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Abstract: Process safety plays a vital role in the modern process industry. To prevent undesired
accidents caused by malfunctions or other disturbances in complex industrial processes, considerable
attention has been paid to data-driven fault detection techniques. To explore the underlying manifold
structure, manifold learning methods including Laplacian eigenmaps, locally linear embedding, and
Hessian eigenmaps have been utilized in data-driven fault detection. However, only the partial local
structure information is extracted from the aforementioned methods. This paper proposes fused
local manifold learning (FLML), which synthesizes the typical manifold learning methods to find
the underlying manifold structure from different angles. A more comprehensive local structure
is discovered under a unified framework by constructing an objection optimization function for
process data dimension reduction. The proposed method takes advantage of different manifold
learning methods. Based on the proposed dimension reduction method, a new data-driven fault
detection method is developed. Hotelling’s T2 and Q statistics are established for the purpose of
fault detection. Experiments on an industrial benchmark Tennessee Eastman process whose average
MDR and average FAR of FLML T2 are 7.58% and 0.21% and a real blast furnace ironmaking process
whose MDR and FAR of FLML T2 are 2.80% and 0.00% are carried out to demonstrate the superiority
and effectiveness of the proposed method.

Keywords: data-driven method; fault detection; manifold learning; blast furnace ironmaking process

1. Introduction

Industrial processes are becoming more complex and their hazards to the environment
are receiving increasing attention. Process safety is a non-negligible component of industrial
processes, which comprises several steps such as hazard identification and analysis [1].
In particular, the identification and analysis of hazards is a key step in the prevention and
mitigation of major process accidents.

In industrial processes, timely and accurately identifying abnormal operating con-
ditions can prevent major accidents and improve operational efficiency, thus achieving
compliance with environmental and safety regulations. Dynamic process monitoring for
hazard/fault identification is already a trend in the future development of process safety
and risk management [2]. The real-time monitoring of process operations to ensure safety
measures is an essential step in the modern process industry [3].

Fault detection plays a pivotal role in guaranteeing operation safety and reducing
downtime in complex industrial processes [4,5]. Broadly speaking, fault detection tech-
niques can be categorized into three classes, model-based, knowledge-based, and data-
driven based methods [6]. Model-based methods rely on the mathematical model. However,
the mathematical model is often difficult or time-consuming to establish for complex in-
dustrial processes such as the blast furnace ironmaking process. For knowledge-based
methods, the model is built from expert knowledge or qualitative information, which
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limits its applications for complex industrial processes. Conversely, only the measured
process variables are required for data-driven fault detection methods. Thus, data-driven
techniques are more suitable and efficient for the fault detection of complex industrial
processes [7]. With the advance of the sensor, communication, and computing technologies,
large amounts of data are collected in modern industrial processes. Under such circum-
stances, data-driven fault detection has gained an explosive amount of attention in recent
years from academia and industry [8].

For data-driven methods, traditional multivariate analysis (MVA) and deep learning
methods have gained considerable attention in the field of fault detection. The main
advantage of deep learning methods is that they can learn the features of process data
without feature engineering from deep neural networks. Deep learning methods have
the powerful capability to capture the nonlinearity of process data through hierarchical
abstraction. Recently, deep learning methods have been widely employed in fault detection
and diagnosis. Wang et al. proposed a Bidirectional Gated Recurrent Unit (Bi-GRU)
model for the fault diagnosis of Modular Multilevel Converters High Voltage DC (MMC-
HVDC) [9]. Yu et al. proposed a graph-weighted reinforcement network (GWRNet) for the
fault diagnosis of rotating machinery [10]. Velasco et al. developed a real-time anomaly
detection intelligent system (RADIS) based on long short-term memory (LSTM) and a
variational autoencoder (VAE) for the fault diagnosis of rotating machinery [11]. However,
there exist some limitations in applying deep learning for fault detection and diagnosis
such as large dataset requirements, computational resources, and poor interpretability.

To handle the highly correlated high-dimensional process data, multivariate analysis
(MVA) has been widely employed in industrial processes [12]. In MVA, the process behav-
ior is modeled by transforming the high-dimensional data into a lower-dimensional space.
The features are extracted for establishing monitoring statistics. Among the MVA-based
fault detection methods, principal component analysis (PCA) has gained widespread popu-
larity in process monitoring and fault diagnosis in recent decades [13]. In PCA, process data
are projected into a lower-dimensional space to preserve the significant variability informa-
tion as much as possible. Due to its efficiency and simplicity, PCA has been successfully
applied in a large number of industrial processes [14]. Despite this, PCA is regarded as a
kind of globality-based linear dimensionality reduction technique. However, the process
data mostly lie on or close to a low-dimensional manifold. Compared to globality-based
methods, manifold learning is an approach to nonlinear dimensionality reduction which
operates by discovering the manifold structure of data. In manifold learning, the input data
are assumed to be sampled from a low-dimensional manifold. Representative manifold
learning methods include Isomap [15], locally linear embedding (LLE) [16], Laplacian
eigenmaps (LE) [17], local tangent space alignment (LTSA) [18], locality-preserving projec-
tions (LPPs) [19], neighborhood-preserving embedding (NPE) [20], and Hessian eigenmaps
(or called Hessian LLE) [21].

In NPE, each data point is represented as a linear combination of the neighboring data
points. Then, an optimal embedding is found to preserve the neighborhood structure in the
dimensionality-reduced space [20]. Chen et al. [22] applied eigenvalue decomposition and
generalized eigenvalue decomposition to solve the unstable problem caused by a singularity
problem in NPE, and developed an NPE-based incipient fault detection method for small-
scale cyber-physical systems. Since the NPE method can preserve the local manifold
structure of different modes, Song et al. [23] performed NPE on the time-lagged variables
for multimode dynamic process monitoring. LPP is designed to find the optimal linear
approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold
through the nearest neighbor search in the low-dimensional space [19]. Duan et al. [24]
employed LPP to preserve the local structure of process data, and then adopted a least
squares support vector machine to predict the key-performance indicator. Zhang et al. [25]
combined LPP and PCA to preserve both global and local structures of the dataset and
developed a fault detection and identification method by utilizing the extracted features.
LLE attempts to discover nonlinear structure in high-dimensional data by exploiting the
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local symmetries of linear reconstructions [21]. Wu et al. learned structure information by
LLE and incorporated the extracted local information into canonical correlation analysis
(CCA) for quality-relevant nonlinear process monitoring [26]. Li and Zhang implemented
the supervised locally linear embedding projection method for bearing fault diagnosis
and illustrated its validity using the experimental data [27]. Different manifold learning
methods focus on uncovering the manifold structure with different criteria. They rely
on the knowledge and experience of experts for their own purposes. Therefore, only
partial information from the underlying manifold is learned by each existing local manifold
learning method. Although there are many other manifold learning methods, LE, LLE,
and HLLE are easily fused to characterize the geometric information of the manifold from
different perspectives under the framework of the local tangent coordinate system. To
take advantage of different manifold learning methods to better uncover the underlying
manifold structure, Xing et al. [28] provided a common framework to synthesize the
partial information extracted from different local manifold learning methods under local
tangent coordinates.

Motivated by the above discussions, a novel data-driven fault detection based on FLML
is proposed in this paper. In the proposed FLML, the partial information on the geometric
structure of the underlying manifold is firstly extracted from LE, LLE, and Hessian locally
linear embedding (HLLE) methods, respectively. A novel objective function is formulated
to fuse the extracted partial information. On the basis of the optimization results, FLML
can learn the geometric information from different local methods. The geometric structure
of the underlying manifold is more thoroughly explored by the proposed FLML, compared
to LE, LLE, and HLLE. In the proposed FLML method, the richer local information can
be exploited by taking the data proximity, local linear relationships, and local Hessian
structures into account simultaneously. On the other hand, the proposed FLML can manifest
robustness due to the local information extracted from different views. Compared to the
method developed in [28], which requires the determination of fusion coefficients, only the
global embedding coordinates are obtained in the proposed FLML. Thus, the proposed
FLML method is simpler. Like the PCA-based fault detection method, two monitoring
statistics including Hotelling’s T2 and Q statistics are established. The effectiveness and
advantages of the proposed FLML-based fault detection are illustrated by an industrial
Tennessee Eastman process benchmark and a real blast furnace ironmaking process.

The rest of this paper is organized as follows. Section 2 briefly introduces the ideas of
LE, LLE, and HLLE. Section 3 illustrates the proposed FLML method and its application in
fault detection in detail. In Section 4, the proposed FLML-based fault detection approach is
verified through an industrial Tennessee Eastman (TE) process benchmark and a real blast
furnace ironmaking process. Finally, Section 5 provides the conclusion.

2. Brief Review of LE, LLE, and HLLE
2.1. LE

LE is a well-known manifold learning method to extract local structure features in the
original sample space. The main idea behind LE is that the corresponding projections of
neighboring points in the low-dimensional space should be close if the neighboring points
in the high-dimensional space are close [17].

Given a set X = [x1, x2, . . . , xn]T ∈ Rn×D of n sample points in RD, where D is the
number of variables. The goal of LE is to find a set of points Y = [y1, y2, . . . , yn]

T ∈ Rn×d

(d � D) in the low-dimensional space to have the neighbor relations between sample
points X in the high-dimensional space.

In LE, the first step is to construct the adjacency graph. k-nearest neighbors (KNN) is a
widely used neighbors selection strategy, due to its simplicity. To model the neighborhood
relations between sample points, an adjacency matrix S ∈ Rn×n is employed, where each
element Sij represents the neighborhood relations between xi and its neighbor xj. Using
the Gaussian heat kernel, the adjacency matrix Sij can be formed as follows:
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Sij =

{
e−‖xi−xj‖2/2δ2

, xi and xj ∈ neighbors
0 , otherwise

(1)

where δ is the kernel width.
The objective function of LE can be cast as

min
yi ,yj

JLE =
n

∑
i,j=1
‖yi − yj‖

2Sij = YTLeY (2)

s.t. YT DY = I

where D(Dii = ∑n
j=1 Sij) is a diagonal matrix, and Le(Le = D− S) is defined as a Lapla-

cian matrix.
The optimization problem (2) is equivalent to generalized eigenvalue problem,

LeY = λDY (3)

It can be readily solved through eigenvalue decomposition.

2.2. LLE

In LLE, the key assumption is that each data point and its neighbors are lied on or
closed to a locally linear patch. A sample can be represented as the linear combination of
multiple samples from its neighborhood [16]. The optimization problem of LLE can be
formulated as

min
θij

JLLE =
n

∑
i=1
‖xi −

n

∑
j=1

θijxj‖2 (4)

s.t.
n

∑
j=1

θij = 1

where θij is the weight coefficient and only when xi and xj are neighbors the corresponding
θij has a value, otherwise it is 0. Similarly, the neighbors selection can be determined by the
KNN method.

The low-dimensional features denoted as Φ = [φT
1 , φT

2 , . . . , φT
n ]

T , the minimization
problem (4) can be formulated as

min
wij

JLLE =
n

∑
i=1
‖φi −

n

∑
j=1

θijφj‖
2 = tr(ΦTLlΦ) (5)

s.t. ΦTΦ = I

where I is the identity matrix, Θ = [θij]i=1,...,n,j=1,...,n is the weight coefficient matrix, and
Ll = (I −Θ)T(I −Θ).

Similarly, the optimization problem (5) can be solved through eigenvalue decomposition.

2.3. HLLE

HLLE is regarded as a variant of LLE. Assume that the low-dimensional data repre-
sentation is locally isometric to an open and connected subset, the idea behind HLLE is
to minimize the curviness of the high-dimensional manifold while embedding it into a
low-dimensional space [21].

Assume that the set X = [x1, x2, . . . , xn]T ∈ Rn×D is located on a smooth manifold
M ⊂ RD with an intrinsic dimension d � D; PCA is firstly performed on X to obtain d
eigenvectors V = [v1, v2, . . . , vd] ∈ RD×d.
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It is assumed that the number of neighbors of the sample xi is k. Then, the local
tangent coordinate uj, j = 1, . . . , k of the sample xi can be calculated by projecting the local
neighborhood into the tangent subspace

ui
j = 〈V , xj − xi〉 = V T(xj − xi) (6)

Then, the Hessian matrix H i containing local information will be calculated by the
projection of neighbors xj in the tangent coordinate uj. By defining U i = [U i

1, U i
2, . . . , U i

k]

constructed by the ui
j [29], H i can be constructed by the last (U i)† where (.)† is the pseudo-

inverse symbol. Therefore, the local objective of HLLE can be estimated with

min
f i

JHLLE =
1
N

N

∑
i=1

f iT H iT H i f i

s.t. f iT f i = 1 (7)

where f i = [ f (x1), f (x2), . . . , f (xk)]
T is the local projection and f (xj), j = 1, . . . , k is the

smooth function used to estimate the local neighborhood information at a fixed point xi.
Then, extending the local neighborhood information to all samples, we can obtain the global
projection f = [ f 1, f 2, . . . , f N ]T . The optimization objective of HLLE can be rewritten as

min
f

JHLLE =
1
N

N

∑
i=1

f TSiT H iT H iSi f

= tr( f TLh f )

s.t. f T f = 1 (8)

where Lh = 1
N ∑N

i=1 SiT H iT H iSi is the local objective and the neighboring selection matrix
Si can convert local projection to global projection f i = Si f and each entry Si

ij of Si can be
obtained as

Si
ij =

{
1, xi and xj ∈ neighbors
0, Otherwise

(9)

For solving the above optimization problem (8), eigenvalue decomposition is also utilized.
Details of HLLE can be found in [21].

3. Proposed Method
3.1. FLML: Fused Local Manifold Learning

From the previous section, it can be found that LE, LLE, and HLLE can explore the
local geometric structure information from different perspectives. To synthesize this local
information, Xing et al. [28] fused the local information obtained by multiple manifold
learning methods including LE, LLE, HLLE, and LTSA by reformulating the different local
manifold algorithms under the local tangent coordinate system to reveal the underlying
manifold of the dataset. Similar to [28], the fused local objective F f is defined as

F f = c1Le + c2Ll + (1− c1 − c2)Lh (10)

to integrate LE, LLE, and HLLE. Here, c1 + c2 ≤ 1, c1, c2 ∈ [0, 1] are the fusion coefficients.

Remark 1. In [28], the local objectives are optimized to determine the fusion coefficients and global
embedding coordinates simultaneously. In addition, there is another required hyperparameter "power
parameter". In [30], the selection of c is determined by employing the alternating optimization
method which iteratively updates c and Y in an alternating fashion. Therefore, the optimization
procedure may be cumbersome. For simplicity, only the global embedding coordinates are obtained
in this study. The fusion coefficients are considered fixed values. In this study, our main goal is
to develop a fault detection method by fusing LE, LLE, and HLLE to extract the local structure of
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process data with richer information in dimension reduction. Therefore, the optimization procedure
of the proposed FLML approach is much simpler in this study.

Similar to LE, LLE, and HLLE, the proposed FLML method is a kind of linear projection
method. To facilitate the online fault detection, an explicit linear mapping from the original
space to the low-dimensional space is provided. Thus, the main goal of FLML is to seek
a transformation matrix that maps the high-dimensional data to low-dimensional data.
Suppose that w ∈ RD×1 is the transformation vector from X to y; therefore, the projections
in the low-dimensional space can be represented as y = wTX.

To synthesize the local geometric structure information and impose constraints to
prevent multiple solutions, the objective function of FLML is formulated as follows:

min
w

JFLML = wTXTF f Xw (11)

s.t. wTXTXw = 1

Remark 2. As shown in (10) and (11), it is noticed that the corresponding local structure will
be extracted from LE, LLE, and HLLE while c1 and c2 are selected to be (c1 = 1, c2 = 0),
(c1 = 0, c2 = 1) and (c1 = 0, c2 = 0), respectively.

To solve the optimization problem (11), we use the technique of Lagrange multipliers
as follows:

JFLML = wTXTF f Xw + λ/2(1−wTXTXw) (12)

where λ is the Lagrange multiplier.
While ∂JFLML

∂w = 0, it results in

XTF f Xw = λXTXw (13)

Hence, we can use generalized eigenvalue decomposition to obtain the transformation
vector w from (13). Finally, the transformation matrix W ∈ RD×d can be assembled by
the eigenvectors corresponding to the smallest d eigenvalues derived from the result of
generalized eigenvalue decomposition.

3.2. FLML-Based Fault Detection

Generally, data-driven fault detection methods contain two steps, namely offline
modeling and online monitoring. In the offline modeling step, the process data X ∈ Rn×D

are collected under normal operating conditions for training. Using the training data
X, an FLML model is established. Subsequently, the low-dimensional data Y ∈ Rn×d

are obtained. With the transformation matrix W , the relation between X and Y can be
represented as

Y = XW (14)

The residual matrix E ∈ Rn×D is

E = X − YW T = X(I −WW T) (15)

In the online monitoring step, the low-dimensional data point ynew and residual enew
of a new standardized sample xnew is obtained:{

ynew = W Txnew
enew = (I −WW T)xnew

(16)
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The Hotelling’s T2 and squared prediction error (SPE) statistics (also called Q statistics)
are often used for monitoring. For T2 statistic, the Mahalanobis distance is used to evaluate
the variations in y. The Hotelling’s T2 statistic is defined as

T2 = yT
newΛ−1ynew (17)

where Λ is the covariance matrix of Y which is extracted from the normal operating
condition data X.

For Q statistic, the Euclidean distance is adopted to evaluate the magnitude of vector
in the residual space as follows:

Q = eT
newenew (18)

Under the assumption that all operating parameters and prediction errors have a
Gaussian distribution, the upper control limits (UCLs) of Hotelling’s T2 and Q statistics are
determined by means of F distribution and χ2 distribution, respectively. Thus, with a level
of significance α, the UCLs are calculated as follows:{

T2
UCL ∼

d(n−1)
n−d F(d, n− d, α)

QUCL∼ gχ2
h,α

(19)

where g = σ2/2µ and h = 2µ2/σ2, µ is the sample mean, and σ2 is the sample variance of
the statistic Q. g and h are calculated using normal operating condition data.

In FLML, the parameters such as the number of the neighbors k, the bandwidth δ of
Gaussian heat kernel, the fusion weights c1 and c2, and the number of latent variables d are
determined by grid search method. The general procedure is elaborated as follows:

• Step 1 (k): The finding of neighborhood relations is related to the selection of k [26].
To balance the computation complexity and generalization capability, we choose k in
the range of [1 : 10] with the smallest mean false alarm rate (FAR). The definition of
FAR can be found in the next section.

• Step 2 (δ): If the bandwidth of the Gaussian heat kernel function is too small, the ker-
nel will be sensitive to noise. A large bandwidth may create an overly smooth map-
ping [31]. Empirically, the bandwidth δ is chosen as δ = bmσ2 where m is the size of
the variables, b is a constant, and σ2 represents the variance in the data, which is 1 as
the original data are normalized [25]. In the case studies, b = 50 are selected.

• Step 3 (c1 and c2): It is noticeable that the hyper-parameters c1 and c2 have an im-
portant influence on the performance of the proposed FLML method. However, it is
challenging work to choose a set of optimal hyper-parameters. As a traditional way
of performing hyper-parameter optimization, the grid search method is employed.
For this purpose, a finite set of c1 ∈ {0, 0.05, . . . , 0.95} and c2 ∈ {0, 0.05, . . . , 0.95} are
explored by minimizing the mean FAR.

• Step 4 (d): Similar to NPE-based and LPP-based methods, the number of latent variables
d is selected by searching for eigenvalues similar to the smallest non-zero eigenvalue.

A scheme of the proposed fault detection method is provided as Figure 1, and the
procedure is described as follows:

Offline training:

• Step 1. Standardize the collected dataset X under normal operating conditions.
• Step 2. Extract the local structure information by calculating Le, Ll and Lh from (2),

(5), and (8).
• Step 3. Establish the fused local structure F defined in (10).
• Step 4. Perform eigenvalue decomposition as (13) to solve the optimization prob-

lem (11) and retain the eigenvectors corresponding to the smallest d eigenvalues as
the transformation matrix W .

• Step 5. Compute the UCLs T2
UCL and QUCL using (19).
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Online monitoring:

• Step 1. Standardize a newly collected sample xnew.
• Step 2. Obtain the score ynew and residual enew from (16).
• Step 3. Compute the online statistics T2 and Q according to (17) and (18), respectively.
• Step 4. If the real-time T2 or Q statistics are beyond the corresponding UCL, the alarm

is triggered.

Figure 1. The scheme of the proposed fault detection method.

4. Case Studies

In this section, the proposed FLML-based fault detection method is verified by con-
ducting experiments on the Tennessee Eastman process and a real-world blast furnace
ironmaking process.

4.1. Tennessee Eastman Process

The TE process is a well-known and widely used industrial benchmark for comparing
the performance of process monitoring and control [32]. In the TE process, there are
five main units including a separator, a compressor, a reactor, a vapor/liquid separator,
a stripper and a condenser, and eight components A-H. It also has 12 manipulated variables
(XMV1-11) and 41 measured variables (XMEAS1-41). Among these variables, XMEAS
(23–41) are the composition of A-H measured with 6 min sampling intervals in different
positions. Other variables are collected with 3 min sampling intervals. There are 21 pre-
programmed faults in the TE process. Of 21 faults, due to the absence of observable
change in the mean and standard deviation between their corresponding faulty and normal
operation, faults 3, 9, and 15 are very difficult to detect [33]. In this study, faults 3, 9, and 15
are ignored. The descriptions of the faults considered in this study are listed in Table 1.
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Table 1. Faults description in the TE process.

No. Fault Description Fault Type

IDV(0) Normal Situations -

IDV(1) A/C feed ratio, B composition constant (Stream 4) Step
IDV(2) B composition, A/C ratio constant (Stream 4) Step
IDV(4) Reactor cooling water inlet temperature Step
IDV(5) Condenser cooling water inlet temperature Step
IDV(6) A feed loss (Stream 1) Step
IDV(7) C header pressure loss-reduced availability (Stream 4) Step
IDV(8) A, B, C feed composition (Stream 4) Random variation

IDV(10) C feed temperature (Stream 4) Random variation
IDV(11) Reactor cooling water inlet temperature Random variation
IDV(12) Condenser cooling water inlet temperature Random variation
IDV(13) Reaction kinetics Slow drift
IDV(14) Reactor cooling water valve Sticking
IDV(16) Unknown Unknown
IDV(17) Unknown Unknown
IDV(18) Unknown Unknown
IDV(19) Unknown Unknown
IDV(20) Unknown Unknown
IDV(21) Valve fixed at steady-state position Constant position

A widely used dataset of TE process can be found in http://web.mit.edu/braatzgroup/
links.html (accessed on 25 September 2023). In this study, we also adopt this dataset. Specif-
ically, 22 measured variables XMEAS(1:22) and 11 manipulated variables XMV(1:11) are
selected as x ∈ R33. 500 samples collected under the normal operating condition (IDV(0))
are used as a training dataset. For each faulty dataset, it has 960 samples in total where the
fault is injected from the 160th sample.

To assess the fault detection performance, three indices including missed detection
rate (MDR), detection delay (DD), and false detection rate (FAR) are used. DD is defined
as the time interval from the start of the fault to the detection time, which is expressed as
the first time of five consecutive rises. MDR and FAR with a 99.9% confidence level can be
calculated as follows:

MDR(%) =
No. of samples(J≤JUCL |Fault)

total samples(Fault) × 100%

FAR(%) =
No. of samples(J>JUCL |Normal)

total samples(Normal) × 100%

where J ∈ {T2, Q} and JUCL ∈ {T2
UCL, QUCL}.

For a comparative study, several typical fault detection methods including PCA,
NPE, LPP, principal component pursuit (PCP) [34], kernel PCA (KPCA) [35], mixed KPCA
(MKPCA), structured joint sparse PCA (SJSPCA) [36], LE, LLE, and HLLE are employed.
For PCA, d = 19 is set according to the 95% cumulative percentage of variance (CPV).
For the NPE, k = 5 and d = 19 are selected. For LPP, k = 5, δ = 1650, and d = 19 are
selected. For PCP, d = 19 is selected. For KPCA, the kernel widths C = 1000 and d = 22
are selected. For MKPCA, the kernel widths C1 and C2 are set as 500 and 1000, respectively,
and d = 28 is selected. For SJSPCA, k = 5, λ1 = 600, λ2 = 50, and d = 19 are selected.
As displayed in Figure 2, k = 5 is selected for the TE case. Similarly, as shown in Figure 3,
c1 = 0.25 and c2 = 0.25 are chosen. For LE, LLE, and HLLE, δ = 1650, d = 19. For FLML,
δ = 1650, c1 = 0.25, c2 = 0.25, and d = 19 are selected.

http://web.mit.edu/braatzgroup/links.html
http://web.mit.edu/braatzgroup/links.html
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Figure 2. Mean FAR with different k for the TE process.
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Figure 3. Grid search result of the fusion weights c1 and c2 for the TE process.

Tables 2 and 3 list the MDRs and FARs of 18 faults. It can be observed that the NPE
and LPP can provide superior performance over PCA. The utilization of local structure
information can enhance fault detection performance. On the other hand, FLML T2 statistic
offers the lowest MDRs among all the comparative methods. The average of MDRs of
FLML T2 statistic is 7.58%. Compared to LE, LLE and HLLE methods, the average of MDRs
of FLML T2 statistic is increasingly reduced. Furthermore, the FARs of FLML T2 statistic
reach the same level of LE, LLE, and HLLE. The average of FARs of FLML T2 statistics
is 0.21%. The DD index represents the sensitivity of monitoring statistics. A smaller DD
means the monitoring statistic can detect the fault earlier. Table 4 lists the DDs for all
methods, where the DD is indicated in the unit of the hour. As displayed in Table 4, the
FLML T2 statistic almost derives the smallest DD among the all methods.

To further illustrate the superiority of the proposed FLML method, the monitoring
results are depicted in Figures 4 and 5 by PCA, NPE, LPP, PCP, KPCA, MKPCA, SJSPCA,
and FLML methods for IDV (10) and IDV (19), respectively. Fault 10 is designed by adding a
random disturbance on the C feed temperature (Stream 4). Compared to the step type fault
scenarios such as fault 1 or fault 2, fault 10 is more difficult to detect. As shown in Figure 4,
it is observed that FLML T2 can detect most of the faulty samples. In contrast, other
monitoring statistics such as PCA T2, NPE T2, PCP T2, KPCA T2, MKPCA T2, SJSPCA T2,
and LPP T2 cannot effectively detect the fault 10, since most of the monitoring statistics are
below the corresponding UCLs. Fault 19 is an unknown faulty type. The monitoring results
of fault 19 are displayed in Figure 5. By comparison, it can be observed that PCA, NPE,
LPP, PCP, KPCA, MKPCA, and SJSPCA fail to detect the occurrence of fault 19. The online
statistics are almost lower than the UCLs after the 161th sample. A promising result can be
obtained using FLML T2, as shown in Figure 5h.
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Table 2. Comparison results of MDR values for TE process.

No.
PCA (%) NPE (%) LPP (%) PCP (%) KPCA (%) MKPCA (%) SJSPCA (%) LE (%) LLE (%) HLLE (%) FLML (%)

T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q

1 0.75 0.25 0.13 0.38 0.13 0.50 0.13 1.63 16.50 0.75 0.25 0.88 0.38 0.25 0.25 0.88 0.25 0.88 0.25 0.75 0.25 0.88
2 2.00 0.75 1.38 1.75 1.50 1.75 1.00 14.88 93.38 2.75 1.63 2.00 1.63 1.50 1.50 2.00 1.50 2.00 1.50 2.38 1.50 2.00
4 58.00 0.13 25.25 33.38 30.88 29.25 14.50 5.75 0.00 95.38 0.75 94.50 27.50 2.88 0.00 85.00 0.88 75.13 10.13 72.00 0.00 85.75
5 76.75 75.75 0.00 0.00 0.00 70.25 69.63 93.88 77.38 77.63 72.88 77.50 71.63 71.75 0.00 72.50 0.00 77.88 0.00 73.38 0.00 72.88
6 0.63 0.00 0.00 0.00 0.00 0.00 0.50 0.00 96.63 0.00 0.00 0.00 0.50 0.00 0.00 0.50 0.00 0.63 0.00 0.63 0.00 0.50
7 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 16.13 14.25 0.00 6.63 0.00 0.00 0.00 0.88 0.00 0.00 0.00 6.88 0.00 0.38
8 2.63 9.38 2.13 2.00 2.25 2.00 1.88 49.00 18.38 5.38 1.50 3.63 2.25 2.13 2.50 3.25 1.88 4.13 2.25 2.75 2.50 3.25

10 67.13 45.63 42.13 41.63 43.13 47.88 40.38 91.63 57.13 72.00 53.75 43.88 54.88 45.88 13.13 54.25 10.88 78.88 17.25 54.5 12.38 54.63
11 48.88 39.88 38.25 38.63 38.38 38.63 31.00 60.50 18.88 77.50 32.50 72.13 37.63 30.50 32.00 58.00 40.88 58.25 41.50 50.25 32.38 58.50
12 1.75 7.38 0.38 0.25 0.38 1.00 1.00 38.25 30.25 2.50 0.75 2.38 1.25 1.00 0.13 1.75 0.13 3.63 0.13 2.13 0.13 1.75
13 5.88 4.63 4.88 5.50 5.13 5.50 4.75 17.50 54.75 7.13 5.13 6.13 5.38 5.13 4.75 5.75 4.63 9.38 5.00 5.75 4.75 5.88
14 0.13 11.88 0.00 0.13 0.00 0.00 0.00 0.38 0.00 0.13 0.00 0.38 0.00 0.00 0.13 0.75 0.13 0.00 0.00 0.25 0.13 0.75
16 84.38 48.75 63.38 59.50 51.13 60.13 59.75 83.25 76.13 87.75 74.13 58.38 69.50 57.38 8.50 69.38 7.13 89.88 15.75 71.5 8.00 71.63
17 21.00 3.63 16.88 11.63 12.88 11.63 9.88 11.00 35.88 8.38 5.25 24.13 13.13 9.38 3.88 21.38 4.50 21.38 5.63 18.63 4.00 22.00
18 10.88 10.00 10.75 10.50 10.88 10.38 9.50 10.38 94.00 10.13 10.13 11.38 10.38 10.38 10.00 11.00 10.25 10.75 10.13 10.50 9.88 11.00
19 94.38 71.63 92.25 95.38 88.50 96.00 75.00 98.63 84.75 96.00 85.00 99.63 82.25 91.38 13.75 97.38 13.00 98.88 20.38 95.75 13.13 97.50
20 62.63 40.63 50.63 44.00 48.50 46.88 31.88 72.13 45.38 46.75 45.00 65.75 48.13 43.63 9.13 60.25 9.13 70.25 10.50 53.5 9.13 60.75
21 60.63 44.13 54.00 55.63 56.25 57.00 40.00 89.00 46.63 66.75 59.75 69.25 55.63 55.88 37.88 67.00 38.13 73.5 57.38 58.63 38.38 67.63

Aver. 33.24 23.35 22.35 22.24 21.66 26.60 21.71 40.99 47.90 37.28 24.91 35.47 26.78 23.83 7.64 33.99 7.96 37.52 10.99 32.23 7.58 34.31

Table 3. Comparison results of FAR values for TE process.

No.
PCA (%) NPE (%) LPP (%) PCP (%) KPCA (%) MKPCA (%) SJSPCA (%) LE (%) LLE (%) HLLE (%) FLML (%)

T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q

1 0.00 1.25 0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.00 0.00
2 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.50 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.63 0.00 0.63 0.63 0.63 0.63 2.00 0.00 1.00 0.00 0.50 0.00 1.00 1.00 0.00 0.63 0.00 0.00 0.00 0.63 0.00 0.63
5 0.63 0.00 0.63 0.63 0.63 0.63 2.00 0.00 1.00 0.00 0.50 0.00 1.00 1.00 0.00 0.63 0.00 0.00 0.00 0.63 0.00 0.63
6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 1.25 0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00 1.50 0.50 0.63 0.00 0.00 0.00 0.00 0.63 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.50 1.00 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 1.25 0.00 0.00

10 0.00 0.63 0.00 0.63 0.00 0.00 1.00 0.00 1.50 0.00 0.00 0.00 1.50 1.00 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.00
11 0.00 1.88 0.00 1.25 0.00 1.25 2.50 0.00 1.50 0.00 1.50 0.00 1.50 1.00 0.00 1.25 0.00 0.00 0.00 1.25 0.00 1.25
12 0.63 0.00 0.63 4.38 0.63 5.63 3.00 0.00 1.50 0.00 1.50 1.00 2.00 1.00 0.00 3.75 0.63 0.00 0.63 1.88 0.00 3.13
13 0.00 0.00 0.00 0.63 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.63 0.00 0.63 0.00 1.00 0.00 1.50 0.00 0.00 0.00 1.50 1.00 0.63 0.00 0.00 0.00 0.63 0.63 0.00 0.00
16 0.00 2.50 3.75 19.38 2.50 19.38 15.50 0.00 6.50 0.50 4.50 3.00 10.50 10.00 1.25 11.25 3.13 2.50 0.63 15.63 1.25 10.63
17 0.00 1.25 0.00 0.00 0.00 0.00 2.50 0.00 0.50 0.00 0.00 0.00 1.00 0.50 0.63 0.00 0.63 0.00 0.00 0.63 0.00 0.00
18 0.63 0.00 0.63 0.63 0.63 0.00 2.50 0.50 2.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.63 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.25 0.00 0.00
20 0.00 0.63 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
21 0.00 1.25 0.63 1.88 0.00 3.13 6.00 0.00 3.50 0.00 0.00 0.00 2.50 1.00 1.25 1.25 2.50 0.00 0.63 1.88 2.50 0.63

Aver. 0.15 0.65 0.42 1.96 0.36 2.08 2.33 0.03 1.25 0.03 0.47 0.22 1.53 1.03 0.24 1.04 0.38 0.17 0.14 1.49 0.21 0.94

Table 4. Comparison results of DD values for TE process.

No.
PCA (%) NPE (%) LPP (%) PCP (%) KPCA (%) MKPCA (%) SJSPCA (%) LE (%) LLE (%) HLLE (%) FLML (%)

T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q

1 0.35 0.10 0.10 0.20 0.10 0.25 0.10 0.50 0.05 0.35 0.15 0.40 0.20 0.15 0.15 0.40 0.15 0.40 0.15 0.35 0.15 0.40
2 0.85 0.40 0.60 0.75 0.70 0.75 0.55 5.80 0.55 1.25 0.75 0.85 0.75 0.75 0.70 0.85 0.65 0.85 0.65 1.20 0.70 0.85
4 3.20 0.10 0.75 0.15 0.40 0.15 0.15 0.25 0.05 39.80 0.15 39.80 1.95 0.15 0.05 3.70 0.20 3.75 0.20 3.00 0.05 3.70
5 0.35 0.15 0.05 0.05 0.05 0.05 0.05 0.90 0.05 0.10 0.05 0.65 0.05 0.05 0.05 0.60 0.05 0.05 0.05 0.70 0.05 0.65
6 0.30 0.05 0.05 0.05 0.05 0.05 0.25 0.05 0.45 0.05 0.05 0.05 0.25 0.05 0.05 0.25 0.05 0.30 0.05 0.30 0.05 0.25
7 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
8 1.05 0.95 1.00 1.05 1.00 1.05 1.00 3.25 1.00 1.30 0.60 1.35 1.05 1.05 1.00 1.35 1.00 1.35 1.00 1.30 1.00 1.35

10 4.85 1.65 1.75 1.25 1.80 1.25 1.15 24.75 2.40 3.35 2.90 1.70 3.05 1.80 1.10 1.75 1.10 2.90 1.25 3.35 1.10 1.75
11 0.55 0.35 0.30 0.55 0.50 0.55 0.30 2.85 0.30 4.80 0.30 4.80 0.55 0.30 0.35 0.55 0.60 0.55 0.55 0.55 0.35 0.55
12 1.10 1.15 0.15 0.15 0.35 0.35 0.15 4.00 0.35 0.20 0.35 1.10 0.35 0.35 0.10 1.10 0.10 1.10 0.10 1.05 0.10 1.10
13 2.40 1.85 2.05 2.25 2.25 2.25 2.05 3.30 2.05 2.45 2.15 2.45 2.35 2.15 2.05 2.35 1.90 2.50 2.10 2.30 2.05 2.35
14 0.05 0.10 0.05 0.10 0.05 0.05 0.05 0.15 0.05 0.10 0.05 0.10 0.05 0.05 0.10 0.10 0.10 0.05 0.05 0.10 0.10 0.10
16 15.40 0.75 9.65 1.70 1.80 1.80 1.80 9.90 9.80 15.55 11.20 1.70 1.80 1.80 0.35 14.40 0.35 31.00 0.50 1.80 0.35 14.40
17 1.45 1.10 1.40 1.25 1.25 1.20 1.15 1.20 1.10 1.10 1.10 1.45 1.25 1.20 1.10 1.45 1.10 1.30 1.10 1.40 1.10 1.45
18 4.60 4.20 4.40 4.30 4.45 4.35 4.25 4.25 4.25 4.50 4.20 4.65 4.40 4.25 4.20 4.60 4.20 4.40 4.20 4.45 4.20 4.60
19 39.80 9.45 39.80 39.80 39.80 39.80 26.90 39.80 39.80 39.80 7.20 39.80 26.80 39.80 0.50 39.80 0.50 39.80 0.55 39.80 0.50 39.80
20 4.35 4.05 4.25 3.95 4.20 3.95 4.05 4.75 4.35 4.25 4.05 4.25 4.20 4.05 3.35 4.05 3.35 4.25 3.50 3.95 3.35 4.05
21 25.35 12.80 23.75 21.15 23.85 22.70 12.80 37.10 12.80 27.80 25.05 28.10 23.20 23.20 13.10 25.80 12.85 28.25 23.30 23.55 13.15 28.15

Aver. 5.89 2.18 5.01 4.38 4.59 4.48 2.33 0.03 4.41 8.14 3.35 7.40 4.02 4.51 1.58 5.73 1.57 6.83 2.19 4.96 1.58 5.86
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Figure 4. Cont.
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(i) (j)

(k)

Figure 4. Monitoring results for the fault 10: TE process. (a) PCA; (b) NPE; (c) LPP; (d) PCP;
(e) KPCA; (f) MKPCA; (g) SJSPCA; (h) LE; (i) LLE; (j) HLLE; (k) FLML.
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Figure 5. Monitoring results for the fault 19: TE process. (a) PCA; (b) NPE; (c) LPP; (d) PCP;
(e) KPCA; (f) MKPCA; (g) SJSPCA; (h) LE; (i) LLE; (j) HLLE; (k) FLML.
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4.2. Blast Furnace Ironmaking Process

In this section, the proposed method is verified through a real blast furnace (BF)
ironmaking process at a steel company in South China. In the steel manufacturing process,
the blast furnace ironmaking process plays a vital role. The blast furnace ironmaking
process is considered one of the most complex industrial processes. The basic units of
the blast furnace ironmaking process are depicted in Figure 6. As it can be seen from
Figure 6, the ironmaking process can be mainly divided into several sub-systems including
the charging system, gas processing system, hot air system, the pulverized coal injection
system, the iron system, and the BF body. The inner structure of the blast furnace is vertical.
In the BF, the iron ore and coke are fed from the top along the vertical direction. The 1000 ◦C
hot air and coal powder are blown into the furnace from the bottom. Through complex
chemical reactions, the molten iron and slag are generated and accumulated in the hearth.
In a periodical way, the molten iron and slag are discharged from the bottom of the furnace
through the tap hole. As a byproduct, the flux gas escapes from the top of the furnace.

In the ironmaking process, it often suffers from abnormal furnace conditions, due to the
effects of unreasonable daily operation and various disturbances. If these abnormal furnace
conditions are not detected in a timely manner, the product quality will be degraded,
and even the safety of the plant may not be ensured. Thus, the effective detection of
abnormalities becomes an indispensable component of the operation of a blast furnace.
In this study, we consider the detection of the channeling fault. The channeling fault may be
caused by several reasons such as the low-quality coke pulverized coal or the inappropriate
adjustment of air volume. In a channeling accident, the high-temperature furnace gas
passes in the path of least resistance at a high velocity. The furnace gas increases the heat
load at the wall and top of the furnace, resulting in possible equipment damage such as
burning of the bag dust catcher [37].

In this case, a dataset was collected from 21 December 2013 to 5 January 2014. The sam-
pling interval is 10 s. As demonstrated in [38], we select seven variables that are the most
sensitive to faults. These variables are listed in Table 5. A total of 1000 samples are collected
from 21 December 00:20 to 20–28 December 09:40 under the normal operating conditions
as the training dataset. According to the accident report of the operation personnel, from
30 December 2013 23:44 to 31 December 2013 05:18, the ironworks accident report recorded
the occurrence of the channeling. To facilitate the verification of fault detection perfor-
mance, a testing dataset is generated, wherein 1200 samples were collected where the fault
occurred from the 200th sample.

Figure 6. Diagram of blast furnace ironmaking process [39].
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Table 5. Variable description of the blast furnace ironmaking process.

No. Variable Description Unit

1 Oxygen enrichment rate %
2 Enriching oxygen flow (m3/s)
3 Hot blast temperature ◦C
4 Top temperature (1) ◦C
5 Top temperature (2) ◦C
6 Top temperature (3) ◦C
7 Downcomer temperature ◦C

For PCA, d = 3 is selected. For NPE, the neighbor parameter k and number of principle
components d are selected to be 5 and 3, respectively. For LPP, k = 5, d = 3, and δ = 7× 50
are determined. For PCP, d = 4 is selected. For KPCA, C = 200 and d = 3. For MKPCA,
C1 = 150, C2 = 200 and d = 3. For SJSPCA, k = 5, λ1 = 600, λ2 = 50, and d = 3. For fair
comparison, k = 5, d = 3, δ = 7× 50 are selected for LE, LLE, HLLE, and FLML. The result
of grid search for selecting c1 and c2 is plotted in Figure 7. On the basis of grid search
results, c1 = 0.3 and c2 = 0.3 are determined.
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Figure 7. Grid search result of the fusion weights c1 and c2 for the blast furnace ironmaking process.

The monitoring results are plotted in Figure 8. It can be observed that NPE and LPP
T2 statistics can detect more faulty samples than the PCA T2 statistic. But the improvement
is limited, as shown in Figure 8. The reason for this may be that NPE and LPP only extract
partial local structure information. It is also noticed that there are more false alarms for PCA
Q and PCP Q statistics. Compared to the other methods, the proposed FLML method can
provide much better performance, as shown in Figure 8h. Only a few faulty samples are
missed. Table 6 lists the MDRs, FARs, and DDs. As shown in Table 6, the MDR and FAR of
FLML T2 are 2.80% and 0.00%, respectively. The DD of FLML T2 is 0.17 min. The channeling
condition can be timely and accurately detected by FLML T2. Among these comparative
methods, the proposed FLML method can offer the best monitoring performance.

Table 6. Comparison results of MDR, FAR, and DD values for blast furnace ironmaking process.

PCA (%) NPE (%) LPP (%) PCP (%) KPCA (%) MKPCA (%) SJSPCA (%) LE (%) LLE (%) HLLE (%) FLML (%)

T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q T2 Q

26.70 a 78.80 23.10 93.80 26.20 93.80 21.80 71.20 23.90 94.10 22.60 84.70 28.10 71.10 6.60 93.50 8.40 98.50 7.00 91.80 2.80 85.70
0.00 b 13.00 0.00 0.00 0.00 0.00 0.00 13.00 0.00 0.00 0.00 2.50 0.00 3.00 8.00 0.00 17.00 0.00 17.50 0.00 0.00 0.00
0.17 c 21.67 0.17 6.40 0.17 6.40 0.17 18.33 0.17 57.83 0.17 53.83 0.17 2.17 0.02 6.45 0.02 5.80 0.02 6.13 0.17 5.89

a: First row: missed detection rates (MDRs, %). b: Second row: false alarm rates (FARs, %). c: Third row: detection
delays (DDs, mins).
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Figure 8. Cont.



Electronics 2023, 12, 4773 18 of 20

(i) (j)

(k)

Figure 8. Monitoring results for the channeling condition: blast furnace ironmaking process. (a) PCA;
(b) NPE; (c) LPP; (d) PCP; (e) KPCA; (f) MKPCA; (g) SJSPCA; (h) LE; (i) LLE; (j) HLLE; (k) FLML.

5. Conclusions

In this paper, a novel data-driven fault detection technique based on fusing local mani-
fold learning methods is proposed for complex industrial processes. The proposed method
aims to explore a more comprehensive local structure by synthesizing partial information
learned from LE, LLE, and HLLE. With the exploit of local geometric structure, the process
data are projected into a lower-dimensional space. Hotelling’s T2 and Q statistics are
employed for fault detection. Case studies on the widely used TE process benchmark and
a real blast furnace ironmaking process show the superior monitoring performance of the
proposed methods, by comparison with other related methods. However, the proposed
FLML still has limitations such as its process dynamics and hyper-parameters selection.
Future work will focus on the following aspects:

• The proposed FLML method is extended into a dynamic version by using time-lag
data to handle the dynamic characteristics of industry processes.

• Heuristic optimization methods such as genetic algorithm and particle swarm opti-
mization are employed to determine the hyper-parameters efficiently.

• The proposed FLML method is used for fault identification and classification
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