Enhancing Underwater Image Quality Assessment with Influential Perceptual Features
Abstract
:1. Introduction
- We have developed an innovative methodology, namely UIQM-LSH, which integrates both low-level image properties and high-level semantic features in underwater images. By considering both the intrinsic visual elements such as brightness, colorfulness, and sharpness, along with the contextual and compositional high-level semantic information, our method provides a nuanced understanding of underwater image quality, addressing a significant gap in existing UIQA methods.
- We implement the least-angle regression method for efficient feature selection in high-level semantics. This technique effectively balances the feature representation, preventing high-level features from dominating the assessment. By fine-tuning the feature selection process, our approach ensures that both low-level and high-level features contribute appropriately to the overall image quality assessment, leading to a more accurate and reliable evaluation.
2. Proposed Method
2.1. Low-Level Underwater Properties Characterization
2.1.1. Color Cast
2.1.2. Brightness
2.1.3. Contrast
2.2. Vision Transformer
Self-Attention Module
2.3. Least Angle Regression for Adaptive Feature Selection
2.4. Qualty Score Assessment
3. Experiments Results and Discussion
3.1. Dataset and Evaluation Protocols
3.2. Implementation Details
3.3. Prediction Performance Evaluation
3.4. Cross-Dataset Validation
3.5. Ablation Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ancuti, C.O.; Ancuti, C.; De Vleeschouwer, C.; Bekaert, P. Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 2017, 27, 379–393. [Google Scholar] [CrossRef]
- Gulliver, S.R.; Ghinea, G. Defining User Perception of Distributed Multimedia Quality. ACM Trans. Multimed. Comput. Commun. Appl. 2006, 2, 241–257. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, Y.; Li, H. VSI: A visual saliency-induced index for perceptual image quality assessment. Image Process. IEEE Trans. 2014, 23, 4270–4281. [Google Scholar] [CrossRef] [PubMed]
- Soundararajan, R.; Bovik, A.C. RRED indices: Reduced reference entropic differencing for image quality assessment. IEEE Trans. Image Process. 2012, 21, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xie, Y.; Li, C.; Wu, Z.; Qu, Y. Learning All-In Collaborative Multiview Binary Representation for Clustering. IEEE Trans. Neural Netw. Learn. Syst. 2022. [Google Scholar] [CrossRef]
- Hu, R.; Liu, Y.; Gu, K.; Min, X.; Zhai, G. Toward a no-reference quality metric for camera-captured images. IEEE Trans. Cybern. 2021, 53, 3651–3664. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, S.; Wang, Y.; Li, R.; Chen, X.; Yu, D. ASCAM-Former: Blind image quality assessment based on adaptive spatial & channel attention merging transformer and image to patch weights sharing. Expert Syst. Appl. 2023, 215, 119268. [Google Scholar]
- Nizami, I.F.; Rehman, M.U.; Waqar, A.; Majid, M. Impact of visual saliency on multi-distorted blind image quality assessment using deep neural architecture. Multimed. Tools Appl. 2022, 81, 25283–25300. [Google Scholar] [CrossRef]
- ur Rehman, M.; Nizami, I.F.; Majid, M. DeepRPN-BIQA: Deep architectures with region proposal network for natural-scene and screen-content blind image quality assessment. Displays 2022, 71, 102101. [Google Scholar] [CrossRef]
- Sendjasni, A.; Larabi, M.C. PW-360IQA: Perceptually-Weighted Multichannel CNN for Blind 360-Degree Image Quality Assessment. Sensors 2023, 23, 4242. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Chen, Z. Deep local and global spatiotemporal feature aggregation for blind video quality assessment. In Proceedings of the 2020 IEEE International Conference on Visual Communications and Image Processing (VCIP), Macau, China, 1–4 December 2020; pp. 338–341. [Google Scholar]
- Hou, G.; Li, Y.; Yang, H.; Li, K.; Pan, Z. UID2021: An underwater image dataset for evaluation of no-reference quality assessment metrics. ACM Trans. Multimed. Comput. Commun. Appl. 2023, 19, 1–24. [Google Scholar] [CrossRef]
- Nizami, I.F.; Rehman, M.u.; Majid, M.; Anwar, S.M. Natural scene statistics model independent no-reference image quality assessment using patch based discrete cosine transform. Multimed. Tools Appl. 2020, 79, 26285–26304. [Google Scholar] [CrossRef]
- Bouris, E.; Davis, T.; Morales, E.; Grassi, L.; Salazar Vega, D.; Caprioli, J. A Neural Network for Automated Image Quality Assessment of Optic Disc Photographs. J. Clin. Med. 2023, 12, 1217. [Google Scholar] [CrossRef]
- Nizami, I.F.; Majid, M.; Rehman, M.u.; Anwar, S.M.; Nasim, A.; Khurshid, K. No-reference image quality assessment using bag-of-features with feature selection. Multimed. Tools Appl. 2020, 79, 7811–7836. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Z. Blind Omnidirectional Image Quality Assessment: Integrating Local Statistics and Global Semantics. arXiv 2023, arXiv:2302.12393. [Google Scholar]
- Jiang, Q.; Zhou, W.; Chai, X.; Yue, G.; Shao, F.; Chen, Z. A full-reference stereoscopic image quality measurement via hierarchical deep feature degradation fusion. IEEE Trans. Instrum. Meas. 2020, 69, 9784–9796. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, K.; Zhang, Y.; Li, X.; Zhai, G.; Zhao, D.; Gao, W. Unsupervised blind image quality evaluation via statistical measurements of structure, naturalness, and perception. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 929–943. [Google Scholar] [CrossRef]
- Yang, M.; Sowmya, A. An underwater color image quality evaluation metric. IEEE Trans. Image Process. 2015, 24, 6062–6071. [Google Scholar] [CrossRef]
- Panetta, K.; Gao, C.; Agaian, S. Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 2015, 41, 541–551. [Google Scholar] [CrossRef]
- Yang, N.; Zhong, Q.; Li, K.; Cong, R.; Zhao, Y.; Kwong, S. A reference-free underwater image quality assessment metric in frequency domain. Signal Process. Image Commun. 2021, 94, 116218. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, Y.; Xie, Y.; Li, Z.; Zheng, S.; Li, C. Perturbed self-distillation: Weakly supervised large-scale point cloud semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 11–17 October 2021; pp. 15520–15528. [Google Scholar]
- Hu, R.; Liu, Y.; Wang, Z.; Li, X. Blind quality assessment of night-time image. Displays 2021, 69, 102045. [Google Scholar] [CrossRef]
- He, C.; Li, K.; Zhang, Y.; Tang, L.; Zhang, Y.; Guo, Z.; Li, X. Camouflaged object detection with feature decomposition and edge reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 18–22 June 2023; pp. 22046–22055. [Google Scholar]
- Hu, R.; Monebhurrun, V.; Himeno, R.; Yokota, H.; Costen, F. A general framework for building surrogate models for uncertainty quantification in computational electromagnetics. IEEE Trans. Antennas Propag. 2021, 70, 1402–1414. [Google Scholar] [CrossRef]
- Hu, R.; Monebhurrun, V.; Himeno, R.; Yokota, H.; Costen, F. An adaptive least angle regression method for uncertainty quantification in FDTD computation. IEEE Trans. Antennas Propag. 2018, 66, 7188–7197. [Google Scholar] [CrossRef]
- Lin, S.; Ji, R.; Yan, C.; Zhang, B.; Cao, L.; Ye, Q.; Huang, F.; Doermann, D. Towards optimal structured cnn pruning via generative adversarial learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2790–2799. [Google Scholar]
- Lin, S.; Ji, R.; Chen, C.; Tao, D.; Luo, J. Holistic cnn compression via low-rank decomposition with knowledge transfer. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 2889–2905. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Ji, R.; Li, Y.; Wu, Y.; Huang, F.; Zhang, B. Accelerating Convolutional Networks via Global & Dynamic Filter Pruning. In Proceedings of the IJCAI. Stockholm, Stockholm, Sweden, 13–19 July 2018; Volume 2, p. 8. [Google Scholar]
- Li, F.; Wu, J.; Wang, Y.; Zhao, Y.; Zhang, X. A color cast detection algorithm of robust performance. In Proceedings of the 2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI), Nanjing, China, 18–20 October 2012; pp. 662–664. [Google Scholar]
- Choi, L.K.; You, J.; Bovik, A.C. Referenceless Prediction of Perceptual Fog Density and Perceptual Image Defogging. IEEE Trans. Image Process. 2015, 24, 3888–3901. [Google Scholar] [CrossRef]
- Fu, H.; Liu, G.; Yang, X.; Wei, L.; Yang, L. Two Low-Level Feature Distributions Based No Reference Image Quality Assessment. Appl. Sci. 2022, 12, 4975. [Google Scholar] [CrossRef]
- Su, S.; Yan, Q.; Zhu, Y.; Zhang, C.; Ge, X.; Sun, J.; Zhang, Y. Blindly assess image quality in the wild guided by a self-adaptive hyper network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 3667–3676. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Qin, G.; Hu, R.; Liu, Y.; Zheng, X.; Liu, H.; Li, X.; Zhang, Y. Data-Efficient Image Quality Assessment with Attention-Panel Decoder. arXiv 2023, arXiv:2304.04952. [Google Scholar] [CrossRef]
- Hu, R.; Monebhurrun, V.; Himeno, R.; Yokota, H.; Costen, F. A statistical parsimony method for uncertainty quantification of FDTD computation based on the PCA and ridge regression. IEEE Trans. Antennas Propag. 2019, 67, 4726–4737. [Google Scholar] [CrossRef]
- Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R. Least angle regression. Ann. Statist. 2004, 32, 407–499. [Google Scholar] [CrossRef]
- Márquez-Vera, M.A.; Ramos-Velasco, L.; López-Ortega, O.; Zúñiga-Peña, N.; Ramos-Fernández, J.; Ortega-Mendoza, R.M. Inverse fuzzy fault model for fault detection and isolation with least angle regression for variable selection. Comput. Ind. Eng. 2021, 159, 107499. [Google Scholar] [CrossRef]
- Blatman, G.; Sudret, B. Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 2011, 230, 2345–2367. [Google Scholar] [CrossRef]
- Video Quality Experts Group. Final Report from the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment. ITU-T Standards Contribution COM 2000. pp. 9–80. Available online: https://www.academia.edu/2102517/FINAL_REPORT_FROM_THE_VIDEO_QUALITY_EXPERTS_GROUP_ON_THE_VALIDATION_OF_OBJECTIVE_MODELS_OF_VIDEO_QUALITY_ASSESSMENT_March_ (accessed on 13 November 2023).
- Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 2012, 21, 4695–4708. [Google Scholar] [CrossRef] [PubMed]
- Gu, K.; Zhai, G.; Yang, X.; Zhang, W. Using free energy principle for blind image quality assessment. IEEE Trans. Multimed. 2014, 17, 50–63. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, K.; Yan, J.; Deng, D.; Wang, Z. Blind image quality assessment using a deep bilinear convolutional neural network. IEEE Trans. Circuits Syst. Video Technol. 2018, 30, 36–47. [Google Scholar] [CrossRef]
- Golestaneh, S.A.; Dadsetan, S.; Kitani, K.M. No-reference image quality assessment via transformers, relative ranking, and self-consistency. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022; pp. 1220–1230. [Google Scholar]
- Ye, P.; Kumar, J.; Kang, L.; Doermann, D. Unsupervised feature learning framework for no-reference image quality assessment. In Proceedings of the 2012 IEEE conference on computer vision and pattern recognition, Providence, RI, USA, 16–21 June 2012; pp. 1098–1105. [Google Scholar]
- Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. IEEE Signal Process. Lett. 2013, 20, 209–212. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, K.; Li, X.; Zhang, Y. Blind image quality assessment by natural scene statistics and perceptual characteristics. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2020, 16, 1–91. [Google Scholar] [CrossRef]
- Wang, Y.; Li, N.; Li, Z.; Gu, Z.; Zheng, H.; Zheng, B.; Sun, M. An imaging-inspired no-reference underwater color image quality assessment metric. Comput. Electr. Eng. 2018, 70, 904–913. [Google Scholar] [CrossRef]
- Sun, S.; Yu, T.; Xu, J.; Lin, J.; Zhou, W.; Chen, Z. GraphIQA: Learning Distortion Graph Representations for Blind Image Quality Assessment. IEEE Trans. Multimed. 2021, 25, 2912–2925. [Google Scholar] [CrossRef]
- Gu, K.; Zhai, G.; Lin, W.; Yang, X.; Zhang, W. Learning a blind quality evaluation engine of screen content images. Neurocomputing 2016, 196, 140–149. [Google Scholar] [CrossRef]
IQA Metrics | Type | UWIQA | |||
---|---|---|---|---|---|
SRCC | KRCC | PLCC | RMSE | ||
DBCNN [46] | IQA (supervised) | 0.5392 | 0.4065 | 0.5179 | 0.1241 |
HyperIQA [35] | IQA (supervised) | 0.6501 | 0.5040 | 0.6799 | 0.1114 |
TReS [47] | IQA (supervised) | 0.5038 | 0.3817 | 0.4942 | 0.1302 |
GraphIQA [52] | IQA (supervised) | 0.7708 | 0.6609 | 0.7842 | 0.0801 |
PaQ-2-PiQ [48] | IQA (unsupervised) | 0.6341 | 0.4955 | 0.6203 | 0.1221 |
BRISQUE [53] | IQA (unsupervised) | 0.3456 | 0.2562 | 0.3669 | 0.1415 |
NFERM [45] | IQA (unsupervised) | 0.3486 | 0.2595 | 0.3925 | 0.1398 |
NIQE [49] | IQA (unsupervised) | 0.4347 | 0.3243 | 0.4687 | 0.1343 |
NPQI [50] | IQA (unsupervised) | 0.6078 | 0.4667 | 0.6361 | 0.1173 |
SNP-NIQE [20] | IQA (unsupervised) | 0.5516 | 0.4199 | 0.5897 | 0.1228 |
UCIQE [21] | UIQA (unsupervised) | 0.6271 | 0.4863 | 0.6261 | 0.1185 |
UIQM [22] | UIQA (unsupervised) | 0.5960 | 0.4563 | 0.5928 | 0.1225 |
CCF [51] | UIQA (unsupervised) | 0.4456 | 0.3344 | 0.4634 | 0.1348 |
FDUM [23] | UIQA (unsupervised) | 0.6780 | 0.5289 | 0.6462 | 0.1160 |
UIQM-LSH (Pro.) | IQA (supervised) | 0.7580 | 0.6528 | 0.7890 | 0.0790 |
t-Test | BRISQUE | NFERM | NIQE | SNP-NIQE | DBCNN | HyperIQA | NPQI | TReS | PaQ-2-PiQ | UCIQE | UIQM | CCF | FDUM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UWIQA | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
IQA Metrics | UWIQA (Trained on UID2021) | UID2021 (Trained on UWIQA) | ||||||
---|---|---|---|---|---|---|---|---|
SRCC | KRCC | PLCC | RMSE | SRCC | KRCC | PLCC | RMSE | |
DBCNN [46] | 0.4851 | 0.3492 | 4904 | 0.1208 | 0.6089 | 0.4706 | 0.6237 | 1.4198 |
HyperIQA [35] | 0.5516 | 0.4287 | 0.5625 | 0.1209 | 0.6703 | 0.5263 | 0.6679 | 1.4132 |
TReS [47] | 0.3459 | 0.2346 | 0.3673 | 0.1341 | 0.5224 | 0.4097 | 0.5321 | 1.5339 |
UIQM-LSH (Pro.) | 0.6307 | 0.5777 | 0.6340 | 0.1309 | 0.7189 | 0.6645 | 0.7197 | 1.3933 |
Feature Types | LARS | UWIQA | |||
---|---|---|---|---|---|
SRCC | KRCC | PLCC | RMSE | ||
Low-level perceptual features | ✗ | 0.6748 | 0.5272 | 0.6383 | 0.1066 |
High-level perceptual features | 0.6944 | 0.5916 | 0.6964 | 0.0928 | |
Combination | 0.7183 | 0.6237 | 0.7060 | 0.0915 | |
Low-level perceptual features | ✓ | 0.6748 | 0.5272 | 0.6383 | 0.1066 |
High-level perceptual features | 0.7246 | 0.6299 | 0.7673 | 0.0801 | |
Combination | 0.7580 | 0.6528 | 0.7890 | 0.0790 |
Feature Types | UWIQA | |||
---|---|---|---|---|
SRCC | KRCC | PLCC | RMSE | |
Colorfulness | 0.4192 | 0.3201 | 0.4396 | 0.1244 |
Brightness | 0.5028 | 0.3777 | 0.5200 | 0.1266 |
Contrast | 0.6325 | 0.5552 | 0.6172 | 0.1165 |
Colorfulness + Contrast | 0.6418 | 0.5035 | 0.6196 | 0.1090 |
Colorfulness + Brightness | 0.5859 | 0.4773 | 0.5936 | 0.1108 |
Contrast + Brightness | 0.6578 | 0.5414 | 0.6198 | 0.1157 |
Contrast + Brightness + Colorfulness | 0.6748 | 0.5272 | 0.6383 | 0.1066 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Huang, Z.; Xie, T.; Hu, R.; Qi, B. Enhancing Underwater Image Quality Assessment with Influential Perceptual Features. Electronics 2023, 12, 4760. https://doi.org/10.3390/electronics12234760
Liu F, Huang Z, Xie T, Hu R, Qi B. Enhancing Underwater Image Quality Assessment with Influential Perceptual Features. Electronics. 2023; 12(23):4760. https://doi.org/10.3390/electronics12234760
Chicago/Turabian StyleLiu, Feifei, Zihao Huang, Tianrang Xie, Runze Hu, and Bingbing Qi. 2023. "Enhancing Underwater Image Quality Assessment with Influential Perceptual Features" Electronics 12, no. 23: 4760. https://doi.org/10.3390/electronics12234760
APA StyleLiu, F., Huang, Z., Xie, T., Hu, R., & Qi, B. (2023). Enhancing Underwater Image Quality Assessment with Influential Perceptual Features. Electronics, 12(23), 4760. https://doi.org/10.3390/electronics12234760