local values are used (the mechanism
is sometimes called a process image). At the end of the execution, the output values are
written into global copies to be used in the next cycle.

In case of Core 1, the content of CM12 memory becomes the input (see Figure 3).
However, so far, it is stored in SH2, where it has been copied earlier from CM22, once Core 2
finished its execution. Hence, at the beginning of the Core 1 cycle, SH2 must be copied
into CM12. At the end of the execution, the results updated in CM11 are copied into SH1.
So, the beginning of execution and the end of the cycles of two cooperating cores may be
illustrated as in Figure 4. To implement such behavior, the original single-core runtime
must be extended by the copy-from the shared memory at the beginning of the cycle and
copy-to at the end. Note that operations executed at the beginning may be called precycle,
whereas those executed at the end may be called postcycle.
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To avoid conflicts between the cores while accessing the shared memory, multi-core
processors have built-in hardware semaphores to check whether access is currently possible.
Runtime software of each core must involve an algorithm for operating the semaphore, so
raising it (releasing) when the data transfer is completed. An example of such an algorithm
is shown in Section 5.
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To summarize, three extensions of a typical single-core IEC 61131-3 runtime engi-
neering environment are needed for implementation into dual-core PLC running two
projects:

• IDE: an additional attribute of a shared global variable to indicate whether it is updated
in the actual core or received from the other one.

• Compiler: memory arrangement so as to have updated and received shared variables
in compact sectors (optional).

• Runtime: copy-from the shared memory at the beginning of the cycle (precycle) and
copy-to at the end (postcycle).

4. Virtual Machine for a Dual-Core Processor

Three types of IEC 61131-3-compliant runtime environments are briefly characterized,
namely direct translation of source programs to native code, conversion to C/C++ as the
first step, and virtual machine solution with an intermediate language. The virtual machine
of the CPDev engineering environment is used for an upgrade to a dual-core. It turns
out that two additional instructions of the intermediate language and a semaphore are
sufficient for the upgrade.

4.1. Runtime Environments

Compilers of popular control engineering environments such as CODESYS, STEP7,
and others mentioned before directly translate IEC 61131-3 programs into native code of
a particular processor running the PLC. Fast execution of the code is the basic advantage.
However, it is a single-platform solution since changing the CPU requires a new compiler
or at least some modifications. Therefore, the approach is appropriate for controllers
manufactured in long series, primarily by leading companies.

More flexibility is provided by open-source tools such as Beremiz [30], GEB Automa-
tion [31], and OpenPLC [32], where the source programs are converted into C/C++. In
case of [30] and [31], another tool is required to translate the C/C++ into native code of a
particular CPU. OpenPLC goes further by providing open-hardware solutions for almost
20 platforms, starting from Arduino up to Windows and Linux.

The virtual machine (VM) concept offers another way for expanding the range of
CPUs accepted by runtime environment. VM means a simulated processor implemented
in software that executes programs written in its own intermediate language. The Java
virtual machine [33] and the common language runtime (CLR) of the .NET Framework [34]
are general widespread applications of the approach. In the control engineering area,
the VM concept was originally introduced in ISaGRAF [35] with an intermediate target
independent code. The IEC 61131-3 applications executed by .NET CLR are reported in [36].
An assembler-like intermediate language is used by a VM from [37]. It is written in C
and runs on an embedded ARM. Although the VM-based runtimes provide multiplatform
applications, execution of the intermediate code is slower since instructions are executed
by software instead of directly by hardware components of a CPU.

4.2. CPDev Virtual Machine

CPDev (control program developer) is a VM-based engineering environment used
here for a dual-core upgrade. The environment consists of IL/ST/LD/FBD/SFC editors,
a compiler that converts source programs into a VMASM (VM assembler) intermediate
language, and a VM runtime written in C/C++ [38]. Details on the compiler, VM architec-
ture, and characteristic of VMASM can be found in [39], with examples of controllers for
the ship automation and energy sector. The simplified architecture of the VM is shown in
Figure 5 for each of the two cores. The instruction processing module fetches successive
VMASM instructions from the core memory and executes them, acquiring values from the
data or code memories. Results are stored directly in the data memory.
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The CPDev virtual machine, designed specifically for the execution of control pro-
grams, can handle all IEC 61131-3 data types, from BOOL up to WSTRING. The VMASM
instructions consist of counterparts of the IEC 61131-3 functions and assembler-like system
procedures dealing with the VM architectural components. So, AND, ADD, EXPT, and
REAL_TO_INT are examples of the functions. Several system procedures are listed in
Table 1 [39].

Table 1. Exemplary procedures of the VMASM language.

Mnemonic Meaning

JMP Unconditional jump
JZ Conditional jump
JR Unconditional relative jump

CALB Subroutine call
RETURN Return from subroutine

MCD Initialize data
MEMCP Copy memory block

FPAT Fill memory block

The binary code generator of the CPDev compiler replaces the VMASM mnemonic
instructions with digital identifiers and locates variables at particular addresses of data
memory. Instructions stored in code memory and various variables in data memory
are organized according to limitations of memory access of the executive platform [40].
When executing an instruction, the identifier is decoded by the software of the instruction
processing module (Figure 5), which is slower than the hardware decoding and pipelining
of the standard CPU. On the other hand, the intermediate code is portable, so no change
of the compiler or IDE is needed while switching to a new processor. The source code for
the CPDev VM is available at [41]. Formal denotational semantic model of the VM and its
implementation are described in [42].

4.3. Upgrade to Dual-Core

Compared to the single-core virtual machine described above, the machine dedicated
to dual-core processor must deal with shared memory as a new hardware component.
As indicated in Section 3, additional instructions in the runtime program are needed to
implement memory copying between the shared memory and the local data memory of
a particular core. Naturally, the copying is possible when the other core is not currently
doing the same thing. In case of the VMASM language, the extension involves two new
copying instructions (system procedures) presented below in a descriptive form:

• CM_TO_SH (LocalAddress, SharedAddress, ByteNumber).
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• SH_TO_CM (SharedAddress, LocalAddress, ByteNumber).

Memory addresses and the number of bytes to be copied are the parameters given
by the compiler. The semaphore SH_SEM controls the data transfer from/to the shared
memory. The raised semaphore means “copying possible”.

One may expect that similar extensions will be needed for another runtime environ-
ment upgraded to dual-core solution.

5. Lab Prototype of a Dual-Core PLC

The laboratory prototype involves a dual-core STM32 microcontroller with ARM
Cortex-M7 and Cortex-M4 cores. STM32 provides a SEV instruction (send event) for
core synchronization and HSEM semaphore to avoid conflicts while accessing the shared
memory. A development board is a base for the PLC.

5.1. Multi-Core Processors

As indicated in the introduction, multi-core processors can be divided into micro-
processors and microcontrollers. Microprocessors involve a memory management unit
necessary to run the operating systems. The A and R profiles in the ARM Cortex family
belong to this group. Microcontrollers do not have MMUs, and therefore may run primarily
low-level bare-metal (standalone) software. Hybrid solutions have emerged in recent years
that consist of both microprocessor and microcontroller cores. This specific combination
enables development of more complex devices, for instance, with advanced GUI (graphical
user interface) in the microprocessor cores and real-time control and communications han-
dled by microcontroller cores. Examples of multi-core microprocessors, microcontrollers,
and hybrids, both homogeneous and heterogeneous, are in Table 2.

Table 2. Examples of multi-core ARM Cortex processors.

Type Model

Microprocessors Texas Instruments AM5729 (2x Cortex-A15)
Broadcom BCM2712 (4x Cortex-A76)

Microcontrollers STMicroelectronics STM32H755 (1x Cortex-M7 + 1x Cortex-M4)
Raspberry Pi Foundation RP2040 (2x Cortex-M0+)

Hybrid STMicroelectronics STM32MP1 (1x/2x Cortex-A7 + 1x Cortex-M4)
NXP Semiconductors i.MX.8M (4x Cortex-A53 + 1x Cortex-M4)

Significant differences between multi-core platforms have led to the development of
a universal OpenAMP framework (Section 1) which provides software components for
the standardization of inter-core interactions. However, OpenAMP is not needed in bare-
metal microcontrollers where the programmer itself is responsible for task synchronization,
resource protection, etc., using solutions provided by the chip manufacturer. Applications
of bare-metal are typical for low-cost automation devices.

5.2. Lab Prototype with STM32

From the available dual-core microcontrollers, the heterogeneous STM32H755 model
from STMicroelectronics [43] has been chosen for the development of the lab prototype.
The STM32 consists of the efficient Cortex-M7 (480 MHz) core and the versatile popular
Cortex-M4 (240 MHz). The combination of two different cores also enables applications
other than PLC+PLC, in particular PLC + GUI/HMI with complex graphic interface. The
STM32 development board with external I/O panel and display is shown in Figure 6.
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5.3. Time Interrupt and Memory Protection

In case of two real-time applications, there is usually a need to synchronize both. The
STM32 chip contains a peripheral called SEV that triggers a mutual hardware interrupt
between the cores. This allows an immediate response to be enforced in the system, such
as starting a control program or reading new data from the shared memory.

An exemplary synchronization of two projects is shown in Figure 7, also indicating
transfers from/to the shared memory with notation from Figure 4. The first core runs a fast
logic control every two time units, with the actual execution time taking one time unit. The
second core executes a continuous control every nine units, whereas the execution takes
five units.
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In the precycle phase of a particular core, so before executing the control program,
the local memory area is updated with global variables evaluated by the other core and
transferred to the shared memory. After completing the execution, the shared memory
assigned to the first core is updated. Each copy operation from the local memory to
the shared memory (by CM_TO_SH virtual machine instruction) is subject to mandatory
acquisition of a semaphore at the beginning, followed by release after completing. Writing
the current values to the shared memory (SH_TO_CM) proceeds in a similar way.

To protect the shared memory from reading and writing conflicts, the STM32 chip is
provided with a classic semaphore called HSEM (actually 32 instances of the semaphore are
available; HSEM corresponds to SH_SEM in the previous section). The algorithm shown in
Figure 8 permits it to copy data from the shared memory only when the HSEM semaphore
is released. The tremcopy in the algorithm denotes the time remaining for copying and
the tcycle elapsed execution time of the program. If HSEM = 0 (semaphore down) and
the sum tremcopy + tcycle does not exceed the control period, the algorithm remains in
the precycle phase, trying to access the shared memory again. When HSEM = 1 (up) the
algorithm proceeds to copy the shared sector involving the relevant global variables. If
the sum tremcopy + tcycle exceeds the control period, the system will end the precycle
phase and start executing the control program, signaling the failure in the flag register.
This safeguard is required for correct cyclical operation in accordance with the IEC 61131-3
standard.
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6. Running Two Projects and Tests

The original single-core CPDev engineering environment has been extended to enable
the development and execution of two IEC 61131-3 projects by a dual-core microcontroller
according to the guidelines from previous sections. Specifically, the extensions correspond
to the ones indicated at the end of Section 3, so shared attribute of relevant global variables,
ordered arrangement of the shared variables, and transfer to/from the shared memory in
the runtime. Likewise, the IDE online monitoring tool used to set and display variables has
been extended accordingly. Common time interrupt provides synchronization of the cores.
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Experimental results indicate that organization of the shared memory into compact sectors
can substantially reduce communication overhead.

6.1. Details of the Projects

Cooperation of two projects is demonstrated here using a simple FBD diagram and
ST code to count input pulses, monitor impulse time, and transfer signals between cores,
as shown in Figures 9 and 10. The FBD diagram is executed every 10 ms, and the ST code
every 100 ms. All variables in the projects are global.
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Figure 10. ST program for Project 2.

In the first project, the pulse from IN1 connected to one of the I/O panel digital inputs
is fed to the rising edge detector R_TRIG1 and then to up-counter CTU1 (R_TRIG1, CTU1
are instances of standard blocks). The count is given at CNT, whereas OUT1 indicates
whether CNT has reached the limit 10. The counter CTU1 can be reset by the signal RST.
The second project involves the timer TON1 that monitors the signal IN1 received from
Project 1. If IN1 is set for at least 5 s, the timer output Q goes high, which through RST
resets the counter CTU1 in Project 1. Furthermore, Project 2 at OUT2 monitors whether
CNT exceeds 3.

As seen from the description, the signals IN1, CNT, and RST are shared between the
projects. Additional attributes required to implement sharing (Section 3.3) are given in
Table 3, where WRITE indicates a global variable updated in the project and READ received
from the other one. The variable OUT1 in Project 1 and OUT2 in Project 2 are global in the
respective projects, but not shared.
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Table 3. Additional attributes of the shared global variables.

Project IN1 CNT RST

Project 1 WRITE WRITE READ
Project 2 READ READ WRITE

The operation of the cores is demonstrated in Figure 11 on the display panels of the
IDE monitoring tool. The first row indicates an exemplary state after processing five pulses
at IN1. Since CNT exceeds three, OUT2 in Core 2 is set (red). The second row represents
the state after 10 pulses, so the output OUT1 becomes TRUE (red). The last row indicates
values while keeping IN1 set for more than 5 s. So RST is set to TRUE which resets the
counter back to 0.
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6.2. Experimental Results

The STM32H755 chip involves hardware counters, including timers that can be con-
nected to interrupt controllers (NVICs) of the cores. Synchronization of the control projects
(tasks) is implemented by connecting a common master timer to the interrupt controllers of
both cores. The use of SysTick that counts time since processor power-up can be another
way of synchronization.

The results on communication overhead and time consumption for three tests are
given in Table 4. To ensure reasonable accuracy of time measurements by a logic analyzer
and to decrease delays introduced by internal buses of the processor, a common fairly
low operating frequency 4 MHz has been chosen. Note that it is many times lower than
the maximum of 480 MHz for Core 1 (Cortex-M7) and 240MHz for Core 2 (Cortex-M4).
Therefore, the precycle, cycle (calculations), and postcycle are given in milliseconds, and
not in microseconds as one could expect.

The tests denoted by 100/200 DWORD are loops involving arrays whose 4-byte items
are (1) read out from the shared memory, (2) increased by three, and (3) written back to
the shared memory. The same loop is executed synchronously by the second core, so
the cores continuously cooperate. To test communication overhead, the array is firstly
treated as a compact memory sector and secondly as a group of items distributed “at
random”. Therefore the “compact” case corresponds to Figure 3 with the preferred memory
organization. For the 100 DWORD test, the execution involves one copying of 400 bytes to
local memory and two virtual machine Set/GetData instructions for 200 bytes each (VM
limits the size to 256). In case of “random” where each item is treated independently, there
are 100 or 200 memory copyings for each of the DWORD.
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Table 4. Precycle, cycle, and postcycle in [ms] for 4MHz.

Test Precycle Cycle Postcycle

Example—Section 6.1
Project 1 0.0074 3.28 0.0085

Project2 0.0101 2.53 0.0103

100 DWORD
compact 1.49 163.97 1.49

random 13.37 163.89 14.19

200 DWORD
compact 2.93 327.11 2.96

random 26.73 327.13 28.35

The difference between “compact” and “random” communications is seen in the
precycle and postcycle, where the transfer from/to the shared memory actually takes place.
For 100 DWORD, the random/compact ratio is 8.7 for the precycle and 9.5 for postcycle.
The ratios for 200 DWORD are 9.1 and 9.6, respectively. The ratios clearly indicate that
careful organization of memory as in Figure 3 can substantially reduce communication
overhead. Recall, however, that memory organization is the task of the compiler which
should be upgraded for dual-core applications.

The time consumptions of the processor to execute the calculations are given in the
cycle column of Table 4. Codes in examples from Section 6.1 are executed only once,
which explains the much lower cycle values than for the loops 100/200 DWORD. As may
be expected, there is almost no difference between “compact” and “random” as far as
calculations are concerned. We repeat that the time values in Table 4 have been obtained
for quite low operating frequency of the cores. For typical much higher frequencies, the
times would be correspondingly lower.

7. Conclusions

A dual-core PLC capable of running two IEC 61131-3 projects has been developed. As
a precondition, the shared variables must be declared global in both projects. To upgrade a
single-core engineering environment for two cores, three steps are needed:

1. New attribute of each shared variable indicating whether it is updated or received in
a project.

2. Compact sectors for the shared variables in the controller memories (optional).
3. Data transfers from/to the shared memory at the beginning and end of the control

cycle.

The steps can be implemented in IDE, compiler, and runtime. As an example, a
VM-based environment has been upgraded to two cores to demonstrate the solution.
The prototype PLC involves the heterogeneous dual-core STM32 microcontroller with
time synchronization and protection against data transfer conflicts. The execution of two
cooperating projects confirms the feasibility of the approach.

As indicated in the introduction, a dual-core PLC may provide similar capabilities as
two tasks of a real-time OS running a controller in a DCS system. In case of more tasks, a
multi-core processor could be a low-cost alternative.

Future work will concentrate on the PLC + HMI solution with graphical objects
interfaced to PLC global variables through shared memory, and on the extension of the
current single-core denotational semantic model to dual-core.
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