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Abstract: In the multifaceted field of oceanic engineering, the quality of underwater images is
paramount for a range of applications, from marine biology to robotic exploration. This paper
presents a novel approach in underwater image quality assessment (UIQA) that addresses the
current limitations by effectively combining low-level image properties with high-level semantic
features. Traditional UIQA methods predominantly focus on either low-level attributes such as
brightness and contrast or high-level semantic content, but rarely both, which leads to a gap in
achieving a comprehensive assessment of image quality. Our proposed methodology bridges this
gap by integrating these two critical aspects of underwater imaging. We employ the least-angle
regression technique for balanced feature selection, particularly in high-level semantics, to ensure
that the extensive feature dimensions of high-level content do not overshadow the fundamental
low-level properties. The experimental results of our method demonstrate a remarkable improvement
over existing UIQA techniques, establishing a new benchmark in both accuracy and reliability for
underwater image assessment.

Keywords: image quality assessment; vision transformer; low-level; feature selection

1. Introduction

The burgeoning field of oceanic engineering heavily relies on the quality of underwater
images for a multitude of applications ranging from marine biology research to underwater
robotics. Underwater image quality assessment (UIQA) plays a pivotal role in ensuring
the reliability and efficacy of these applications [1,2]. High-quality underwater images
are essential for accurate data analysis and interpretation, making UIQA an indispensable
aspect of oceanic exploration and monitoring.

Image quality assessment (IQA) fundamentally revolves around three principal categories:
full-reference (FR) [3,4], reduced-reference (RR) [5,6], and no-reference (NR) [7,8]. FR IQA
methods compare a degraded image with a high-quality reference image, while RR IQA
methods require only partial information from the reference. However, in most underwater
imaging scenarios, distortion-free reference images are not available, rendering FR and RR
methods impractical. Consequently, NR IQA, which does not require any reference image,
becomes particularly relevant for UIQA. This paradigm shift towards NR IQA is driven by its
adaptability in dynamic, unpredictable underwater environments where obtaining reference
images is often unfeasible.

Over the last decade, various IQA methods have been proposed and achieved impres-
sive performance. For instance, Ma et al. [9] proposed the ASCAM-Former that introduces
the channel-wised self-attention into IQA. The spatial and channel dependencies among fea-
tures are characterized, rendering to a comprehensive quality evaluation. Nizami et al. [10]
proposed an NR-IQA method that combines visual salience and a convolution neural
network (CNN), where the salient region of the image is identified first and then sent to
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the CNN for quality evaluation. Rehman et al. [11] designed a network applicable for
both natural scene images and screen content. The network is based on the patch salience,
which is determined by the texture and edge properties of the image. Sendjasni et al. [12]
proposed an NR-IQA model for 360 degree images using a perceptually weighted multi-
channel CNN. Zhou et al. [13] further dealt with the 360 degree images through deep local
and global spatiotemporal feature aggregation. HOU et al. [14] established an underwater
IQA database of 60 degraded underwater images, which involves many unique distortions
of underwater images, including blue-green scenes, greenish scenes, hazy scenes, and
low-light scenes. Nizami et al. [15] proposed to utilize the discrete cosine transform (DCT)
features for quality evaluation. Bouris et al. [16] developed a CNN-based IQA model for the
quality evaluation of optic disc photographs, wherein a large-scale dataset is dedicatedly
established. Nizami et al. [17] proposed an NR-IQA method that can extract quality-aware
features in an elegant and efficient manner based on the Harris affine detector and scale
invariant feature transformation. Zhou et al. [18] investigated the NR-IQA strategy for
evaluating the perceptual quality of omnidirectional images (360 degree images), where an
effective metric is proposed based on the low-level statistics and high-level semantics of om-
nidirectional images. Jiang et al. [19] proposed a full-reference solution for omnidirectional
images by characterizing the degradation in a hierarchical manner.

Existing UIQA methods [20–23] predominantly focus on assessing low-level image
attributes such as brightness, colorfulness, contrast, and sharpness. While these factors
are crucial in determining the perceptual quality of underwater images, such methods
often fall short by not considering the high-level semantic content that these images convey.
The semantic aspect, encompassing the contextual and compositional elements of the
image, is vital for a comprehensive understanding and utilization of the underwater visual
data [24,25]. This oversight limits the scope and effectiveness of current UIQA techniques.

Moreover, while the advent of deep-learning techniques in IQA has significantly
advanced the field, there remains a tendency in these methods to overlook the unique
characteristics of underwater imagery, such as the specific distortions and color shifts
caused by water medium. Deep-learning approaches often focus extensively on high-
level feature extraction, potentially neglecting the intrinsic low-level properties specific
to underwater images. This imbalance can lead to suboptimal performance when these
models are applied to UIQA tasks [26], necessitating a more integrated approach that
considers both low- and high-level image characteristics.

Our work aims to bridge this gap by developing an innovative approach that amalga-
mates both the low-level perceptual properties and abstract semantic features of underwater
images, herein namely underwater image quality metric with low-level properties and
selected high-level semantics (UIQM-LSH). Recognizing the disparity in feature dimen-
sions between these two types of features, we employ the least-angle regression method
(LARS) [27,28] for effective feature selection on the high-level semantic attributes. This ap-
proach ensures that the high-level features do not overshadow the crucial low-level proper-
ties, thus achieving a balanced and comprehensive feature representation for UIQA [29–31].
Our proposed UIQM-LSH stands out by adeptly integrating the diverse aspects of un-
derwater images, providing a more nuanced and effective assessment of image quality.
Through extensive experiments, UIQM-LSH demonstrates superior performance against
existing UIQA or IQA approaches.

In summary, this work makes several new contributions:

• We have developed an innovative methodology, namely UIQM-LSH, which integrates
both low-level image properties and high-level semantic features in underwater im-
ages. By considering both the intrinsic visual elements such as brightness, colorfulness,
and sharpness, along with the contextual and compositional high-level semantic infor-
mation, our method provides a nuanced understanding of underwater image quality,
addressing a significant gap in existing UIQA methods.

• We implement the least-angle regression method for efficient feature selection in
high-level semantics. This technique effectively balances the feature representation,
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preventing high-level features from dominating the assessment. By fine-tuning the
feature selection process, our approach ensures that both low-level and high-level
features contribute appropriately to the overall image quality assessment, leading to a
more accurate and reliable evaluation.

2. Proposed Method

In this section, we elaborate on the proposed UIQA metric, namely Underwater Image
Quality Metric with Low-level properties and Selected High-level semantics (UIQM-LSH),
which is capable of characterizing the perceptual properties of underwater images reliably
and comprehensively. The proposed UIQM-LSH consists of three branches, i.e., (1) a low-
level feature extraction branch for characterizing the low-level properties of underwater
images, (2) a high-level semantic branch for extracting the image content-related features,
and (3) a feature balancing branch to prevent the extracted features from being dominated
by high-level features. The processed features and the corresponding MOS values are sent
to the support vector machine (SVM) to derive the final quality score. Figure 1 illustrates
the overall architecture of the UIQM-LSH. We will cover each of these modules in detail in
the following sections.
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Figure 1. The proposed UIQM-LSH architecture includes a training module and a testing module. In
the training module, the deep-learning model is obtained according to the image and the correspond-
ing subjective quality score (MOS) through the vision transformer block. The structure of the vision
transformer block is shown below the dashed line. In the test module, CLS features are extracted
from the training model and high-level semantic features are selected from the LARS module. The
predicted quality score is obtained by the SVM model.

2.1. Low-Level Underwater Properties Characterization
2.1.1. Color Cast

Underwater image quality is often impaired by color cast. The underwater images
usually appear bluish or greenish. Color cast occurs due to unequal absorption of various
colors of light underwater, specifically, red light suffers greater loss due to the absorption by
the water. It is indicated in [32] that in the CIELAB color space, the chromaticity distribution
on the ab chrominance coordinate plane of underwater images with color cast is relatively
concentrated and has a single peak with a small degree of dispersion, and the mean of
chromaticity is large. Conversely, images that do not exhibit color cast or have a less severe
degree of color cast have a chromaticity distribution on the ab chrominance coordinate
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plane that exhibits multiple peaks with a large degree of dispersion and a relatively small
chromaticity mean. Based on the above results, the degree of color cast of underwater
images can be characterized by calculating the chromaticity mean and variance in the
ab chrominance space. The chromaticity means in a and b chrominance channel can be
calculated as follows:

c̄a =
∑M

i=1 cai

M

c̄b =
∑M

i=1 cbi
M

where c̄a and c̄b, respectively, represent the average chromaticity values of all pixel points
in chrominance channels a and b. M is the amount of all pixels of the underwater image.
The overall chromaticity mean can be denoted as c̄:

c̄ =
√

c̄a2 + c̄b
2 (1)

Then, we calculate the variances of the chromaticity distribution in chrominance
channels a and b

σ2
a =

∑M
i=1(cai − c̄a)

2

M

σ2
b =

∑M
i=1(cbi − c̄b)

2

M

where σ2
a and σ2

b represent the variance of the chromaticity distribution of the underwater
image in a and b chrominance channels, respectively. Then, σ2

a and σ2
b can be used to

characterize the average chromaticity variance of the image σ2:

σ2 =
√

σ2
a + σ2

a (2)

Finally, we evaluate the color cast degree using the ratio of chromaticity mean to
variance, denoted by d:

d =
c̄

σ2 + τ
(3)

where τ is a small constant introduced to reduce instability, typically set to 0.0001 based
on empirical values. The larger the ratio index d is, the greater the degree of color cast
in the image is. Figure 2 shows some underwater images with color cast. Intuitively, as
the degree of color cast in the underwater images increases, the value of the ratio index d
correspondingly increases.

� =  0.0454

� =  0.0320 � =  3.9423� =  0.2910

� =  2.7450� =  0.2362

Figure 2. Underwater images with different degrees of color cast and the ratio index d.
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2.1.2. Brightness

Due to the absorption of light by the water, underwater images often suffer from a
lack of brightness. The overall brightness and the uniformity of brightness distribution
are two key factors in evaluating the quality of underwater images. When evaluating the
overall brightness, a method to calculate the gray-scale mean value of pixel points can be
adopted. First, the underwater image obtained is converted into a gray-scale image G, and
the gray-scale values of each pixel point in the image are obtained and the brightness mean
value is calculated, which is recorded as ḡ.

ḡ =
∑M

i=1 gi

M
(4)

where m represents the number of pixel points in the image and gi represents the gray-scale
values of pixel points in gray-scale image G. To evaluate the uniformity of brightness
distribution in underwater images, it is necessary to statistic the brightness variations in
different parts of the image. Here, the image is divided equally into n blocks geometrically,
and the average brightness of each pixel point in each image block is calculated to obtain
a set of brightness means containing n image blocks. Let the maximum element be gmax,
which corresponds to the mean brightness of the brightest part of the image block. The
minimum element is denoted by gmin . The brightness variations in underwater images can
be calculated as:

h =
gmax − gmin

gmax + η
(5)

where h represents the overall brightness variation degree of the image. η is a small constant
introduced to reduce instability, typically set to 0.0001 based on empirical values. The
smaller the value h is, the more uniform the brightness distribution of the underwater
image is.

2.1.3. Contrast

Contrast is an important parameter for evaluating image quality. In this study, we eval-
uated the impact of contrast on underwater image quality from two aspects: local contrast
and global contrast. When describing local contrast, we referred to the concept of contrast
energy (CE) and calculated the contrast energy of the image in three chrominance chan-
nels gray, yb, rg, which can be linearly represented by the RGB chrominance channels [33].
Specifically, the calculation methods are as follows: gray = 0.299R + 0.587G + 0.114B,
yb = 0.5(R + G)− B, and rg = R− G. The calculation method for CE is as follows:

CEk =
β ·Q(k)

Q(k) + β · G − ek (6)

Q(k) =
√
(Ik ⊗ dh)

2 + (Ik ⊗ dv)
2 (7)

where k represents one of the color channels {gray, yb, or rg}. dh and dv are the horizontal
and vertical second derivatives of the Gaussian function. ⊗ represents convolution compu-
tation, and β is the maximum value of Q(k). G represents contrast gain. nk represents the
noise threshold for the color channel k.

Evaluating the global contrast of underwater images can be achieved by analyzing
the grayscale histogram of the image. Generally, images with high contrast have relatively
flat grayscale histogram distribution with a wide range of grayscale values, while images
with low contrast have more steeply shaped grayscale histograms with a smaller range
of grayscale values. Based on the distribution characteristics of the grayscale histogram,



Electronics 2023, 12, 4760 6 of 16

the global contrast of the image can be reflected by comparing the grayscale histogram
of the image with the uniform distribution. Here, we calculate the Kullback–Leibler
divergence (KL divergence) between the grayscale histogram distribution of the image and
the uniform distribution to represent the flatness of the grayscale histogram. The smaller
the KL divergence is, the closer the grayscale histogram is to a uniform distribution, and
the higher the global contrast is. Let P represent the grayscale histogram distribution of the
underwater image and Q represent the uniform distribution. The KL divergence between
P and Q is calculated as follows,

DK_L(P ‖ Q) = −
∫

P(x)logQ(x)dx +
∫

P(x)logP(x)dx (8)

Due to the asymmetry of the KL divergence (i.e., DJS(P ‖ Q) = DKL(P ‖ Q)), we
adopt the symmetric JS divergence to characterize the flatness of the image grayscale
histogram. The JS divergence can be derived from the KL divergence as follows,

DJ_S(P ‖ Q) =
1
2
[DK_L(P ‖ N) + DK_L(Q ‖ N)] (9)

where N = P+Q
2 . Finally, we use the J-S divergence to characterize the global contrast of

the underwater images. In Figure 3, we plotted the results of enhancing the contrast of
high-contrast and low-contrast images through histogram equalization. The results of the
histogram distribution show that after histogram equalization, both the high-contrast origi-
nal image and the low-contrast original image exhibit a more even histogram distribution,
resulting in improved contrast. Additionally, we calculated the DJS values for both original
images. It is shown that the low-contrast image has a higher JS divergence compared to the
high-contrast image.

The original image(high contrast) The contast-enhanced image ��� = 0.2170

The original image(low cintrast) The contast-enhanced image
��� = 0.5213

histogram
equalization

histogram
equalization

Figure 3. Comparison of high- and low-contrast original underwater images with contrast-enhanced
images and their histogram distributions with the DJS values of the original images.

2.2. Vision Transformer

Image quality assessment is the perception of the content of an image by the human
visual system (HVS), including a combination of global high-level quality perception and
local low-level features [25,34]. In the previous section, we concentrated on evaluating the
local features of underwater images. This section presents a global evaluation of image
semantic quality based on the spatial domain. Specifically, we scan and sense the image
quality in different spatial domains and obtain the global image quality after comparing and
fusing the sensing results. In [35], we learnt that the quality relationship between different
spatial domains of an image is significant in assessing the quality of the global image.
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In recent years, due to the enhanced global perception capabilities of the transformer,
it has found extensive applications in both the field of natural language processing and
computer vision [36–38]. Therefore, we propose utilizing transformer modules to extract
the quality relationships between adjacent spatial regions and obtain the global quality of
an image.

When provided with an input image I, we first break down the image into N patches,
each with a resolution of p ∗ p and N = HIWI

p2 . N is the total number of patches, and each
image patch is represented as a vector containing that specific patch’s pixel information.
After flattening each patch, they are passed through a linear projection layer to map each
patch into a D-dimension embedding. Next, we embed a learnable embedding called
the Image-Quality-Collection cls token CIQC ∈ R1×D to concatenate with the perceived
underwater image information. Finally, we incorporate positional encoding into these
N + 1 embeddings to capture the spatial relationships within the underwater image.

Self-Attention Module

After obtaining the embedding vector E = {CIQC, E1, . . . , EN} ∈ R(N+1)×D, we use
the multi-head self-attention (MHSA) block to obtain the self-attention scores. The MHSA
block includes h heads, which means attending to different semantic information and
feature representations while obtaining a dimension of d = D

h . Following the normalization
layer, the self-attention layer generates projections for query(Q), key(K), and value(V) for
Q`, K`, V ` ∈ R(N+1)×d. For each head, the computation process of the self-attention layer
is defined as follows:

A(Q`, K`, V `) = softmax

(
Q`K`

T
√

dk

)
V `, ` = 1 . . . h. (10)

where dk is the dimension of K. We compute the self-attention scores for each head
separately and concatenate them to obtain the final self-attention map. The following is the
calculation process for the transformer encoder.

MHSA(Q, K, V) =Concat(A(Q1, K1, V1), . . . ,

A(Qh, Kh, V h))W

OM =MHSA(Q, K, V) + E

OEncoder =MLP(LN(OM)) + OM,

where W refers to the weights of the linear projection layer and LM(·) stands for the
layer normalization.

2.3. Least Angle Regression for Adaptive Feature Selection

The excessive number of high-level features we learn by cls token in the transformer
will affect the role of low level in quality assessment. We here use the least angle regression
(LARS) method to select those influential high-level features and thus reduce the dimension
of the high-level features [39].

By constructing a first-order penalty function, the LARS method determines that the
coefficients of some variables are zero to delete some invalid variables and realize the
role of dimensionality reduction [40]. In the LARS model, we assume normalized data
X ∈ RN×M and the regression coefficient vector θ ∈ RM satisfing the conditions of

y = Xθ (11)

subject to
m

∑
j=1

∣∣θj
∣∣ 6 t, (12)
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where N represents the number of samples and M represents the number of features,
making y ∈ Rn, and t is a positive constraint value. The linear regression model to be
solved is as follows:

min S(θ) = (y− Xθ)T(y− Xθ) + λ‖θ‖1. (13)

The idea of the LARS model to solve Equation (13) is to initialize all variable values of
X to zero first and make predictions about y by finding the independent variable xi ∈ X
with the highest correlation with y [41,42]. The LARS model is then solved by finding the
independent variable xi with the highest correlation with the current residuals. Then, find
an independent variable xj ∈ X belonging along the direction of this independent variable
with the highest correlation with the current residuals. Then, proceed along the angular
bisector of xi with xj until a third predictor variable is found. Therefore, the directions of the
three predictor variables are equiangular, and so on, iterating until all the required variables
are obtained. In the process of travelling, the correlation between the residuals and the
selected variables will gradually decrease so that the irrelevant variables can be eliminated,
thus achieving dimensionality reduction. For this purpose, let c = {c1, c2, · · · , cM}T be the
vector of the correlation calculated as:

c = XT
(y− Xθ), (14)

where the difference between y and Xθ is named the residual vector. Each element in c
embodies a correlation between the corresponding column in X and its residual vector.

Now, we assume that k iterations have been performed and that the resulting re-
gression vector is uk. The set of k variables is selected to form a set XA (A ⊂ X) and
use more relevant variables in X to populate set XA with the number of iterations. Each
column in set XA consists of the column corresponding to the position of the maximum
value of c indexed in the X matrix, i.e., |cmax| = maxi|ci|. At the same time, we define the
following relationships:

GA = XT
AXA

AA =
(

lT
AG−1

A lA

)−1/2
,

(15)

where lA is the vector of ones whose length is the number of elements in set A. Additionally,
we define:

uA = XA AAG−1
A lA, (16)

where XA =
(
· · · ,sj xj, · · ·

)
j∈A

, sj = sign
{

cj
}

.

This method calculates a = XTuA to determine the variables needed during the
iteration. From there, the regression vector is updated:

µk = µk−1 + γkuA, (17)

where γk can be calculated as

γk = min
j∈Ac

(
Cmax − cj

AA − aj
,

Cmax + cj

AA + aj

)
. (18)

By choosing a smaller value of γk, we update subset XA while calculating C′max =
Cmax− γk AA. The LARS model iterates until the values of c become negative or the desired
number of variables is selected, thereby achieving dimensionality reduction.
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2.4. Qualty Score Assessment

After obtaining the feature maps with LARS dimensionality reduction, we use SVR to
map the feature maps to the final underwater image quality scores [8]. We want to learn a
mapping that predicts the underwater quality score from the feature map x, defined as:

f (x) = 〈α, x〉+ b, (19)

where α and b indicate the model weights and bias, and 〈·, ·〉 is the inner product of the
parameters. In the SVR model, we introduce two slack variables, ξi and ξ∗i , to introduce
soft intervals to construct the following optimization problem:

min
1
2
‖α‖2 + λ

(
n

∑
i=1

ξi +
n

∑
i=1

ξ∗i

)
s.t. 〈α, xi〉+ b− yi ≤ ε + ξi

yi − 〈α, xi〉 − b ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0, i = 1, 2, . . . , n

(20)

where λ is a constant used to balance the accuracy of the model. In this model, our kernel
function chosen is K

(
xi, xj

)
= exp

(
−γ
∥∥xi − xj

∥∥2
)

to solve the above equation and finally
obtain the predicted score.

3. Experiments Results And Discussion
3.1. Dataset and Evaluation Protocols

In order to verify the effectiveness of our proposed UIQM-LSH, we conducted exten-
sive validation experiments on the authentic underwater dataset, namely the underwater
image quality assessment database (UWIQA). UWIQA contains 890 underwater images
of different qualities [23] and is the largest public UIQA dataset at present. The labels,
namely MOSs, are obtained by single-stimulus methodology, where each image is scored
by a number of observers and the average value of these scores is considered the MOS. In
Figure 4, we give example images of the UWIQA database. As can be seen, these images
contain rich ocean features and a wide range of distortion types, thus ensuring a reliable
evaluation of the proposed method.

Figure 4. Examples of underwater images in UWIQA database.

The IQA performance metrics commonly used for image quality evaluation are pro-
posed by the Video Quality Experts Group (VQEG) [43], which recommends the use of the
Spearman rank-order correlation coefficient (SRCC) and Kendall’s rank-order correlation
coefficient (KRCC) for the monotonicity of the prediction, Pearsons linear correlation coef-
ficient (PLCC) for the accuracy of the prediction, and root mean square error (RMSE) for
the consistency. These four metrics are used to assess the performance of the IQA method.
Among them, SRCC and KRCC measure the degree to which the model’s predicted scores
vary with the mean opinion score (MOS). They are not affected by the magnitude of the
change. SRCC and KRCC can be calculated as:
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SRCC =1− 6 ∑N
n=1 d2

n
N(N2 − 1)

KRCC =
Nc − Nd

0.5× (N − 1)× N
.

(21)

Here, N denotes the total number of images in the dataset and dn indicates the ranking
difference between the subjective score (MOS) and the objective score for each pair. Nc and
Nd denote the number of consistent and inconsistent images in the dataset. At the same
time, PLCC and RMSE are used to measure the accuracy and consistency of the predicted
scores by the model. PLCC measures the degree of linear correlation between the predicted
and reference quality scores. In contrast, RMSE measures the average size of the difference
between the predicted and reference quality scores. Both PLCC and RMSE are used to
evaluate the performance of image quality assessment models. The PLCC and RMSE can
be expressed as:

PLCC =
∑N

n=1(Pn − P̂)(Mn − M̂)√
∑N

n=1(Pn − P̂)2(Mn − M̂)2

RMSE =

√
1
N ∑(Pn −Mn)

2,

(22)

where Pn and Mn denote the predicted objective score of the n-th picture and the subjective
score of the MOS. P̂ and M̂ represent the mean values of the predicted objective score
and the subjective MOS score, respectively. In the above metrics, the closer the values of
SRCC, KRCC, and PLCC are to 1, and the closer the value of RMSE is to 0, the higher the
performance of the model algorithm is indicated.

Before calculating these metrics, we need to map the objective prediction algorithm to
the subjective MOS values using a nonlinear fitting function, which is formulated as:

O(P) = β1

(
1
2
− 1

1 + exp(β2(P− β3))

)
+ β4P + β5, (23)

where P and O(P) indicate the predicted objective and mapped scores, βi for i = 1 ∼ 5
are the model parameters obtained in the fitting. The logistic function in Equation (23)
is utilized to model the non-linearity inherent in the human subjective evaluation. It
transforms the continuous predicted scores into values that better align with the categorical
MOSs, thereby rendering to more reliable model evaluation.

3.2. Implementation Details

We implemented the proposed UIQM-LSH using Python and the Pytorch framework.
In the transformer, each input image was randomly cropped into 10 image patches, each
of which had the size of 224 × 224. In addition to random cropping, other data augmen-
tation strategies, including flipping and rotation, were utilized. Each image patch was
transformed into a number of patches with the size of 16. The number of transformer
layers was set to 12, each of which contained 6 heads. We followed the standard train-test
strategy, with 80% training data and testing 20% data. The training and testing data are
not overlapped. The learning rate was set to 10−4 with a decay factor of 10. The ADAM
optimizer was utilized for training with a batch size of 16. The experiment was repeated
10 times, each with a different data splitting, in order to mitigate the performance bias. The
averages of SRCC, KRCC, PLCC, and RMSE of the underwater image were reported.

3.3. Prediction Performance Evaluation

The proposed method UIQM-LSH is compared with 13 mainstream UIQA or IQA
methods, including BRISQUE [44], NFERM [45], DBCNN [46], HyperIQA [35], TReS [47],
PaQ-2-PiQ [48], NIQE [49], NPQI [50], SNP-NIQE [20], UCIQE [21], UIQM [22], CCF [51],
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and FDUM [23]. Note that the first nine IQA methods are for natural image processing and the
last four IQA methods and the proposed UIQM-LSH are for underwater application scenarios.

As shown in Table 1, our proposed UIQM-LSH achieves the best prediction results in
SRCC, KRCC, PLCC, and RMSE indicators of all IQA methods, thereby strongly reflecting
the advantages of the proposed method. In addition, for the IQA methods, the deep-
learning (DL)-based IQA methods, such as DBCNN, HyperIQA, and TReS, perform much
better than the hand-crafted feature-based IQA methods. This observation is not surprising
since DL methods generally possess a strong feature learning capability. However, such a
merit is often with the sacrifice of computational efficiency. By further analyzing Table 1,
we can find out that the hand-crafted feature-based methods, such as UCIQE and FDUM,
achieve better performance than some DL-based methods while their feature dimensions
are much smaller. This indicates the crucial role of the low-level perceptual features
in the UIQA task. Such an observation is also evident by our proposed UIQM-LSH. The
architecture of UIQM-LSH has a similar network backbone to TReS, i.e., the ViT architecture.
However, the UIQM-LSH surpasses TReS significantly. This result can be attributed to the
dedicated consideration of the unique properties of underwater images, such as colorfulness
and brightness. In other words, relying on the DL network solely without considering the
task-oriented factors can hardly achieve an optimal result.

Table 1. Overall performance evaluation comparison on UWIQA database, where the best perfor-
mances are highlighted in bold.

IQA Metrics Type
UWIQA

SRCC KRCC PLCC RMSE

DBCNN [46] IQA(supervised) 0.5392 0.4065 0.5179 0.1241
HyperIQA [35] IQA(supervised) 0.6501 0.5040 0.6799 0.1114

TReS [47] IQA(supervised) 0.5038 0.3817 0.4942 0.1302
GraphIQA [52] IQA(supervised) 0.7708 0.6609 0.7842 0.0801
PaQ-2-PiQ [48] IQA(unsupervised) 0.6341 0.4955 0.6203 0.1221
BRISQUE [53] IQA(unsupervised) 0.3456 0.2562 0.3669 0.1415
NFERM [45] IQA(unsupervised) 0.3486 0.2595 0.3925 0.1398

NIQE [49] IQA(unsupervised) 0.4347 0.3243 0.4687 0.1343
NPQI [50] IQA(unsupervised) 0.6078 0.4667 0.6361 0.1173

SNP-NIQE [20] IQA(unsupervised) 0.5516 0.4199 0.5897 0.1228

UCIQE [21] UIQA(unsupervised) 0.6271 0.4863 0.6261 0.1185
UIQM [22] UIQA(unsupervised) 0.5960 0.4563 0.5928 0.1225
CCF [51] UIQA(unsupervised) 0.4456 0.3344 0.4634 0.1348

FDUM [23] UIQA(unsupervised) 0.6780 0.5289 0.6462 0.1160
UIQM-LSH (Pro.) IQA(supervised) 0.7580 0.6528 0.7890 0.0790

We then perform the statistical significance test on the subjective MOS values versus
the mass fraction obtained from the mapping. The statistical differentiation between our
proposed method and other IQA methods is assessed through t-tests. The values of “1”,
“0”, and “−1” indicate that the proposed method is superior, equal, and inferior to the
compared algorithms, respectively. In Table 2, we see that all values are “1”, indicating that
our proposed method is statistically superior to all other methods.

Table 2. Statistical significance test results on the UWIQA database. The data of “1”, “0”, and
“−1” indicate that the proposed method is superior, equal, and inferior to the compared algorithms,
respectively, (95% confidence).

t-Test BRISQUE NFERM NIQE
SNP-

NIQE
DBCNN HyperIQA NPQI TReS

PaQ-2-

PiQ
UCIQE UIQM CCF FDUM

UWIQA 1 1 1 1 1 1 1 1 1 1 1 1 1



Electronics 2023, 12, 4760 12 of 16

3.4. Cross-Dataset Validation

Having testified the IQA methods on each database, we further evaluate their predic-
tion performance through the cross-database validation methodology. The cross-database
validation tests the generalization ability of IQA metrics, which is essential to ensure
the reliability and effectiveness of the models. In implementation, we initially train an
IQA model for each method on one database and then test the trained models on the
other database without any fine-tuning or parameter adaptation. Here, we utilize another
database, namely UID2021 [14], which contains 960 underwater images in total. The experi-
mental results in terms of SRCC, KRCC, PLCC, and RMSE on both databases are presented
in Table 3.

Table 3. Cross-database validation, where the best performances are highlighted in bold.

IQA Metrics
UWIQA (Trained on UID2021) UID2021 (Trained on UWIQA)

SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE

DBCNN [46] 0.4851 0.3492 4904 0.1208 0.6089 0.4706 0.6237 1.4198
HyperIQA [35] 0.5516 0.4287 0.5625 0.1209 0.6703 0.5263 0.6679 1.4132

TReS [47] 0.3459 0.2346 0.3673 0.1341 0.5224 0.4097 0.5321 1.5339
UIQM-LSH

(Pro.) 0.6307 0.5777 0.6340 0.1309 0.7189 0.6645 0.7197 1.3933

3.5. Ablation Study

The proposed UIQM-LSH leverages both low-level and high-level perceptual proper-
ties to characterize the quality of underwater images. It is therefore necessary to examine
their individual contributions to the model performance. To this end, we first conduct the
ablation analysis to examine the effectiveness of the designed three modules, i.e., low-level
feature extraction, high-level feature extraction, and the LARS module. Experiments were
conducted on the UWIQA database, and the experimental settings are the same as those
described in Section 3.2. The experimental results in terms of the average of SRCC, KRCC,
PLCC, and RMSE are reported in Table 4.

In Table 4, we can obtain several meaningful observations. Firstly, either low-level
features or high-level features can achieve a moderate performance, and their combinations
deliver the best prediction. Hence, it is evident that both types of features are effective and
contribute to the overall model performance. Secondly, we can find out that the high-level
features achieve better prediction accuracy than the low-level features. This is reasonable
since the number of dimensions of high-level features is far larger than the low-level
features, i.e., 768 high-level features vs. 8 low-level features. Such a large dimension
can capture a wide variety of aspects of an image, such as the details about the objects
presence, the scene context, and the interactions between elements. As a result, it can offer
a richness and complexity of information that aligns closely with the multifaceted nature
of the underwater image quality. However, the large number of high-level features may
also result in the model being biased. As can be seen, the improvement of introducing the
low-level features into original high-level features is much less than that into dimension
reduced of high-level features. Thirdly, the LARS method can effectively promote the model
performance further. It optimizes the high-level features, presenting a more balancing and
effective feature fusion. The LARS method reduces redundancy and noise by selecting
the most relevant high-level features and enhances the model’s generalization capabilities.
More importantly, it leads to a more interpretable and computationally efficient model.
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Table 4. Performance evaluation of different types of features on UWIQA database. The high-level
features are processed without or with the LARS method. The best performances are highlighted
in bold.

Feature Types LARS
UWIQA

SRCC KRCC PLCC RMSE

Low-level
perceptual

features 7
0.6748 0.5272 0.6383 0.1066

High-level
perceptual

features
0.6944 0.5916 0.6964 0.0928

Combination 0.7183 0.6237 0.7060 0.0915

Low-level
perceptual

features X
0.6748 0.5272 0.6383 0.1066

High-level
perceptual

features
0.7246 0.6299 0.7673 0.0801

Combination 0.7580 0.6528 0.7890 0.0790

The experiments in Table 4 were conducted from the module level. However, by
introducing the low-level features and the LARS method, the proposed UIQM-LSH is more
interpretable than the common black-box DL methods. We further analyze UIQM-LSH
from the feature level. In particular, we ablate each low-level feature, i.e., brightness,
colorfulness, and contrast, to examine their individual contribution. The experimental
results are reported in Table 5. As can be observed, each type of feature is effective in
characterizing the quality of underwater images. The combination of any two out of the
three feature types presents a better performance than the single feature type. This finding
indicates that the different types of features complement each other. By in-depth analysis
of Table 5, the image contrast contributes most to the model performance. One of the
main reasons is that the difference in either image brightness or colorfulness can impact
the image contrast as well. Higher contrast enhances the visibility of objects and details,
making images more visually appealing and informative, especially in situations where
light is limited and scattered in water. On the other hand, the colorfulness feature may be
less effective than contrast and brightness in estimating the quality of underwater images
due to the limited color diversity in underwater environments. Though the color cast
may impact the human subjective evaluation on the underwater image, a relatively higher
quality score may be still assigned when the color-casted image is visually clear.

Table 5. Performance evaluation of low-level perceptual features on UWIQA database. The best
performances are highlighted in bold.

Feature Types UWIQA

SRCC KRCC PLCC RMSE

Colorfulness 0.4192 0.3201 0.4396 0.1244
Brightness 0.5028 0.3777 0.5200 0.1266
Contrast 0.6325 0.5552 0.6172 0.1165

Colorfulness + Contrast 0.6418 0.5035 0.6196 0.1090
Colorfulness + Brightness 0.5859 0.4773 0.5936 0.1108

Contrast + Brightness 0.6578 0.5414 0.6198 0.1157
Contrast + Brightness + Colorfulness 0.6748 0.5272 0.6383 0.1066

4. Conclusions

This paper deals with the challenging issues in the field of underwater quality as-
sessment and proposes a novel method, namely underwater image quality metric with
low-level properties and selected high-level semantics (UIQM-LSH). This approach bridges
the gap in current UIQA methodologies by integrating both low-level image attributes
and high-level semantic content. By implementing the least-angle regression method for
feature selection, our model ensures a balanced representation of these diverse features,
thus enhancing the accuracy and reliability of image quality assessments. The superior per-
formance of UIQM-LSH over existing UIQA methods, as demonstrated through extensive
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testing, highlights its potential as a more effective tool for various applications in oceanic
engineering, marine biology, and underwater robotics. This work exhibits promising results
to significantly enhance the understanding and exploration of underwater environments.
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