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Abstract: This brief paper analyzes the positivity and asymptotic stability of incommensurate
fractional-order coupled neural networks (FOCNNs) with time-varying delays. Under a reasonable
assumption about the activation functions of neurons, a sufficient and necessary condition is proposed
to guarantee that FOCNNs are positive systems. Furthermore, the sufficient and necessary condition
ensuring the asymptotic stability of FOCNNs is also given via introducing a linear auxiliary system.
Finally, a simulation experiment was carried out to justify the effectiveness of the derived results.
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1. Introduction

As an important artificial neural network, coupled neural networks (CNNs) have
attracted considerable attention due to their wide range of applications in the fields of
associative memories [1], bioengineering [2], pattern recognition [3], image encryption [4],
and machine learning [5]. It is worth emphasizing that the application of fractional calculus
for representing the electrical conductivity of biological neuron membranes, as documented
in [6], has significantly propelled fractional-order coupled neural networks (FOCNNs) into
the limelight. In recent years, many classical results focusing on their dynamical behaviors,
such as stability, synchronization, and passivity, have been obtained. For example, in [7],
the global stability of complex valued FOCNNs with nodes in unequal dimensions and time
delays was analyzed using comparison theory; in [8], the stability analysis of FOCNNs with
time delays was investigated; in addition, the stability of two three-dimensional FOCNNs
with different ring structures and time delays were analyzed; in [9], the authors studied
the quantized output feedback synchronization of FOCNNs with output coupling; in [10],
the authors considered the finite-time synchronization of FOCNNs with time-varying
delays; the results were proved to be applicable to the FOCNNs without time delays and
integer-order neural networks; in [11], the authors innovatively introduced the concept
of finite-time passivity for FOCNNs with multiple state coupling or multiple derivative
coupling; in [12], based on the existing passivity definition, the authors proposed the
concepts of finite-time input strict passivity, finite-time output strict passivity, and finite-
time strict passivity for FOCNNs; in addition, novel delay-dependent and order-dependent
sufficient conditions ensuring the passivity performances were obtained for FOCNNs.
More interesting results can be found in [13–19].

One the other hand, positive systems theory is indispensable for researching certain
actual physical systems whose quantities, including states and inputs, are non-negative,
such as ecology [20] and biology [21]. Unsurprisingly, research on fractional-order positive
systems has a long history, and some pioneering results have been achieved. For instance,
in [22], the necessary and sufficient condition that guarantees the positivity and reachability
of fractional-order linear systems (FOLSs) was given, where fractional linear continuous
systems were described by a class of state equations; in [23], the authors studied robust
stability of positive discrete FOLSs, and proved that the robust stability of the positive
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discrete FOLSs is equivalent to the robust stability of the corresponding positive discrete
system of natural order; in [24], the authors analyzed the L1-gain performance and L2-gain
performance of positive FOLSs, where the Mittag–Leffler stability is guaranteed using state
feedback control; similarly, in [25], the authors addressed the stability problem of positive
FOLSs via defining a Lyapunov function, where a state feedback controller was synthesized
by means of linear programming. It is worth noting that the objects studied in the above
literature are all commensurate FOLSs, i.e., the order of each subsystem is consistent. For
more general incommensurate FOLSs, some fascinating work was also reported.

In [26], the sufficient and necessary condition guaranteeing the positivity of incom-
mensurate FOLSs was introduced by virtue of the Laplace transform. In [27], the au-
thors addressed the stability of the incommensurate FOLSs; furthermore, the stability of
fractional-order nonlinear systems with multiorder couplings was proposed in a similar
manner to the stability of incommensurate FOLSs. In [28], the asymptotic stability and
L∞-gain performance of incommensurate positive FOLSs with time-varying delays were
investigated, where the obtained stability condition was proved to be independent of the
size of bounded delays. However, it should be noted that the systems analyzed in these
results are all linear systems. To the best of the authors’ knowledge, there is almost no liter-
ature on the stability analysis of positive fractional-order nonlinear systems, particularly in
the realm of positive FOCNNs. Although fractional operators, coupled dynamics, and the
nonlinearity of activation functions can cause many difficulties in research, the significance
of this work is evident due to the wide application of fractional calculus, positive systems,
and neural networks in the realm of bioengineering for system modeling.

Drawing on the previous discussion, this paper focuses on the analysis of both pos-
itivity and stability for incommensurate FOCNNs with time-varying delays. The paper
provides two fundamental conditions, both necessary and sufficient, essential for attaining
positivity and asymptotic stability, in which the proposal of the latter relies on a linear
auxiliary system under a reasonable assumption for activation functions. Unlike most
results on the stability of CNNs with delays, the method used in this paper does not require
the construction of the Lyapunov–Krasovskii function.

This paper is organized as follows. Section 2 gives some necessary preliminaries and
problem descriptions. The detailed analysis procedure is presented in Section 3. Section 4
performs simulation experiments, and Section 5 concludes this work.

Notation: N, C, and C1 symbolize the sets of natural numbers, complex numbers,
and differentiable functions; Rn denotes the space of the n-dimensional vector; In is the
n-dimensional identity matrix; A � 0 (� 0) indicates that all entries of the matrix are
positive (and respectively, non-negative); P > 0 denotes that the diagonal matrix is positive
definite; Γ ∈ Mn is an n-dimensional Metzler matrix; ej is the j-th column of the identity
matrix. Moreover, λ(A) denotes the eigenvalues of A, and λmax(A) represents the largest
eigenvalue of A.

2. Preliminaries and Problem Formulation
2.1. Introduction to Fractional Calculus

Definition 1 ([29]). The ϑ-th fractional integral is defined as

Iϑ
t f (t) =

1
Γ(ϑ)

∫ t

0
(t− ζ)ϑ−1 f (ζ)dζ,

where Γ(ϑ) =
∫ +∞

0 tϑ−1e−tdt is the Euler’s Gamma function, and ϑ > 0.

Definition 2 ([29]). The ϑ-th Caputo’s fractional derivative is

Dϑ
t f (t) =

1
Γ(n− ϑ)

∫ t

0
(t− ζ)n−1−ϑ f (n)(ζ)dζ,

where n− 1 < ϑ < n, and n ∈ N.
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Definition 3 ([29]). The Mittage–Leffler function is defined as

Ea,b(α) =
+∞

∑
i=0

αi

Γ(ia + b)
, (1)

where a, b ≥ 0, and α ∈ C.

The Laplace transform of (1) is

L[tb−1Ea,b(−rta)] =
sa−b

sa + r
,

where r is a constant.

Lemma 1 ([29]). If f (t) ∈ C1, one has that

Iϑ
t Dϑ

t f (t) = f (t)− f (0)

holds for all ϑ ∈ (0, 1).

Lemma 2 ([28]). Matrix A ∈ Rn×n is characterized as Metzler and Hurwitz if, and only if, there
exists a column vector λ � 0, satisfying Aλ ≺ 0.

2.2. Problem Description

The following incommensurate FOCNN with time-varying delays is given:
Dϑ

t αi(t) =Aαi(t) + B f (αi(t− τ(t))) + Dui(t)

+ c
N

∑
j=1

lijGαj(t), i = 1, · · · , N,

αi(ι) =νi(ι), ι ∈ [−max{τ(t)}, 0],

(2)

where N denotes the number of neurons, αi(t) = [αi1(t), · · · , αin(t)]T ∈ Rn and νi(ι) =
[νi1(ι), · · · , νin(ι)]

T ∈ Rn represent the state and initial condition of the i-th neuron, re-
spectively, f (αi(t)) = [ f1(αi1(t)), · · · , fn(αin(t))]T ∈ Rn is the activation function vector,
ui(t) = [ui1(t), · · · , uim(t)]T ∈ Rm represents the input vector, and τ(t) ≥ 0 denotes the
non-negative time-varying delay, which is bounded. ϑ = [ϑ1, · · · , ϑn]T ∈ Rn is the order
vector with ϑp ∈ (0, 1) (p = 1, · · · , n), and Dϑ

t αi(t) = [Dϑ1
t αi1(t), · · · , Dϑn

t αin(t)]T ∈ Rn. In
addition, A, B ∈ Rn×n, D ∈ Rn×m. Moreover, c > 0, L = [lij]N×N ∈ RN×N , and G ∈ Rn×n

are the coupling strength, the outer coupling matrix, and the inner coupling matrix, respec-
tively. It is assumed that lij > 0 if there exists a directed weight from the j-th neuron to the
i-th neuron, otherwise, lij = 0, and lii = 0. Assuming the delay satisfies that max τ(t) = τ̄,
we proceed to define the positivity of the FOCNN (2) as follows.

Definition 4. For any ι ∈ [−τ̄, 0] and t ≥ 0, if νi(ι) � 0, ui(t) � 0 and αi(t) � 0 holds for all
t ≥ 0, then the FOCNN (2) is a positive system.

An assumption is required to facilitate the subsequent positivity analysis. Further-
more, unless specifically indicated, the independent variables for all functions are always
represented as t.

Assumption 1. The activation function fp(·) is a nondecreasing function satisfying f (0) = 0 and

| fp(x)− fp(y)| ≤ l f |x− y|.
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Remark 1. Assumption 1 is reasonable for many activation functions that often appear in neural
networks, such as the hyperbolic tangent function, the softsign function, and the linear rectifica-
tion function.

The objective of this paper is to provide two necessary and sufficient conditions that
ensure both the positivity and asymptotic stability of FOCNNs.

3. Main Results

This section consists of two subsections. Within the initial subsection, we will present
the necessary and sufficient condition that guarantees the positivity of the FOCNN (2), and
in the subsequent subsection, we will delve into the analysis of asymptotic stability.

3.1. Positivity Analysis

Theorem 1. For any νi(ι) � 0 and ui � 0, the FOCNN (2) satisfying Assumption (1) is positive
if, and only if, the matrix A is Metzler, and B, D, G are non-negative matrices.

Proof of Theorem 1. (Sufficiency) Since A is a Metzler matrix, there must exist a constant
r > 0 such that rIn + A � 0. Then, the FOCNN (2) is equivalent to

Dϑ
t αi =− rαi + (rIn + A)αi + B f (αi(t− τ)) + Dui

+ c
N

∑
j=1

lijGαj,

αi(ι) =νi(ι), ι ∈ [−τ̄, 0].

(3)

The p-th component of the system (3) is

D
ϑp
t αip =− rαip +

n

∑
q=1

[rIn + A]pqαiq +
n

∑
q=1

[D]pquiq

+
n

∑
q=1

[B]pq fq(αiq(t− τ))

+ c
N

∑
j=1

n

∑
q=1

lij[G]pqαjq.

(4)

For convenience, let Θ(t) =
n

∑
q=1

[rIn + A]pqαiq +
n

∑
q=1

[D]pquiq +
n

∑
q=1

[B]pq fq(αiq(t − τ)) +

c
N

∑
j=1

n

∑
q=1

lij[G]pqαjq; then, (4) can be rewritten as

D
ϑp
t αip = −rαip + Θ. (5)

Taking the Laplace transform on both sides of (5), one obtains

Xip(s) =
sϑp−1

sϑp + r
αip(0) +

1
sϑp + r

Θ(s), (6)

where Xip(s) and Θ(s) are the Laplace transforms corresponding to αip and Θ, respectively.
Taking the inverse transform on both sides of (6), then

αip =
∫ t

0
µϑp−1Eϑp ,ϑp(−rµϑp)Θ(t− µ)dµ

+ Eϑp ,1(−rtϑp)αip(0).
(7)
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Let α = [α1, · · · , αNn]
T = [αT

1 , · · · , αT
N ]

T ∈ RNn. For any T > 0, if the FOCNN (2) is not
positive, there must exist a set S = {t ∈ [0, T]|α � 0}. Let t0 = inf S, then one obtains that
α � 0 holds for all t ∈ [0, t0). However, αip(t0) ≥ Eϑp ,1(−rtϑp)αip(0) ≥ 0 must holds since
Eϑp ,1(−rtϑp) > 0 and Eϑp ,ϑp(−rtϑp) > 0, which contradicts the definition of t0. Therefore,
S must be an empty set, i.e., αip ≥ 0 holds true across the interval [0, T]. Then, it can be
concluded that αi � 0 holds for all [0, T].

(Necessity) When the FOCNN (2) is a positive system under Assumption 1, let N = 2,
l12 > 0, l21 = 0 and f (αi) = αi, i.e., this network only consists of two neurons and
one weight.

The first neuron is given by{
Dϑ

t α1 =Aα1 + Bα1(t− τ) + Du1 + l12Gα2,

α1(ι) =ν1(ι), ι ∈ [−max{τ(t)}, 0].
(8)

If G is not a non-negative matrix, there must exist an element [G]ph < 0. Let u1 = 0, then
the p-th component of this neuron is

D
ϑp
t α1p =

n

∑
q=1

(
[A]pqα1q + [B]pqα1q(t− τ) + l12[G]pqα2q

)
. (9)

Let g1(t) = D
ϑp
t α1p, ν1(ι) = 0, and ν2(ι) = eh with eh being the h-th column of In, then one

has g1(0) = l12[G]ph. Therefore, there must be a constant δ1 > 0 such that g1(t) < 1
2 l12[G]ph

holds for all t ∈ U+(0, δ1). Using Definition 1 and Lemma 1, one has

α1p(t1) = α1p(0) +
1

Γ(ϑp)

∫ t1

0
(t1 − ζ)ϑp−1g1(ζ)dζ < 0, (10)

where 0 < t1 < δ1, which contradicts the positivity of the FOCNN (2). As a consequence,
G is non-negative.

The second neuron is described as{
Dϑ

t α2 =Aα2 + Bα2(t− τ) + Du2,

α2(ι) =ν2(ι), ι ∈ [−max{τ(t)}, 0].
(11)

If A is not a Metzler matrix, there must exist a [A]ph < 0 (h 6= p). When u2 = 0, the p-th
component of this neuron is

D
ϑp
t α2p =

n

∑
q=1

(
[A]pqα2q + [B]pqα2q(t− τ)

)
. (12)

Let

ν2(ι) =

{
0, ι ∈ [−max{τ(t)}, 0),

eh, ι = 0,
(13)

and g2(t) = D
ϑp
t α2p, then one has g2(0) = [A]ph, which implies that there is a constant δ2

such that g2(t) < 1
2 [A]ph holds for all t ∈ U+(0, δ2). Similarly, one obtains

α2p(t2) = α2p(0) +
1

Γ(ϑ)

∫ t2

0
(t2 − ζ)ϑp−1g2(ζ)dζ < 0, (14)

where 0 < t2 < δ2, which also contradicts the positivity of the network (2). Consequently,
A is a Metzler matrix. Let [B]ph < 0 (h can be equal to p) and

ν2(ι) =

{
eh, ι ∈ [−max{τ(t)}, 0),

0, ι = 0,
(15)
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then one has g2(0) = [B]phα2h(0− τ(0)) = [B]ph. Similar to the above discussion, there
is a constant δ3 such that g2(t) < 1

2 [B]ph satisfies for all t ∈ U+(0, δ3), which implies that
α2p(t3) < 0, in which 0 < t3 < δ3. Hence, according to the principle of contradiction, B
is a non-negative matrix. Finally, let ν2(ι) = 0 and u2 = eh (eh is the h-th column of the
m-dimensional identity matrix), which means that the matrix D is non-negative.

3.2. Asymptotic Stability Analysis

The FOCNN (2) can be rewritten as
Dϑ

t α(t) =(IN ⊗ A)α(t) + (IN ⊗ B)F(α(t− τ(t)))

+ (IN ⊗ D)u(t) + c(L⊗ G)α(t),

α(ι) =ν(ι), ι ∈ [−τ̄, 0],

(16)

in which Dϑ
t α = [Dϑ

t αT
1 , · · · , Dϑ

t αT
N ]

T ∈ RNn, F(α) = [ f (α1)
T , · · · , f (αN)

T ]T ∈ RNn, u =
[uT

1 , · · · , uT
N ]

T ∈ RNm, and ν(ι) = [ν1(ι)
T , · · · , νN(ι)

T ]T ∈ RNn.
A linear auxiliary system is defined as

Dϑ
t β(t) =(IN ⊗ A)β(t) + (IN ⊗ B)L f β(t− τ(t))

+ (IN ⊗ D)u(t) + c(L⊗ G)β(t),

β(ι) =ψ(ι), ι ∈ [−τ̄, 0],

(17)

where β ∈ RNn and ψ(ι) ∈ RNn are the state and initial condition of the system, respectively,
and L f = l f INn. Moreover, it is reasonable to contemplate the constant delay system under
zero input: 

Dϑ
t β(t) =(IN ⊗ A)β(t) + (IN ⊗ B)L f β(t− τ)

+ c(L⊗ G)β(t),

β(ι) =ψ(ι), ι ∈ [−τ̄, 0].

(18)

Before giving formal stability results, a lemma needs to be provided to facilitate the analysis.

Lemma 3. Consider the FOCNN (2) under Assumption 1. When u = 0, if ψ(ι) � ν(ι) holds for
all ι ∈ [−τ̄, 0], it can be affirmed that β � α is valid for all t > 0.

Proof of Lemma 3. Let e = β− α. When u = 0, it follows from (16) and (17) that

Dϑ
t e =

[
(IN ⊗ A) + c(L⊗ G)

]
e + (IN ⊗ B)L f e(t− τ)

+ (IN ⊗ B)
[
L f α(t− τ)− F(α(t− τ))

]
.

(19)

It is easy to conclude that (IN ⊗ A) + c(L⊗ G) is a Metzler matrix, and (IN ⊗ B)L f ,
(IN ⊗ B) are non-negative matrices. Since Assumption 1 is met, (IN ⊗ B)

[
L f α(t− τ)−

F(α(t − τ))
]

can be regarded as a non-negative input for the system (19). From [28]
(Theorem 1), it can be concluded that e � 0 is valid for all t > 0, i.e., β � α holds for all
t > 0.

Lemma 4. Assume λ � 0 such that ((IN ⊗ A) + c(L⊗ G) + (IN ⊗ B)L f )λ ≺ 0. Consequently,
for the system (18) with zero input (u = 0) and initial condition ψ(ι) ≡ λ(ι ∈ [−τ̄, 0]), it follows
that: (i) β � λ for all t ≥ 0; (ii) for any t2 > t1 ≥ 0, it holds that β(t1) � β(t2).

Proof of Lemma 4. (i) Define η(t) , λ− β(t), then it holds that

Dϑ
t η(t) =(IN ⊗ A + c(L⊗ G))η(t)− (IN ⊗ A + c(L⊗ G) + (IN ⊗ B)L f )λ

+ (IN ⊗ B)L f η(t− τ).
(20)
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Since η(ι) = 0 for any ι ∈ [−τ̄, 0]. According to the positivity analysis of the error system
(20), it can be demonstrated that η(t) � 0 for all t ≥ 0, implying that β � λ holds for all
t ≥ 0;

(ii) Consider the arbitrary constant d > 0, and define η(t) , β(t)− β(t + d), then it
can be deduced that

Dϑ
t η(t) =(IN ⊗ A + c(L⊗ G))η(t) + (IN ⊗ B)L f η(t− τ). (21)

Note that the error system (21) holds that η(ι) = β(ι)− β(ι + d) = λ− β(ι + d) � 0
for ι ∈ [−τ̄, 0]. Then, η(t) � 0 holds due to the error system (21) being positive, which
means that β(t) � β(t + d) for all t ≥ 0.

Lemma 5. Suppose that β(t; ψ1) and β(t; ψ2) are the trajectories of system (17) with the initial
condition ψ1 and ψ2. Then, ψ1(ι) � ψ2(ι) for ι ∈ [−τ̄, 0] means that β(t; ψ1) � β(t; ψ2) for
t > 0.

Proof of Lemma 5. It can be proved directly from the positivity and the linearity of sys-
tem (17).

With reference to Lemmas 3, 4, and 5, the theorem below elucidates the notion of
asymptotic stability.

Theorem 2. Suppose that Assumption 1 holds. Then, the positive FOCNN (2) is asymptotically
stable under zero input if, and only if, the matrix (IN ⊗ A) + c(L⊗ G) + (IN ⊗ B)L f is Hurwitz.

Proof of Theorem 2. (Sufficiency) Since β � α, the linear system (17) and (18) must be
the positive system. Suppose that β1(t; ψ) and β2(t; ψ) are the trajectories of system (17)
and (18) with the initial condition ψ. Since (IN ⊗ A) + c(L⊗ G) + (IN ⊗ B)L f is a Hurwitz
matrix, based on Lemma 2, it can be concluded that there exists a column vector λ � 0,
satisfying ((IN ⊗ A) + c(L ⊗ G) + (IN ⊗ B)L f )λ ≺ 0. Moreover, there always exists a
constant d = maxt∈[−τ̄,0] ‖ψ(t)‖∞/ minj=1,2,...,n λj, such that dλ � ψ(ι) for ι ∈ [−τ̄, 0].
From [28] (Proposition 1), it is obvious that lim

t→+∞
β2(t; dλ) = 0. Define ε(t) = β2(t; dλ)−

β1(t; dλ), then we have Dϑ
t ε(t) = [IN ⊗ A + c(L⊗G)]ε(t) + (IN ⊗ B)L f ε(t− τ(t)) + (IN ⊗

B)L f [β2(t− τ)− β2(t− τ(t))]. By Lemma 4, it is shown that β2(t− τ)− β2(t− τ(t)) � 0
for all t ≥ 0, and β1(t; dλ) � β2(t; dλ). In addition, from Lemma 5, one can obtain
that β1(t; ψ) � β1(t; dλ) and lim

t→+∞
β1(t; ψ) = 0, which implies that the system (17) is

asymptotically stable, i.e., lim
t→+∞

β = 0. Therefore, it follows from 0 � α � β that lim
t→+∞

α = 0

using the squeeze theorem, which means that the FOCNN (2) is asymptotically stable.
(Necessity) Let τ = 0, f (αi) = l f αi, and ϑi = ϑ, where ϑ ∈ (0, 1) is a constant.

Then, (16) can be rewritten as
Dϑ

t α = Ωα, (22)

in which Ω = (IN ⊗ A) + c(L⊗ G) + (IN ⊗ B)L f ∈ RNn×Nn. Since this system is asymp-
totically stable, in the light of [29], one has

∣∣ arg(λ(Ω))
∣∣ > πϑ

2 . It is easy to see that Ω is a
Metzler matrix, which implies that there must exist a constant r > 0 such that rINn + Ω � 0.
Using the Perron–Frobenius theorem, λmax(rINn + Ω) must be a singlet eigenvalue that is
a real number. Let x ∈ RNn be the eigenvector of rINn + Ω, then one has

Ωx =(rINn + Ω)x− rx =
[
λ(rINn + Ω)− r

]
x = λ(Ω)x,

which means that λmax(Ω) = λmax(rINn + Ω)− r is a real number. Since
∣∣ arg(λ(Ω))

∣∣ >
πϑ
2 , which excludes the positive real part, λmax(Ω) must be a negative number. Therefore,

Ω is a Hurwitz matrix.
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Remark 2. The purpose of introducing the auxiliary system (17) is to avoid defining the Lyapunov
function for the stability analysis. In the context of integer-order systems featuring time-varying
delays, the stability analysis commonly relies on the utilization of the Lyapunov–Krasovskii func-
tion. However, in the case of fractional-order systems, especially those involving incommensurate
fractional orders, this method is rendered impractical due to the intricate nature of the fractional
derivative of a composite function, characterized by a complex infinite series.

4. Simulation

Consider the following FOCNN constructed using four neurons:

Dϑ
t αi =Aαi + B f (αi(t− 0.5 cos t)) + Dui

+ c
4

∑
j=1

lijGαj, i = 1, · · · , 4,

αi(ι) =νi(ι), ι ∈ [−0.5, 0],

(23)

with f (αi) = 0.5[tanh(αi1), tanh(αi2), tanh(αi3)]
T , and ϑ = [0.6, 0.7, 0.8]T . Under the initial

condition ν1(ι) = [0.2| sin ι|, 0.2| cos ι|, 0.3(sin ι + 1)]T , ν2(ι) = [0.3(cos ι + 1), 0.1| tanh ι|, 0.2
| tanh ι|]T , ν3(ι) = [0.3| tanh ι|,0.2, 0.3]T , ν4(ι) = [0.4, 0.5, 0.6e−ι]T , and constant c = 0.2. The
coefficient matrices of the system (23) are L f = 0.5I12:

A =

 −2 0.1 0.2
0.3 −3 0.2
0.1 0.2 −4

, B =

 0.099 0.678 0.107
0.262 0.137 0.654
0.335 0.721 0.494

,

D =

 0.779 0.891
0.715 0.334
0.904 0.698

, L =


0 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

,

and

G =

 0.198 0.512 0.611
0.031 0.481 0.618
0.744 0.905 0.859

.

It is obvious that the matrix A is Metzler, and B, D, and G are non-negative matrices.
In addition, Ω is a Hurwitz matrix using the MATLAB R2019 toolbox, which means that
system (17) is asymptoically stable. Moreover, the states of the four neurons are depicted
in Figures 1–4. From Figures 1–4, it is obvious that αi, i = 1, 2, 3, 4, are quite close to zero
when time t increases to 20s, and these states can be maintained with increasing time. Also,
we can see that the state trajectories of FOCNN (23) remain positive all the time, which
clearly shows that the FOCNN (23) is positive and asymptotically stable.
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Figure 1. The state trajectory of the first neuron of the FOCNN (23).
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Figure 2. The state trajectory of the second neuron of the FOCNN (23).
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Figure 3. The state trajectory of the third neuron of the FOCNN (23).
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Figure 4. The state trajectory of the fourth neuron of the FOCNN (23).

5. Conclusions

Within this paper, the problem of positivity and asymptotic stability in incommen-
surate FOCNNs characterized by time-varying delays is addressed. Our contributions
encompass the presentation of two necessary and sufficient conditions that ensure both
positivity and asymptotic stability in FOCNNs. Moving forward, our research endeavors
will be directed towards the exploration of positivity and stability aspects in a wider array
of fractional-order nonlinear systems and singular FOCNNs with time-varying delays.
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