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Abstract: Flexible job shop scheduling problems (FJSPs) have attracted significant research interest
because they can considerably increase production efficiency in terms of energy, cost and time; they
are considered the main part of the manufacturing systems which frequently need to be resolved
to manage the variations in production requirements. In this study, novel reinforcement learning
(RL) models, including advanced Q-learning (QRL) and RL-based state–action–reward–state–action
(SARSA) models, are proposed to enhance the scheduling performance of FJSPs, in order to reduce
the total makespan. To more accurately depict the problem realities, two categories of simulated
single-machine job shops and multi-machine job shops, as well as the scheduling of a furnace model,
are used to compare the learning impact and performance of the novel RL models to other algorithms.
FJSPs are challenging to resolve and are considered non-deterministic polynomial-time hardness
(NP-hard) problems. Numerous algorithms have been used previously to solve FJSPs. However,
because their key parameters cannot be effectively changed dynamically throughout the computation
process, the effectiveness and quality of the solutions fail to meet production standards. Consequently,
in this research, developed RL models are presented. The efficacy and benefits of the suggested
SARSA method for solving FJSPs are shown by extensive computer testing and comparisons. As a
result, this can be a competitive algorithm for FJSPs.

Keywords: flexible job shop scheduling problems; reinforcement learning (RL); QRL; SARSA RL;
single-job shops and multi-machine job shops

1. Introduction

Manufacturing plays a critical role in developing and developed countries. The exist-
ing manufacturing paradigm needs to be strategically changed to emphasise manufacturing
sustainability [1–3]. In recent years, different knowledge-based technologies, including
intelligent scheduling, expert systems and fuzzy controllers, have been developed to pre-
serve sustainability in the manufacturing industry. One of the primary optimisation fields
in manufacturing is job shop scheduling problems (JSSPs). Scheduling in the industrial
system aims to maximise operational efficiency by reducing production time and costs, and
it involves random elements such as processing times, deadlines and weights [4].

The flexible job shop scheduling problem (FJSP) is a significant subfield of combination
optimisation. The FJSP is an extension of a JSSP that is non-deterministic polynomial-
time (NP-hard). Two tasks must be completed in the FJSP: the product sequence and
the machines designated for all processes. FJSPs are presented in various circumstances,
including the manufacturing of equipment [5], automobile assembly [6], semiconductor
manufacturing [7] and many other applications [8].
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Research on optimisation has shown that there is no fixed efficient solution algorithm
for solving these problems, and many researchers have applied and tested different algo-
rithms to determine the best solution. FJSPs have historically been solved using a variety
of evolutionary algorithms (EAs). But in EAs for random search techniques, exploration
and exploitation capabilities are not readily apparent for medium- and large-sized FJSPs.
Therefore, this study considers optimising FJSPs using advanced Q-Learing (QRL) and
RL-based state–action–reward–state–action (SARSA) models, and it compares the results
to advanced genetic algorithms (GAs). GAs are a global optimisation method, based on
EA features, used to optimise JSSPs [9]. Furthermore, the developed RL models optimise a
furnace model schedule from the industry. The contributions of this study are as follows:

Simulated Job Shops: Building upon the foundation laid by previous research [9],
this study includes 29 simulated job shops, introducing a more thorough examination.
These cases offer a more varied and authentic setting for the exploration of scheduling
optimisation methods.

QRL Model Development: This study proposes a novel approach in the form of a
QRL model. The complex scheduling problems in simulated job shops are addressed
by this model, which has been meticulously created in MATLAB code. It optimises the
makespan and scheduling order.

Efficient SARSA Model: This study proposes an effective SARSA model in addition
to the QRL paradigm. This model is intended to be used in comparison and competition
with sophisticated GAs and the QRL model. This study shows that the SARSA model
outperforms competing algorithms by achieving far higher total completion rates for the
production schedules.

Performance Enhancement: By demonstrating the SARSA model’s higher perfor-
mance, this work contributed to the existing knowledge in production scheduling. Through
significant improvements in the overall completion time of production schedules, we
highlight SARSA’s effectiveness as a potent instrument for handling challenging job shop
scheduling issues. This directly affects firms looking to improve their manufacturing pro-
cesses. These contributions strengthen the proposed SARSA’s standing as a useful tool for
optimising production schedules in actual industrial environments.

The remainder of this article is structured as follows. FJSP research and the applications
of RL for scheduling problems are reviewed in Section 2. Section 3 discusses the features
of job shop schedules. Section 4 describes the RL framework. The research methodology,
applying the developed RL methods using QRL and SARSA to job shops, is discussed
in Section 5. The discussion and simulation results are presented in Section 6. Section 7
presents the case study of this work. Finally, Section 8 summarises the study’s conclusions
and recommendations for future research.

2. Literature Review
2.1. Job Shop Scheduling Problems

A standard JSSP is a collection of jobs executed on several machines. Each job com-
prises several operations with a predetermined execution sequence performed on a specific
machine [10,11]. JSSPs are among the most common machine-scheduling problems in
this environment. They have attracted considerable interest because they entail complex
optimisation problems with numerous real-world applications. Owing to the significance
of productivity and sustainability in industrial systems, production schedules have recently
become a topic of multiple studies [9]. Most studies in recently published articles on FJSP
consider makespan as the optimisation aim in various situations. Jiang and Wang [12] used
a hybrid multi-objective EA, based on decomposition, to consider FJSP under time-of-use
electricity rates to optimise makespan and total electricity cost. Li et al. [13] created a
multi-objective FJSP artificial bee colony (ABC) algorithm with variable processing speeds.
Additionally, ABC can be used for other scheduling problems with complicated limita-
tions, like jobs degrading [14]. Mahmoodjanloo et al. [15] solved the differential evolution
(DE) problem for the FJSP with reconfigurable machine tools. Moreover, Zhang et al. [16]
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optimised makespan, total tardiness, and workload to provide a distributed ant colony
technique for FJSP assembly. Yang et al. [17] created a new set of surrogate measurements
for the FJSP with random machine breakdowns using the nondominated sorting genetic
algorithm II (NSGA-II).

In addition, particle swarm optimisation (PSO) and tabu search (TS) were merged
in the hybrid approach for the FJSP [18]. In another work, Mihoubi et al. [19] pro-
posed a method for optimising a realistic FJSP simulation based on scheduling princi-
ples. Wu et al. [20] employed a successful strategy for the dual-resource FJSP, considering
loading and unloading, where makespan and total setup time were optimised. A novel
metaheuristic hybrid parthenogenetic algorithm (NMHPGA) has been proposed to solve
FJSPs; this method focuses on hybrid parthenogenetic algorithms [9,21]. Many studies used
EAs to achieve high-quality solutions for JSSPs, even though EAs typically take a long time
throughout their iterations and can become stuck at the local optimum.

2.2. Scheduling Using Learning-Based Methods and Reinforcement Learning (RL)

One of the promising models for JSSPs and FJSPs is RL, wherein agents make decisions
while receiving little input and each decision is rewarded or penalised based on a given
reward policy; RL is the subfield of machine learning wherein the agent aims to maximise
the reward by starting with arbitrary trials. A Markov decision process has been used to
model the primary reinforcement [22]. RL is frequently employed in autonomous robotic
operation manufacturing [23]; furthermore, Q-learning and deep learning are often used to
create RL agents [24]. A growing number of RL techniques are being used to improve JSSPs.
For instance, Shahrabi et al. [25] created an RL with the Q-factor method, to solve dynamic
JSSPs while considering arbitrary task arrivals and equipment failures. Shen et al. [26]
suggested a multi-objective dynamic software project scheduling memetic algorithm based
on Q-learning. Furthermore, Lin et al. [27] used a multiclass Deep Q-network (DQN) for
JSSPs in intelligent factories, where each neural network output matched a dispatching
rule in a scheduling problem. Shi et al. [28] adopted a deep reinforcement learning (DRL)
strategy for the intelligent scheduling of discrete automated production lines. By minimis-
ing total tardiness, Luo created a double DQN for RL in FJSPs to handle dynamic FJSPs
under new job insertions [29]. In another work, Chen et al. [30] suggested using a self-
learning genetic algorithm (SLGA), based on RL, to reduce the FJSP makespan. DRL is also
effectively applied in the field of semiconductors. The semiconductor sector is one of the
economy’s most capital-intensive and competitive sectors, wherein production schedules
are constantly optimised online, and related equipment must run at total capacity [31].

In summary, RL effectively solves JSSPs involving continuous optimisation. Further-
more, the most significant advantage of developing RL models is their ability to enhance the
system’s performance without using many EA functions. It is noted that the RL techniques
in the literature above solved fewer studies for FJSPs. As a result, it is possible to determine
the best FJSP scheme via RL, which is also this paper’s key innovation.

3. Problem Description

Generally, in a conventional n × m job shop with n jobs J1, J2 o f , . . . , Jn, different
processing times are scheduled for m machines. Each task involved a set of tasks processed
in a defined order under a particular variation in the job shop scheduling. This order is the
precedence constraint [32].

The following section discusses the single-machine (SM) and multi-machine (MM) job
shop features used as the simulated environment in the applied RL models.

3.1. Single Machine Benchmarks with Tardiness and Earliness

Single-machine scheduling is a specific problem wherein each job has a single oper-
ation with tardiness and earliness penalties. This architecture enables several jobs to be
selected in a single-resource system in zero time [9].
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SM models versus the expected due date are created, with the expectation that several
jobs requiring only one action would be executed on a single computer. An earliness penalty
is imposed on each job completed before the anticipated due date [32]. The maximum
lateness Lmax is the most considerable delay for all the due dates and is calculated as the
multilateral L1Ln. All the jobs need to be prepared to be processed at time zero. The
weighted completion times of all the n jobs are added together, to create the total weighted
completion time (ΣwjCj), giving the schedule an idea of the total holdings or inventory
costs incurred. The term flow time is frequently used to refer to both the weighted sum
of completion and total completion times [32]. If job j is not completed by time t, the
additional costs of wj are incurred between [t, t + dt]. The entire cost expended between
[0, t] is what will be charged if the project is finished at time t [32].

3.2. Flexible Benchmarks, Including Tardiness and Earliness Penalties

In flexible job shops, operations can be performed using any available machine. FJSPs
are more complicated than classical JSSPs because they add more decision levels to deter-
mine the job routes and what a machine must process among the available options [32].

In FJSPs, n number of jobs must be run, each of which has several operations, and the
operations of each job must be carried out by a certain machine set in the correct order.
Each machine can execute only one task at a time, and each task can be carried out by only
one machine. The following are notations to represent this subject:

i: The index number of jobs.
j: The index number of operations.
n: Number of jobs in the benchmark.
m: Number of machines in the benchmark.
pijm: Execution time for operation i of job j on machine m.

By providing an appropriate timetable for ordering operations and jobs, job shop
scheduling aims to reduce the upper and lower bounds [32]. Total machine time is calcu-
lated using Equation (1):

Minimising T

Total Machines Time(i) = Mchine waiting time + ∑n
j=1 pij

(1)

The assumptions made are as follows:

(1) One machine at a time is used to complete each task.
(2) Each machine performs one task; it cannot perform several tasks at once.
(3) For each machine, the setup time between operations is zero if two subsequent

operations are from the same job.

4. Reinforcement Learning Framework

In RL, an agent can use a predetermined action set A = {A1, A2 . . .} to interact with
the environment. All the potential actions are described in the action set. RL methods are
designed to train the agent to interact appropriately with its surroundings to help it perform
well on a predetermined assessment criterion [33,34]. The agent initially determines the
current state of the environment (St), and the associated reward value (Rt). The agent
decides its next steps with the subsequent information at a relative time, based on the
state and reward information. To achieve a new state (St+1) and reward (R t+1), the
intended action of the agent (At) is fed back to the environment. Not all the information
on the environment is always present in the observation of the agent with regard to the
environment state s (s is a general representation of the state, regardless of the time).
Here, the environment is partially observable if it contains only a portion of the state
information [33,34].

The reward function (R) generates an immediate reward; it sends it to the agent at each
time step. The goal is to provide feedback from the environment to the agents. Sometimes,
the reward function is based only on the present state, as expressed in Equation (2) [33,34]:
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Rt = R(St) (2)

In this scenario, the reward function depends solely on present conditions. When
the agent mimics the entire sequence, a reward function based on the current state or
even the current state and action is impractical. A trajectory, also known as an episode in
reinforcement learning, is a series of states, actions, and rewards that record how the agent
interacts with the environment, as expressed below:

τ = (S0, A0, R0, S1, A1, R1, . . .) (3)

The start-state distribution is denoted as 0, from which (S0). It is randomly sampled
to determine the initial state of a trajectory, expressed as:

S0 ∼ ρ0() (4)

The following state (St+1), is controlled by a deterministic function for the determinis-
tic transition, as expressed by:

St+1 = f (St, At) (5)

where the specific next state (St+1), can be obtained. The probability distribution for state
(St+1), for the stochastic transition process is expressed as:

St+1 ∼ p(St+1 | St, At) (6)

5. Research Methodology

This research proposes two advanced models of QRL and SARSA. To illustrate the
effectiveness of the novel models, the reward calculation process and RL performances
are compared with the advanced NMHPGA from [9], and the population and generation
size of NMHPGA are set to 300 and 1000, respectively. The QRL and SARSA algorithms
framework are described in Sections 5.2 and 5.3. MATLAB R2023a software are used for
statistical analysis. The algorithms are evaluated by their performances on 29 simulated
benchmark instances. The benchmark features are discussed in Section 5.1.

5.1. Simulated Job Shops

The simulated benchmarks primarily focus on two key variables: the quantity of jobs
and the arrival patterns. This deliberate emphasis on these two factors aims to maintain a
high level of simplicity within the job shops, enabling a more precise comparison of the
most efficient outcomes. In these job shops, schedules are produced randomly, using a
constrained open-shop algorithm. The first benchmark is SM, which comprises ten single-
machine job shops with earliness, tardiness, and due dates. Table 1 presents the features of
the job shops in the SM. The second benchmark is MM Category-A, which includes ten MM
job shops, four machines, and eight jobs. The third benchmark is MM Category-B, which
comprises nine MM job shops with earliness, tardiness, and due dates. Table 2 presents the
features of the MM job shops. Scheduling problems aim to minimise the execution time
and penalties while determining the appropriate scheduling time.

Table 1. SM job shops’ features.

Job Shop-Type Number of Machines Number of Jobs

SM1 1 32
SM2 1 40
SM3 1 60
SM4 1 80
SM5 1 100
SM6 1 120
SM7 1 150
SM8 1 200
SM9 1 250
SM10 1 300
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Table 2. Categories-A (MM1–MM10) and -B (MM11–MM19).

Job Shop-Type Number of Machines Number of Jobs

MM1 4 8
MM2 4 8
MM3 4 8
MM4 4 8
MM5 4 8
MM6 4 8
MM7 4 8
MM8 4 8
MM9 4 8
MM10 4 8
MM11 4 10
MM12 4 20
MM13 4 30
MM14 4 40
MM15 4 100
MM16 4 150
MM17 4 200
MM18 4 250
MM19 4 300

5.2. Application of QRL

One of the most common RL methods is QRL. It trains an action-value function that
reflects the anticipated cumulative reward for performing a given action in a given situation.
The fundamental principle of this method is a straightforward iterative update wherein
each state–action pair is updated. It works by imparting knowledge to an action-value
function and expressing the expected cumulative benefit of performing a specific action
under given circumstances. The primary concept of the algorithm is a simple iterative
update, wherein each pair of the states and actions (s, a) has a corresponding Q value.
When the agent in state s selects an action, a, the reward for doing so and the best Q-value
for the following state s are utilised to update the Q-value [33]. Q-learning is an off-policy
approach, in contrast to on-policy methods, which have an updated policy similar to the
behaviour policy. Q-learning adopts a greedy attitude when updating its Q-value function,
whereby it employs additional guidelines (i.e., greed) to regulate its behaviour. The basic
QRL process is presented in Algorithm 1 [33,34].

Algorithm 1. QRL algorithm

Initialise Q(s, a) for all state− action pairs and step size α ∈ (0, 1]
For each episode, initialise S0

For each step St in the current episode, do
Select At from St using a policy that is based on Q

Rt+1, St+1 ← Enviroment(St, At)
Select At+1 from St+1 using a policy that is based on Q

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]
End for

End for

• State, Action and Reward

The initially developed model of this study is based on the QRL. Figure 1 shows the
training phase of the proposed QRL model. Flexible job shops, including 10 SMs and
19 MMs job shops, are considered as QRL environments. In the designed QRL model of
this study, an agent is connected to each machine to find the best schedules. Here, the agent
locally selects the fundamental actions and decides which tasks, among those pending on
the appropriate machine, must be processed next. The agent considers the jobs processed
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at each stage based on the limits and challenges. The process depends on two primary
sets, whereby the latter collection receives ongoing updates. This approach is rewarded
significantly and occupies the top slot when the new makespan is superior. When there
is no improvement in the outcomes, the iterations end. In this method, the algorithm
discovers incomplete activities from the previously optimised plan and adds them to a new
timetable. The scheduling procedure is further optimised by repeating the optimisation
steps of the Q-learning algorithm.
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In the proposed QRL model, the learning rate (alpha) is 95%, the discount rate (gamma)
is 0.1 and the max number of iterations is 10,000. The following is a discussion of the
parameters in the proposed models of this study.

Alpha (α): The agent changes its Q-values depending on new experiences, which is
determined by the learning rate represented by α. Regarding simulated FJSPs in this work,
alpha affects how fast the agent modifies its scheduling decisions. When FJSPs are highly
interactive, a more significant alpha can help because it speeds up learning. However, an
excessively high learning rate t causes instability, and an excessively low learning rate can
cause slow convergence.

Gamma (γ): The agent’s preference for immediate rewards over future rewards is
determined by the discount factor, represented by the symbol γ. It impacts how the
proposed RL models balance short- and long-term goals. Gamma is a critical component of
the applied FJSPs, since it helps to balance the significance of quick scheduling decisions
and their effects on long-term efficiency.

Greedy exploration (ε-Greedy): The ε-greedy exploration strategy combines exploita-
tion and exploration. It entails choosing between a random action with the probability ε and
the action with the highest Q-value (greedy action) with the probability 1 − ε. The ε-greedy
approach in the applied FJSPs enables the agent to achieve a balance between the exploita-
tion of proper strategies and the exploration of scheduling choices. More exploration is
encouraged by a greater ε, which is advantageous in flexible scheduling environments. A
smaller ε indicates more exploitation and the use of try-and-error methods.

5.3. Application of SARSA Model

The subsequent phase of this research entails developing a novel SARSA model. This
model provides an on-policy approach because the state value is changed for each transition,
and the revised state value affects the policy used to determine the behaviour. Algorithm 2
presents the standard SARSA algorithm [33,34]. Figure 2 shows the novel SARSA model
for optimising job shops in this work. This model illustrates the initial environments used
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in the SARSA model, including 29 flexible job shops; the initial state begins to schedule the
job sequences employing related rewards. The following are some features of this model.

• Agent: In this model, an agent interacts with the environment, gains knowledge and
makes choices. When a job becomes available, it is selected from the local waiting
queue of the machine (sometimes referred to as the job-candidate set) and processed.
When the current operation is completed, each job chooses a machine to handle
subsequent operations. At this point, the job becomes a job candidate for the machine
and is assigned an agent for task routing; this is performed to address the vast action
space of the FJSPs. Thus, the agent decides what is appropriate given the current state
of the environment.

• States: The state represents the environment, including various machine and job-
related aspects. Such aspects include the productivity of machines and how they
interact with one another, the number of machines active and available for use in
each operation and the workloads of the jobs completed or in progress at different
operations; this aims to maximise returns or the sum of discounted rewards while
minimising the makespan or the number of time steps required to accomplish the jobs.

• Reward: The rewards involve moving between jobs to calculate the makespan, which
ultimately becomes an objective function. Regarding the state, the agent moves
between jobs to calculate the time, add it to the reward, calculate the objective function
and execution time for the entire benchmark (job shop), and cut down on time. By
reversing the rewards, the minimum time in the program is calculated, wherein the
agent increases the reward while the environment minimises the time.
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Algorithm 2. Standard SARSA

Initialise Q(s, a) for all state-action pairs.
For each episode, do

Initialise S0
Select A0 using a policy that is based on Q
For each step St in the current episode, do

Select At from St using a policy that is based on Q
Rt+1, Enviroment(St, At)
Select At+1 from St+1 using a policy that is based on Q

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]
End for

End for
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The initial parameters of this model are as follows: the learning rate (alpha) is 1, the
discount rate (gamma) is 0.09, the max number of iterations is 1000, and the greedy factor
(Epsilon) is 0.9.

6. Results and Experimental Discussion

The results are compared with an advanced NMHPGA to examine the proposed
models’ performance. SARSA performs better than different algorithms, indicating that
it can solve the FJSP with satisfying solutions. The performance of the proposed RL’s
convergence is shown in Figures 3 and 4.
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Figure 3. Simulation results applying QRL model on SM category and MM Category-A and -B. (a) The
rewards of applying QRL on SM1–SM10 to reach the best rewards. (b) The rewards of applying QRL
on MM1–SM10 to reach the best rewards. (c) The rewards of applying QRL on MM11–MM19 to reach
the best rewards.
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Figure 4. Simulation results applying the proposed SARSA model on the SM category and MM
Category-A and -B. (a) The rewards of applying the SARSA model on SM1–SM10 to reach the
best rewards by increasing the episode numbers. (b) The rewards of applying the SARSA model
on MM1–MM10 to reach the best rewards. (c) The rewards of applying the SARSA model on
MM11–MM19 to reach the best rewards.

Tables 3–5 show the simulation results, comparing the objective functions for the
RL-based Q-learning and SARSA models with NMHPGA. Each benchmark cell consid-
erably improves the makespan. Tables 3–5 present the simulation results tested on SM
(SM1–SM10), MM category-A (MM1–MM10) and MM category-B (MM11–MM19), respec-
tively. It can be seen from the results that the Q-agent chooses the greedy action, which
delivers the maximum Q-value for the state, and the proposed Q-learning algorithm per-
forms poorly compared to the SARSA algorithm; however, when the size of the job shop Is
large (MM11–MM19), the findings of this research show that the recommended Q-learning
strategy outperforms the SARSA algorithm. Additionally, as shown in Tables 4 and 5,
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by comparing the objective function values, it can be concluded that the GA technique
outperforms the proposed Q-learning algorithm regarding apparent improvements for SM
and MM job shops (because the objective function is lower than QRL results).

Table 3. Comparison of the objective functions tested on job shops in the SM category.

Benchmark Type No. of Jobs NMHPGA QRL SARSA

SARSA
Performance
Differential
Relative to

NMHPGA (%)

QRL
Performance
Differential
Relative to

NMHPGA (%)

SM1 32 39,444 42,016 23,006 71.45 6.12
SM2 40 160,871 297,088 156,270 2.94 45.85
SM3 60 474,325 816,604 507,100 6.46 41.91
SM4 80 1,120,440 1,662,800 1,082,100 3.54 32.61
SM5 100 2,297,979 4,452,100 2,446,362 6.06 48.38
SM6 120 11,009,721 11,283,000 8,310,500 32.47 2.42
SM7 150 8,549,596 12,201,000 8,051,900 6.18 29.92
SM8 200 15,952,550 26,355,000 20,215,000 21.08 39.47
SM9 250 30,845,566 58,246,000 39,822,000 22.54 47.04

SM10 300 52,260,543 90,327,000 65,091,000 19.71 42.14

Table 4. Comparison of the objective functions tested on multi-machine job shops in Category-A.

Benchmark Type NMHPGA QRL SARSA
SARSA

Performance Differential
Relative to NMHPGA (%)

QRL Performance
Differential

Relative to NMHPGA (%)

MM1 7758 6711 7230 7.30 15.59
MM2 9465 5420 7490 26.37 74.62
MM3 7913 13,558 13,187 39.99 41.63
MM4 7758 6711 7230 7.30 15.59
MM5 7039 10,647 11,542 39.01 33.88
MM6 7798 12,863 13,500 42.23 39.37
MM7 9181 8055 8652 6.11 13.98
MM8 8727 17,695 16,094 45.77 50.68
MM9 6195 5379 5766 7.44 15.16

MM10 7758 6711 7230 7.30 15.59

Table 5. Comparison of the objective functions tested on job shops in multi-machines Category B.

Benchmark
Type (No. Machine × No. Jobs) NMHPGA QRL SARSA

SARSA
Performance
Differential
Relative to

NMHPGA (%)

QRL
Performance
Differential
Relative to

NMHPGA (%)

MM11 4 × 10 16,421 17,700 17,882 8.17 7.22
MM12 4 × 20 131,115 124,270 125,296 4.64 5.50
MM13 4 × 30 461,538 429,230 443,460 4.07 7.52
MM14 4 × 40 1,236,658 1,061,652 1,143,600 8.13 16.48
MM15 4 × 100 17,432,983 15,698,000 17,035,000 2.33 11.05
MM16 4 × 150 62,354,613 54,567,000 60,006,000 3.91 14.27
MM17 4 × 200 131,840,576 126,430,000 105,410,000 25.07 4.27
MM18 4 × 250 270,317,679 248,160,000 270,810,000 0.18 8.92
MM19 4 × 300 475,082,286 417,290,000 420,790,000 12.90 13.84

The statistical analysis of the objective functions in the SARSA algorithm and QRL are
contrasted with those of NMHPGA. The performance differential relative to NMHPGA
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denotes the percentage improvement in the objective functions achieved by SARSA com-
pared to NMHPGA. Furthermore, the QRL performance differential relative to NMHPGA
(%) represents the percentage enhancement in the objective functions achieved by QRL
compared to NMHPGA. The comparisons reveal that SARSA consistently demonstrates
superior performance across all categories compared to the other models.

Results from QRL tested on the SM category and multi-machine Category-A and -B
are shown in Figure 3. The simulation results for the SM categories SM1–SM10, comprising
10,000 iterations and maximum awards using QRL, are shown in Figure 3a. Figure 4a
shows the outcomes of SM simulations using the SARSA model, which incorporates
average rewards. As shown, by increasing the number of episodes, the agent learns from
the environment to increase the reward. The results for MM job shops category-A using
QRL and SARSA are shown in Figures 3b and 4b, respectively. The simulation results
show the average rewards, which increase over time, which means the agent increases
the exploration and exploitation of the environment. Finally, Figure 3c shows the average
rewards of each episode of applying QRL for job shop category-B. It is indicated that
the agent tries exploring and exploitation to learn from the environment to reach the
best reward.

7. Case Study: Reheating Furnace Model

This study optimises the furnace model schedule developed by [35]. The optimisation
results from the proposed QRL and SARSA models are compared to the results of the
NMHPGA. The optimisation aims to reduce the time and energy consumption in the
furnace model. Although furnace designs may differ in terms of their intended use, such
as within the heating processes, fuel type and techniques for introducing combustion air,
most process furnaces have a few things in common [35]. The type of fuel, combustion
efficiency, idle and cycling losses and heat transfer affect the furnace’s design and the
heating schedule for the materials [35]. The project model needs to account for all the
requirements, including the time and fuel used. The applied furnace model is a multi-
objective function with three objectives: (1) reducing the time of the schedule, (2) reducing
the furnace’s energy consumption, and (3) simultaneously reducing the time by 30% and
energy by 70%. The latter is the most critical in terms of efficiency. Equations (7)–(9) show
the above objectives in this model, where T is the time taken for each job, F is the fuel
consumption per job, and n is the number of jobs.

Objective 1 =
n

∑
i=1

Ti (7)

Objective 2 =
n

∑
i=1

Fi (8)

Objective 3 =
n

∑
i=1

(0.3× Ti + 0.7× Fi) (9)

Before optimisation, the furnace consumes 86.8673 × 104 m3/h of fuel and takes
139.2167 h to operate. Equations (10) and (11) pertain to a dynamic model of the furnace
temperature [35].

y f

(
t + d f

)
= α f 0y f (t) +

m f

∑
i=0

β f iu f (t− i) +
2

∑
i=1

d f iv f i

(
t + d f

)
(10)



Electronics 2023, 12, 4752 12 of 16

where
y f (t)= Tf (t)− T∗f
u f (t)= F(t)− F∗

v f i

(
t + d f

)
=

d f−1

∑
j=0

α

j
d f
f 0 w f i

(
t + d f − j

)
, (i = 1, 2)

w f 1(t)= Wd(t)Th(t)V(t)−W∗tv
w f 2(t)= 1

(11)

t: Time [min];
d, d f : Dead time [min];
F: Total fuel flow rate in the heating furnace [×104 m3/h];
Ts: The out-strip temperature [100 ◦C];
m, m f : Non-negative integer;
Tss: Out-strip temperature [100 ◦C];
Tsin: Strip temperature at the inlet of the furnace (constant) [100 ◦C];
Tf : Furnace temperature [100 ◦C];
Wd, Th: Strip width [m] and thickness [mm];
V: Line speed [×104 m/h];
Vf (t): Average line speed during [t− t f , t](t f is the heating time of the strip) [35].

The proposed RL models aim to reduce the time and energy needed in the furnace
model. The environment in the following stage is the furnace model with three objec-
tives: 1, 2, and 3. Each environment is run separately to obtain optimised results. The
furnace model’s schedule is optimised by experimenting with various states and comput-
ing rewards; the best reward demonstrates the optimal sequence and schedule for the
furnace model.

Table 6 shows the elapsed time results following schedule optimisation for the fur-
nace model tested by the NMHPGA, QRL and SARSA. Table 7 shows the amount of
energy used in this model. As presented in Table 7, the furnace uses 83.9666 × 104 m3/h
of fuel when NMHPGA is applied as an optimiser; in contrast, the SARSA model uses
84.1481 × 104 m3/h. Despite these differences in fuel consumption, SARSA is highly recom-
mended over complex GAs and Q-learning due to its simplicity and superior performance.

Table 6. Comparison of the elapsed time (h) when applying NMHPGA, QRL and SARSA models on
the furnace model.

Furnace Model NMHPGA Q-Learning SARSA

Furnace objective 1 133.7500 133.9333 133.9333
Furnace objective 2 134.0000 137.9667 133.9333
Furnace objective 3 133.7500 135.6333 133.9333

Table 7. Comparison of the fuel consumption ×
[
104 m3/h

]
when applying NMHPGA, QRL and

SARSA methods on the furnace model.

Furnace Model NMHPGA Q-Learning SARSA

Furnace objective 1 83.9666 84.1481 84.1481
Furnace objective 2 84.0847 86.2792 84.1481
Furnace objective 3 83.9666 85.2274 84.1481

The SARSA provides a similar schedule when using any objective, because SARSA
finds optimal solutions despite other algorithms finding suboptimal solutions. Hence, there
are no differences between the three objectives’ results for SARSA. NMHPGA and QRL,
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when executed, provide varying outcomes on each run due to their utilisation of random
initial conditions.

Regarding furnace objectives, the optimal schedule involves achieving a balance
between reducing both time and fuel consumption. Objectives 1 and 2 are still valid, as
one optimises the time (urgent jobs), and the other optimises the energy. The operator
can choose a schedule based on the customer’s requirements. Objective 3 is best for the
company, saving both time and fuel. In summary, the proposed SARSA model finds
a similar solution for any objective, which is the best solution, while QRL finds sub-
optimal solutions.

As shown in Figure 5, the simulation results of the QRL agent on Objectives 1, 2 and 3
indicate that the agent increases the exploration–exploitation trade-off when the number of
episodes increases. As a result, the agent learns from the environment and raises the reward
at each state. There can be more episodes to reach more significant rewards; nevertheless,
the maximum for QRL is 10,000. Similar average reward results when employing the
SARSA model are shown in Figure 6a–c. The figures show that the graph fluctuation leads
the agent’s learning rate to the best reward. The simulated furnace temperature findings
are provided in Appendix A, which shows the temperature of the furnace over time.
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Figure 6a illustrates the average rewards of the SARSA model when applied to furnace
Objective 1, revealing the fluctuations and changes in the rewards to reach the best reward.
Figure 6b shows the average rewards of the SARSA model applied to furnace Objective 2,
highlighting the fluctuations and changes in the rewards in order to reach the best reward
and maximise performance. Figure 6c shows the average rewards of the SARSA model
applied to the furnace Objective 3 to achieve the best reward.

8. Conclusions and Future Work

This study examined the performance of novel implementation of the RL-based SARSA
and Q-learning algorithms to optimise the simulated job shops and schedules of a furnace
model. In the proposed models, the RL learns how to link environmental states to the
actions of an agent in order to optimise long-term rewards. An agent learns the optimal
behaviour through trial-and-error interactions with the environment, which involves ex-
ploring various states to find the best action and, in turn, learning the optimal behaviour.
The reward-based Q-learning updates the value for a state–action pair at each step, ensur-
ing that the agent quickly approaches the ideal value. Consequently, the RL frequently
generates superior results for JSSPs and FJSPs, compared to other stochastic methods.
Based on the findings arising from the presented research, the following primary outcomes
can be defined:

• Q-learning, a fundamental reinforcement learning model, outperforms the advanced
GA (NMHPGA) because GA algorithms are more complex and time-consuming and
require additional program functions.

• Most of the QRL results show the strong performance of the algorithm, except for a
few job shops of more considerable sizes. The proposed SARSA model was used to
enhance these results.

• Despite the poor performance of SARSA in scenarios involving large-scale job shops,
it is still a highly recommended model because of its comparative simplicity compared
to GAs; SARSA requires less execution time and involves fewer functions, which
makes it a preferred option to run the program and optimise JSSPs.

• Additionally, the proposed SARSA outperformed the NMHPGA and QRL by opti-
mising the furnace model using RL models. It can be concluded that the SARSA is
sufficiently fast and accurate to optimise industrial production lines with moderate-
sized schedules.

• Although some limitations and the outlined models’ difficulties preclude the complete
application of RL in complex real production systems, ongoing research efforts could ad-
dress these issues, resulting in improvements in the use of RL in industrial applications.

• Future DRL-based models and additional applicable benchmarks would be beneficial;
this expansion can be achieved by integrating advanced optimisation techniques.

• Furthermore, as GA methods are predominantly characterised by their complexity
and slow performance, integrating various RL models with advanced GA models may
lead to significant performance improvement.

• As a final note in this paper, it is noticeable that RL approaches can address more
complex problems, extending their applicability to encompass not only the multi-
objective JSSPs but also the more demanding FJSPs.
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Appendix A

Figure A1 shows the temperature needed in the furnace model in the period of the
schedules. The results for the simulated furnace temperature are shown in Figure A1,
when applying QRL and SARSA. Figure A1a–c illustrates the QRL model results, and
Figure A1d–f indicates the SARSA model results for the furnace model for Objectives 1, 2,
and 3 (respectively).
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Figure A1. Objective 1, 2 and 3 simulation results when using the QRL and SARSA models, showing
the temperature needed. (a–c) illustrate the QRL results, testing Objectives 1 and 2. (d–f) indicate the
results of the SARSA model tested on the furnace testing objectives 1, 2 and 3.
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